import torch import torch.nn as nn import torch.nn.functional as F class NeuralNetwork(nn.Module): def __init__(self, num_classes=4): super(NeuralNetwork, self).__init__() self.conv1 = nn.Conv2d(in_channels=3, out_channels=10, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)) self.conv2 = nn.Conv2d(in_channels=10, out_channels=20, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.fc1 = nn.Linear(20*9*9, num_classes) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool(x) x = F.relu(self.conv2(x)) x = self.pool(x) x = x.reshape(x.shape[0], -1) x = self.fc1(x) return x