This commit is contained in:
Kacper Kalinowski 2024-06-02 23:14:03 +02:00
parent 546623e34e
commit cf9b7a024e

View File

@ -1,263 +1,178 @@
import torch import numpy as np
import torch.nn as nn import keras
import torch.optim as optim from nltk.translate.bleu_score import corpus_bleu
import random
import re
import unicodedata
from torchtext.data.metrics import bleu_score
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Configuration
batch_size = 64
epochs = 350
latent_dim = 256
num_samples = 50000
data_path = "fra.txt"
# Data preparation # Preparing data
def unicode_to_ascii(s): input_texts = []
return ''.join(c for c in unicodedata.normalize('NFD', s) target_texts = []
if unicodedata.category(c) != 'Mn') input_characters = set()
target_characters = set()
with open(data_path, "r", encoding="utf-8") as f:
lines = f.read().split("\n")
for line in lines[: min(num_samples, len(lines) - 1)]:
input_text, target_text, _ = line.split("\t")
target_text = "\t" + target_text + "\n"
input_texts.append(input_text)
target_texts.append(target_text)
for char in input_text:
if char not in input_characters:
input_characters.add(char)
for char in target_text:
if char not in target_characters:
target_characters.add(char)
def preprocess_sentence(w): input_characters = sorted(list(input_characters))
w = unicode_to_ascii(w.lower().strip()) target_characters = sorted(list(target_characters))
w = re.sub(r"([?.!,¿])", r" \1 ", w) num_encoder_tokens = len(input_characters)
w = re.sub(r'[" "]+', " ", w) num_decoder_tokens = len(target_characters)
w = re.sub(r"[^a-zA-Z?.!,¿]+", " ", w) max_encoder_seq_length = max([len(txt) for txt in input_texts])
w = w.strip() max_decoder_seq_length = max([len(txt) for txt in target_texts])
return w
def read_langs(lang1, lang2, path): print("Number of samples:", len(input_texts))
lines = open(path, encoding='utf-8').read().strip().split('\n') print("Number of unique input tokens:", num_encoder_tokens)
pairs = [] print("Number of unique output tokens:", num_decoder_tokens)
for line in lines: print("Max sequence length for inputs:", max_encoder_seq_length)
parts = line.split('\t') print("Max sequence length for outputs:", max_decoder_seq_length)
if len(parts) >= 2:
pairs.append([preprocess_sentence(parts[0]), preprocess_sentence(parts[1])])
return pairs
data_path = 'fra.txt' input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])
pairs = read_langs('eng', 'fra', data_path) target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])
# Vocabulary class encoder_input_data = np.zeros(
class Vocabulary: (len(input_texts), max_encoder_seq_length, num_encoder_tokens),
def __init__(self): dtype="float32",
self.word2index = {} )
self.index2word = {} decoder_input_data = np.zeros(
self.word2count = {} (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
self.n_words = 0 dtype="float32",
self.add_word('<unk>') )
self.add_word('<pad>') decoder_target_data = np.zeros(
(len(input_texts), max_decoder_seq_length, num_decoder_tokens),
dtype="float32",
)
def add_sentence(self, sentence): for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
for word in sentence.split(' '): for t, char in enumerate(input_text):
self.add_word(word) encoder_input_data[i, t, input_token_index[char]] = 1.0
encoder_input_data[i, t + 1 :, input_token_index[" "]] = 1.0
for t, char in enumerate(target_text):
decoder_input_data[i, t, target_token_index[char]] = 1.0
if t > 0:
decoder_target_data[i, t - 1, target_token_index[char]] = 1.0
decoder_input_data[i, t + 1 :, target_token_index[" "]] = 1.0
decoder_target_data[i, t:, target_token_index[" "]] = 1.0
def add_word(self, word): # Creating model
if word not in self.word2index: encoder_inputs = keras.Input(shape=(None, num_encoder_tokens))
self.word2index[word] = self.n_words encoder = keras.layers.LSTM(latent_dim, return_state=True)
self.index2word[self.n_words] = word encoder_outputs, state_h, state_c = encoder(encoder_inputs)
self.word2count[word] = 1 encoder_states = [state_h, state_c]
self.n_words += 1
else:
self.word2count[word] += 1
def lookup(self, word): decoder_inputs = keras.Input(shape=(None, num_decoder_tokens))
return self.word2index.get(word, self.word2index['<unk>']) decoder_lstm = keras.layers.LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = keras.layers.Dense(num_decoder_tokens, activation="softmax")
decoder_outputs = decoder_dense(decoder_outputs)
eng_vocab = Vocabulary() model = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)
fra_vocab = Vocabulary()
for pair in pairs: # Creating the training model
eng_vocab.add_sentence(pair[0]) model.compile(
fra_vocab.add_sentence(pair[1]) optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"]
)
model.fit(
[encoder_input_data, decoder_input_data],
decoder_target_data,
batch_size=batch_size,
epochs=epochs,
validation_split=0.2,
)
model.save("s2s_model.keras")
# Seq2Seq Model with Attention # Sampling
class Encoder(nn.Module): model = keras.models.load_model("s2s_model.keras")
def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout):
super().__init__()
self.embedding = nn.Embedding(input_dim, emb_dim)
self.rnn = nn.GRU(emb_dim, hid_dim, n_layers, dropout=dropout, bidirectional=True)
self.fc = nn.Linear(hid_dim * 2, hid_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, src): encoder_inputs = model.input[0]
embedded = self.dropout(self.embedding(src)) encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output
outputs, hidden = self.rnn(embedded) encoder_states = [state_h_enc, state_c_enc]
# Sum bidirectional outputs encoder_model = keras.Model(encoder_inputs, encoder_states)
hidden = torch.tanh(self.fc(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1)))
return outputs, hidden
class Attention(nn.Module): decoder_inputs = model.input[1]
def __init__(self, hid_dim): decoder_state_input_h = keras.Input(shape=(latent_dim,))
super().__init__() decoder_state_input_c = keras.Input(shape=(latent_dim,))
self.attn = nn.Linear(hid_dim * 3, hid_dim) decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
self.v = nn.Linear(hid_dim, 1, bias=False) decoder_lstm = model.layers[3]
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
decoder_inputs, initial_state=decoder_states_inputs
)
decoder_states = [state_h_dec, state_c_dec]
decoder_dense = model.layers[4]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = keras.Model(
[decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
)
def forward(self, hidden, encoder_outputs): reverse_input_char_index = dict((i, char) for char, i in input_token_index.items())
# hidden = [batch size, hid dim] reverse_target_char_index = dict((i, char) for char, i in target_token_index.items())
# encoder_outputs = [src len, batch size, hid dim * 2]
src_len = encoder_outputs.shape[0]
hidden = hidden.unsqueeze(1).expand(-1, src_len, -1)
encoder_outputs = encoder_outputs.permute(1, 0, 2)
# hidden = [batch size, src len, hid dim]
# encoder_outputs = [batch size, src len, hid dim * 2]
energy = torch.tanh(self.attn(torch.cat((hidden, encoder_outputs), dim=2)))
# energy = [batch size, src len, hid dim]
attention = self.v(energy).squeeze(2)
# attention = [batch size, src len]
return torch.softmax(attention, dim=1)
class Decoder(nn.Module): def decode_sequences(input_seqs):
def __init__(self, output_dim, emb_dim, hid_dim, n_layers, dropout, attention): states_values = encoder_model.predict(input_seqs, verbose=0)
super().__init__() target_seqs = np.zeros((len(input_seqs), 1, num_decoder_tokens))
self.output_dim = output_dim target_seqs[:, 0, target_token_index["\t"]] = 1.0
self.attention = attention decoded_sentences = [""] * len(input_seqs)
self.embedding = nn.Embedding(output_dim, emb_dim) stop_conditions = np.zeros(len(input_seqs), dtype=bool)
self.rnn = nn.GRU(hid_dim * 2 + emb_dim, hid_dim, n_layers, dropout=dropout)
self.fc_out = nn.Linear(hid_dim * 3 + emb_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, input, hidden, encoder_outputs): while not np.all(stop_conditions):
input = input.unsqueeze(0) output_tokens, h, c = decoder_model.predict(
embedded = self.dropout(self.embedding(input)) [target_seqs] + states_values, verbose=0
a = self.attention(hidden[-1], encoder_outputs).unsqueeze(1) )
encoder_outputs = encoder_outputs.permute(1, 0, 2)
weighted = torch.bmm(a, encoder_outputs)
rnn_input = torch.cat((embedded, weighted.permute(1, 0, 2)), dim=2)
output, hidden = self.rnn(rnn_input, hidden)
embedded = embedded.squeeze(0)
output = output.squeeze(0)
weighted = weighted.squeeze(1)
prediction = self.fc_out(torch.cat((output, weighted, embedded), dim=1))
return prediction, hidden
class Seq2Seq(nn.Module): sampled_token_indices = np.argmax(output_tokens[:, -1, :], axis=1)
def __init__(self, encoder, decoder, device): sampled_chars = [
super().__init__() reverse_target_char_index[idx] for idx in sampled_token_indices
self.encoder = encoder ]
self.decoder = decoder
self.device = device
def forward(self, src, trg, teacher_forcing_ratio=0.5): for i, char in enumerate(sampled_chars):
trg_len = trg.shape[0] decoded_sentences[i] += char
batch_size = trg.shape[1] if char == "\n" or len(decoded_sentences[i]) > max_decoder_seq_length:
trg_vocab_size = self.decoder.output_dim stop_conditions[i] = True
outputs = torch.zeros(trg_len, batch_size, trg_vocab_size).to(self.device)
encoder_outputs, hidden = self.encoder(src)
# Initialize hidden state of the decoder with the hidden state of the encoder
hidden = hidden.unsqueeze(0).repeat(self.decoder.rnn.num_layers, 1, 1)
input = trg[0, :]
for t in range(1, trg_len):
output, hidden = self.decoder(input, hidden, encoder_outputs)
outputs[t] = output
top1 = output.argmax(1)
input = trg[t] if random.random() < teacher_forcing_ratio else top1
return outputs
# Training and evaluation functions target_seqs = np.zeros((len(input_seqs), 1, num_decoder_tokens))
def train(model, iterator, optimizer, criterion, clip, print_every=100, max_batches=1000): for i, token_index in enumerate(sampled_token_indices):
model.train() target_seqs[i, 0, token_index] = 1.0
epoch_loss = 0
i = 0 # Initialize batch counter
for src, trg in iterator:
if i >= max_batches: # Limit the number of batches processed in each epoch
break
src = src.to(device)
trg = trg.to(device)
optimizer.zero_grad()
output = model(src, trg)
output_dim = output.shape[-1]
output = output[1:].reshape(-1, output_dim)
trg = trg[1:].reshape(-1)
loss = criterion(output, trg)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
optimizer.step()
epoch_loss += loss.item()
if (i + 1) % print_every == 0:
print(f'Batch {i+1}, Loss: {loss.item():.4f}')
i += 1 # Increment batch counter
return epoch_loss / (i if i > 0 else 1) # Avoid division by zero states_values = [h, c]
def evaluate(model, iterator, criterion): return decoded_sentences
model.eval()
epoch_loss = 0
i = 0 # Initialize batch counter
with torch.no_grad():
for src, trg in iterator:
src = src.to(device)
trg = trg.to(device)
output = model(src, trg, 0)
output_dim = output.shape[-1]
output = output[1:].reshape(-1, output_dim)
trg = trg[1:].reshape(-1)
loss = criterion(output, trg)
epoch_loss += loss.item()
i += 1 # Increment batch counter
return epoch_loss / (i if i > 0 else 1) # Avoid division by zero
# BLEU Score calculation # BLEU score evaluation
def calculate_bleu(data, model, src_vocab, trg_vocab): def calculate_bleu_score(input_texts, target_texts, num_samples=500):
trgs = [] input_seqs = np.zeros(
pred_trgs = [] (num_samples, max_encoder_seq_length, num_encoder_tokens), dtype="float32"
for (src, trg) in data: )
src_tensor = torch.tensor([src_vocab.lookup(word) for word in src.split(' ')]).unsqueeze(1).to(device) for i, input_text in enumerate(input_texts[:num_samples]):
trg_tensor = torch.tensor([trg_vocab.lookup(word) for word in trg.split(' ')]).unsqueeze(1).to(device) for t, char in enumerate(input_text):
with torch.no_grad(): input_seqs[i, t, input_token_index[char]] = 1.0
output = model(src_tensor, trg_tensor, 0) input_seqs[i, t + 1 :, input_token_index[" "]] = 1.0
output_dim = output.shape[-1]
output = output[1:].reshape(-1, output_dim)
output = output.argmax(1)
pred_trg = [trg_vocab.index2word[idx.item()] for idx in output if idx.item() != trg_vocab.word2index['<pad>']]
pred_trgs.append(pred_trg)
trgs.append([trg.split(' ')])
return bleu_score(pred_trgs, trgs)
# Main script decoded_sentences = decode_sequences(input_seqs)
INPUT_DIM = eng_vocab.n_words
OUTPUT_DIM = fra_vocab.n_words
ENC_EMB_DIM = 256
DEC_EMB_DIM = 256
HID_DIM = 512
N_LAYERS = 2
ENC_DROPOUT = 0.5
DEC_DROPOUT = 0.5
BATCH_SIZE = 32
N_EPOCHS = 7
CLIP = 1
attn = Attention(HID_DIM) references = [[list(text.strip())] for text in target_texts[:num_samples]]
enc = Encoder(INPUT_DIM, ENC_EMB_DIM, HID_DIM, N_LAYERS, ENC_DROPOUT) hypotheses = [list(text.strip()) for text in decoded_sentences]
dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, HID_DIM, N_LAYERS, DEC_DROPOUT, attn) bleu = corpus_bleu(references, hypotheses)
print("BLEU Score:", bleu)
model = Seq2Seq(enc, dec, device).to(device) print("\nExample Translations:")
optimizer = optim.Adam(model.parameters()) for i in range(10):
criterion = nn.CrossEntropyLoss(ignore_index=fra_vocab.word2index['<pad>']) print("Input:", input_texts[i])
print("Target:", target_texts[i])
print("Translation:", decoded_sentences[i])
print()
# Splitting data into train and test sets calculate_bleu_score(input_texts, target_texts)
train_data = pairs[:int(0.8*len(pairs))]
test_data = pairs[int(0.8*len(pairs)):]
# Custom DataLoader with padding
def pad_sequence(seq, max_len, pad_value):
seq += [pad_value] * (max_len - len(seq))
return seq
def data_generator(data, src_vocab, trg_vocab, batch_size):
for i in range(0, len(data), batch_size):
src_batch = [d[0] for d in data[i:i+batch_size]]
trg_batch = [d[1] for d in data[i:i+batch_size]]
max_src_len = max(len(s.split(' ')) for s in src_batch)
max_trg_len = max(len(s.split(' ')) for s in trg_batch)
src_tensor = torch.tensor([pad_sequence([src_vocab.lookup(word) for word in sentence.split(' ')], max_len=max_src_len, pad_value=src_vocab.word2index['<pad>']) for sentence in src_batch], dtype=torch.long).T
trg_tensor = torch.tensor([pad_sequence([trg_vocab.lookup(word) for word in sentence.split(' ')], max_len=max_trg_len, pad_value=trg_vocab.word2index['<pad>']) for sentence in trg_batch], dtype=torch.long).T
yield src_tensor, trg_tensor
for epoch in range(N_EPOCHS):
print(f'Epoch {epoch+1}/{N_EPOCHS}')
train_iterator = data_generator(train_data, eng_vocab, fra_vocab, BATCH_SIZE)
valid_iterator = data_generator(test_data, eng_vocab, fra_vocab, BATCH_SIZE)
train_loss = train(model, train_iterator, optimizer, criterion, CLIP)
valid_loss = evaluate(model, valid_iterator, criterion)
print(f'Epoch {epoch+1:02}, Train Loss: {train_loss:.3f}, Val. Loss: {valid_loss:.3f}')
bleu = calculate_bleu(test_data, model, eng_vocab, fra_vocab)
print(f'BLEU score = {bleu:.2f}')