from typing import List, Tuple import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.tree import DecisionTreeClassifier from common.helpers import castle_neighbors, find_neighbours from models.castle import Castle from models.knight import Knight from models.monster import Monster def manhattan_distance(p1: Tuple[int, int], p2: Tuple[int, int]) -> int: x1, y1 = p1 x2, y2 = p2 return abs(x1 - x2) + abs(y1 - y2) def parse_hp(hp: int) -> int: return max(0, hp) def parse_idx_of_opp_or_monster(s: str) -> int: return int(s[-1]) - 1 class DecisionTree: def __init__(self) -> None: data_frame = pd.read_csv('learning/dataset_tree_1000.csv', delimiter=';') unlabeled_goals = data_frame['goal'] self.goals_label_encoder = LabelEncoder() self.goals = self.goals_label_encoder.fit_transform(unlabeled_goals) self.train_set = data_frame.drop('goal', axis='columns') self.model = DecisionTreeClassifier(criterion='entropy') self.model.fit(self.train_set.values, self.goals) def predict_move(self, grid: List[List[int]], current_knight: Knight, castle: Castle, monsters: List[Monster], opponents: List[Knight]) -> \ List[Tuple[int, int]]: distance_to_castle = manhattan_distance(current_knight.position, castle.position) monsters_parsed = [] for monster in monsters: monsters_parsed.append((manhattan_distance(current_knight.position, monster.position), parse_hp( monster.health_bar.current_hp))) opponents_parsed = [] for opponent in opponents: opponents_parsed.append( (manhattan_distance(current_knight.position, opponent.position), parse_hp(opponent.health_bar.current_hp))) prediction = self.get_prediction(tower_dist=distance_to_castle, tower_hp=castle.health_bar.current_hp, mob1_dist=monsters_parsed[0][0], mob1_hp=monsters_parsed[0][1], mob2_dist=monsters_parsed[1][0], mob2_hp=monsters_parsed[1][1], opp1_dist=opponents_parsed[0][0], opp1_hp=opponents_parsed[0][1], opp2_dist=opponents_parsed[1][0], opp2_hp=opponents_parsed[1][1], opp3_dist=opponents_parsed[2][0], opp3_hp=opponents_parsed[2][1], opp4_dist=opponents_parsed[3][0], opp4_hp=opponents_parsed[3][1], agent_hp=current_knight.health_bar.current_hp) print(f'Prediction = {prediction}') if prediction == 'tower': # castle... return castle_neighbors(grid, castle_bottom_right_row=castle.position[0], castle_bottom_right_col=castle.position[1]) elif prediction.startswith('opp'): idx = parse_idx_of_opp_or_monster(prediction) return find_neighbours(grid, opponents[idx].position[1], opponents[idx].position[0]) else: idx = parse_idx_of_opp_or_monster(prediction) return find_neighbours(grid, monsters[idx].position[1], monsters[idx].position[0]) def get_prediction(self, tower_dist: int, mob1_dist: int, mob2_dist: int, opp1_dist: int, opp2_dist: int, opp3_dist: int, opp4_dist: int, agent_hp: int, tower_hp: int, mob1_hp: int, mob2_hp: int, opp1_hp: int, opp2_hp: int, opp3_hp: int, opp4_hp) -> str: prediction = self.model.predict( [[tower_dist, mob1_dist, mob2_dist, opp1_dist, opp2_dist, opp3_dist, opp4_dist, agent_hp, tower_hp, mob1_hp, mob2_hp, opp1_hp, opp2_hp, opp3_hp, opp4_hp]]) return self.goals_label_encoder.inverse_transform(prediction)[0]