1275 lines
38 KiB
Python
1275 lines
38 KiB
Python
|
import functools
|
||
|
|
||
|
import numpy.core.numeric as _nx
|
||
|
from numpy.core.numeric import asarray, zeros, array, asanyarray
|
||
|
from numpy.core.fromnumeric import reshape, transpose
|
||
|
from numpy.core.multiarray import normalize_axis_index
|
||
|
from numpy.core import overrides
|
||
|
from numpy.core import vstack, atleast_3d
|
||
|
from numpy.core.numeric import normalize_axis_tuple
|
||
|
from numpy.core.shape_base import _arrays_for_stack_dispatcher
|
||
|
from numpy.lib.index_tricks import ndindex
|
||
|
from numpy.matrixlib.defmatrix import matrix # this raises all the right alarm bells
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
'column_stack', 'row_stack', 'dstack', 'array_split', 'split',
|
||
|
'hsplit', 'vsplit', 'dsplit', 'apply_over_axes', 'expand_dims',
|
||
|
'apply_along_axis', 'kron', 'tile', 'get_array_wrap', 'take_along_axis',
|
||
|
'put_along_axis'
|
||
|
]
|
||
|
|
||
|
|
||
|
array_function_dispatch = functools.partial(
|
||
|
overrides.array_function_dispatch, module='numpy')
|
||
|
|
||
|
|
||
|
def _make_along_axis_idx(arr_shape, indices, axis):
|
||
|
# compute dimensions to iterate over
|
||
|
if not _nx.issubdtype(indices.dtype, _nx.integer):
|
||
|
raise IndexError('`indices` must be an integer array')
|
||
|
if len(arr_shape) != indices.ndim:
|
||
|
raise ValueError(
|
||
|
"`indices` and `arr` must have the same number of dimensions")
|
||
|
shape_ones = (1,) * indices.ndim
|
||
|
dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))
|
||
|
|
||
|
# build a fancy index, consisting of orthogonal aranges, with the
|
||
|
# requested index inserted at the right location
|
||
|
fancy_index = []
|
||
|
for dim, n in zip(dest_dims, arr_shape):
|
||
|
if dim is None:
|
||
|
fancy_index.append(indices)
|
||
|
else:
|
||
|
ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
|
||
|
fancy_index.append(_nx.arange(n).reshape(ind_shape))
|
||
|
|
||
|
return tuple(fancy_index)
|
||
|
|
||
|
|
||
|
def _take_along_axis_dispatcher(arr, indices, axis):
|
||
|
return (arr, indices)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_take_along_axis_dispatcher)
|
||
|
def take_along_axis(arr, indices, axis):
|
||
|
"""
|
||
|
Take values from the input array by matching 1d index and data slices.
|
||
|
|
||
|
This iterates over matching 1d slices oriented along the specified axis in
|
||
|
the index and data arrays, and uses the former to look up values in the
|
||
|
latter. These slices can be different lengths.
|
||
|
|
||
|
Functions returning an index along an axis, like `argsort` and
|
||
|
`argpartition`, produce suitable indices for this function.
|
||
|
|
||
|
.. versionadded:: 1.15.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arr : ndarray (Ni..., M, Nk...)
|
||
|
Source array
|
||
|
indices : ndarray (Ni..., J, Nk...)
|
||
|
Indices to take along each 1d slice of `arr`. This must match the
|
||
|
dimension of arr, but dimensions Ni and Nj only need to broadcast
|
||
|
against `arr`.
|
||
|
axis : int
|
||
|
The axis to take 1d slices along. If axis is None, the input array is
|
||
|
treated as if it had first been flattened to 1d, for consistency with
|
||
|
`sort` and `argsort`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out: ndarray (Ni..., J, Nk...)
|
||
|
The indexed result.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is equivalent to (but faster than) the following use of `ndindex` and
|
||
|
`s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
|
||
|
|
||
|
Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
|
||
|
J = indices.shape[axis] # Need not equal M
|
||
|
out = np.empty(Ni + (J,) + Nk)
|
||
|
|
||
|
for ii in ndindex(Ni):
|
||
|
for kk in ndindex(Nk):
|
||
|
a_1d = a [ii + s_[:,] + kk]
|
||
|
indices_1d = indices[ii + s_[:,] + kk]
|
||
|
out_1d = out [ii + s_[:,] + kk]
|
||
|
for j in range(J):
|
||
|
out_1d[j] = a_1d[indices_1d[j]]
|
||
|
|
||
|
Equivalently, eliminating the inner loop, the last two lines would be::
|
||
|
|
||
|
out_1d[:] = a_1d[indices_1d]
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
take : Take along an axis, using the same indices for every 1d slice
|
||
|
put_along_axis :
|
||
|
Put values into the destination array by matching 1d index and data slices
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
For this sample array
|
||
|
|
||
|
>>> a = np.array([[10, 30, 20], [60, 40, 50]])
|
||
|
|
||
|
We can sort either by using sort directly, or argsort and this function
|
||
|
|
||
|
>>> np.sort(a, axis=1)
|
||
|
array([[10, 20, 30],
|
||
|
[40, 50, 60]])
|
||
|
>>> ai = np.argsort(a, axis=1)
|
||
|
>>> ai
|
||
|
array([[0, 2, 1],
|
||
|
[1, 2, 0]])
|
||
|
>>> np.take_along_axis(a, ai, axis=1)
|
||
|
array([[10, 20, 30],
|
||
|
[40, 50, 60]])
|
||
|
|
||
|
The same works for max and min, if you maintain the trivial dimension
|
||
|
with ``keepdims``:
|
||
|
|
||
|
>>> np.max(a, axis=1, keepdims=True)
|
||
|
array([[30],
|
||
|
[60]])
|
||
|
>>> ai = np.argmax(a, axis=1, keepdims=True)
|
||
|
>>> ai
|
||
|
array([[1],
|
||
|
[0]])
|
||
|
>>> np.take_along_axis(a, ai, axis=1)
|
||
|
array([[30],
|
||
|
[60]])
|
||
|
|
||
|
If we want to get the max and min at the same time, we can stack the
|
||
|
indices first
|
||
|
|
||
|
>>> ai_min = np.argmin(a, axis=1, keepdims=True)
|
||
|
>>> ai_max = np.argmax(a, axis=1, keepdims=True)
|
||
|
>>> ai = np.concatenate([ai_min, ai_max], axis=1)
|
||
|
>>> ai
|
||
|
array([[0, 1],
|
||
|
[1, 0]])
|
||
|
>>> np.take_along_axis(a, ai, axis=1)
|
||
|
array([[10, 30],
|
||
|
[40, 60]])
|
||
|
"""
|
||
|
# normalize inputs
|
||
|
if axis is None:
|
||
|
arr = arr.flat
|
||
|
arr_shape = (len(arr),) # flatiter has no .shape
|
||
|
axis = 0
|
||
|
else:
|
||
|
axis = normalize_axis_index(axis, arr.ndim)
|
||
|
arr_shape = arr.shape
|
||
|
|
||
|
# use the fancy index
|
||
|
return arr[_make_along_axis_idx(arr_shape, indices, axis)]
|
||
|
|
||
|
|
||
|
def _put_along_axis_dispatcher(arr, indices, values, axis):
|
||
|
return (arr, indices, values)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_put_along_axis_dispatcher)
|
||
|
def put_along_axis(arr, indices, values, axis):
|
||
|
"""
|
||
|
Put values into the destination array by matching 1d index and data slices.
|
||
|
|
||
|
This iterates over matching 1d slices oriented along the specified axis in
|
||
|
the index and data arrays, and uses the former to place values into the
|
||
|
latter. These slices can be different lengths.
|
||
|
|
||
|
Functions returning an index along an axis, like `argsort` and
|
||
|
`argpartition`, produce suitable indices for this function.
|
||
|
|
||
|
.. versionadded:: 1.15.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arr : ndarray (Ni..., M, Nk...)
|
||
|
Destination array.
|
||
|
indices : ndarray (Ni..., J, Nk...)
|
||
|
Indices to change along each 1d slice of `arr`. This must match the
|
||
|
dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast
|
||
|
against `arr`.
|
||
|
values : array_like (Ni..., J, Nk...)
|
||
|
values to insert at those indices. Its shape and dimension are
|
||
|
broadcast to match that of `indices`.
|
||
|
axis : int
|
||
|
The axis to take 1d slices along. If axis is None, the destination
|
||
|
array is treated as if a flattened 1d view had been created of it.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is equivalent to (but faster than) the following use of `ndindex` and
|
||
|
`s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
|
||
|
|
||
|
Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
|
||
|
J = indices.shape[axis] # Need not equal M
|
||
|
|
||
|
for ii in ndindex(Ni):
|
||
|
for kk in ndindex(Nk):
|
||
|
a_1d = a [ii + s_[:,] + kk]
|
||
|
indices_1d = indices[ii + s_[:,] + kk]
|
||
|
values_1d = values [ii + s_[:,] + kk]
|
||
|
for j in range(J):
|
||
|
a_1d[indices_1d[j]] = values_1d[j]
|
||
|
|
||
|
Equivalently, eliminating the inner loop, the last two lines would be::
|
||
|
|
||
|
a_1d[indices_1d] = values_1d
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
take_along_axis :
|
||
|
Take values from the input array by matching 1d index and data slices
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
For this sample array
|
||
|
|
||
|
>>> a = np.array([[10, 30, 20], [60, 40, 50]])
|
||
|
|
||
|
We can replace the maximum values with:
|
||
|
|
||
|
>>> ai = np.argmax(a, axis=1, keepdims=True)
|
||
|
>>> ai
|
||
|
array([[1],
|
||
|
[0]])
|
||
|
>>> np.put_along_axis(a, ai, 99, axis=1)
|
||
|
>>> a
|
||
|
array([[10, 99, 20],
|
||
|
[99, 40, 50]])
|
||
|
|
||
|
"""
|
||
|
# normalize inputs
|
||
|
if axis is None:
|
||
|
arr = arr.flat
|
||
|
axis = 0
|
||
|
arr_shape = (len(arr),) # flatiter has no .shape
|
||
|
else:
|
||
|
axis = normalize_axis_index(axis, arr.ndim)
|
||
|
arr_shape = arr.shape
|
||
|
|
||
|
# use the fancy index
|
||
|
arr[_make_along_axis_idx(arr_shape, indices, axis)] = values
|
||
|
|
||
|
|
||
|
def _apply_along_axis_dispatcher(func1d, axis, arr, *args, **kwargs):
|
||
|
return (arr,)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_apply_along_axis_dispatcher)
|
||
|
def apply_along_axis(func1d, axis, arr, *args, **kwargs):
|
||
|
"""
|
||
|
Apply a function to 1-D slices along the given axis.
|
||
|
|
||
|
Execute `func1d(a, *args, **kwargs)` where `func1d` operates on 1-D arrays
|
||
|
and `a` is a 1-D slice of `arr` along `axis`.
|
||
|
|
||
|
This is equivalent to (but faster than) the following use of `ndindex` and
|
||
|
`s_`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices::
|
||
|
|
||
|
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
|
||
|
for ii in ndindex(Ni):
|
||
|
for kk in ndindex(Nk):
|
||
|
f = func1d(arr[ii + s_[:,] + kk])
|
||
|
Nj = f.shape
|
||
|
for jj in ndindex(Nj):
|
||
|
out[ii + jj + kk] = f[jj]
|
||
|
|
||
|
Equivalently, eliminating the inner loop, this can be expressed as::
|
||
|
|
||
|
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
|
||
|
for ii in ndindex(Ni):
|
||
|
for kk in ndindex(Nk):
|
||
|
out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func1d : function (M,) -> (Nj...)
|
||
|
This function should accept 1-D arrays. It is applied to 1-D
|
||
|
slices of `arr` along the specified axis.
|
||
|
axis : integer
|
||
|
Axis along which `arr` is sliced.
|
||
|
arr : ndarray (Ni..., M, Nk...)
|
||
|
Input array.
|
||
|
args : any
|
||
|
Additional arguments to `func1d`.
|
||
|
kwargs : any
|
||
|
Additional named arguments to `func1d`.
|
||
|
|
||
|
.. versionadded:: 1.9.0
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray (Ni..., Nj..., Nk...)
|
||
|
The output array. The shape of `out` is identical to the shape of
|
||
|
`arr`, except along the `axis` dimension. This axis is removed, and
|
||
|
replaced with new dimensions equal to the shape of the return value
|
||
|
of `func1d`. So if `func1d` returns a scalar `out` will have one
|
||
|
fewer dimensions than `arr`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
apply_over_axes : Apply a function repeatedly over multiple axes.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> def my_func(a):
|
||
|
... \"\"\"Average first and last element of a 1-D array\"\"\"
|
||
|
... return (a[0] + a[-1]) * 0.5
|
||
|
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
|
||
|
>>> np.apply_along_axis(my_func, 0, b)
|
||
|
array([4., 5., 6.])
|
||
|
>>> np.apply_along_axis(my_func, 1, b)
|
||
|
array([2., 5., 8.])
|
||
|
|
||
|
For a function that returns a 1D array, the number of dimensions in
|
||
|
`outarr` is the same as `arr`.
|
||
|
|
||
|
>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
|
||
|
>>> np.apply_along_axis(sorted, 1, b)
|
||
|
array([[1, 7, 8],
|
||
|
[3, 4, 9],
|
||
|
[2, 5, 6]])
|
||
|
|
||
|
For a function that returns a higher dimensional array, those dimensions
|
||
|
are inserted in place of the `axis` dimension.
|
||
|
|
||
|
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
|
||
|
>>> np.apply_along_axis(np.diag, -1, b)
|
||
|
array([[[1, 0, 0],
|
||
|
[0, 2, 0],
|
||
|
[0, 0, 3]],
|
||
|
[[4, 0, 0],
|
||
|
[0, 5, 0],
|
||
|
[0, 0, 6]],
|
||
|
[[7, 0, 0],
|
||
|
[0, 8, 0],
|
||
|
[0, 0, 9]]])
|
||
|
"""
|
||
|
# handle negative axes
|
||
|
arr = asanyarray(arr)
|
||
|
nd = arr.ndim
|
||
|
axis = normalize_axis_index(axis, nd)
|
||
|
|
||
|
# arr, with the iteration axis at the end
|
||
|
in_dims = list(range(nd))
|
||
|
inarr_view = transpose(arr, in_dims[:axis] + in_dims[axis+1:] + [axis])
|
||
|
|
||
|
# compute indices for the iteration axes, and append a trailing ellipsis to
|
||
|
# prevent 0d arrays decaying to scalars, which fixes gh-8642
|
||
|
inds = ndindex(inarr_view.shape[:-1])
|
||
|
inds = (ind + (Ellipsis,) for ind in inds)
|
||
|
|
||
|
# invoke the function on the first item
|
||
|
try:
|
||
|
ind0 = next(inds)
|
||
|
except StopIteration:
|
||
|
raise ValueError(
|
||
|
'Cannot apply_along_axis when any iteration dimensions are 0'
|
||
|
) from None
|
||
|
res = asanyarray(func1d(inarr_view[ind0], *args, **kwargs))
|
||
|
|
||
|
# build a buffer for storing evaluations of func1d.
|
||
|
# remove the requested axis, and add the new ones on the end.
|
||
|
# laid out so that each write is contiguous.
|
||
|
# for a tuple index inds, buff[inds] = func1d(inarr_view[inds])
|
||
|
buff = zeros(inarr_view.shape[:-1] + res.shape, res.dtype)
|
||
|
|
||
|
# permutation of axes such that out = buff.transpose(buff_permute)
|
||
|
buff_dims = list(range(buff.ndim))
|
||
|
buff_permute = (
|
||
|
buff_dims[0 : axis] +
|
||
|
buff_dims[buff.ndim-res.ndim : buff.ndim] +
|
||
|
buff_dims[axis : buff.ndim-res.ndim]
|
||
|
)
|
||
|
|
||
|
# matrices have a nasty __array_prepare__ and __array_wrap__
|
||
|
if not isinstance(res, matrix):
|
||
|
buff = res.__array_prepare__(buff)
|
||
|
|
||
|
# save the first result, then compute and save all remaining results
|
||
|
buff[ind0] = res
|
||
|
for ind in inds:
|
||
|
buff[ind] = asanyarray(func1d(inarr_view[ind], *args, **kwargs))
|
||
|
|
||
|
if not isinstance(res, matrix):
|
||
|
# wrap the array, to preserve subclasses
|
||
|
buff = res.__array_wrap__(buff)
|
||
|
|
||
|
# finally, rotate the inserted axes back to where they belong
|
||
|
return transpose(buff, buff_permute)
|
||
|
|
||
|
else:
|
||
|
# matrices have to be transposed first, because they collapse dimensions!
|
||
|
out_arr = transpose(buff, buff_permute)
|
||
|
return res.__array_wrap__(out_arr)
|
||
|
|
||
|
|
||
|
def _apply_over_axes_dispatcher(func, a, axes):
|
||
|
return (a,)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_apply_over_axes_dispatcher)
|
||
|
def apply_over_axes(func, a, axes):
|
||
|
"""
|
||
|
Apply a function repeatedly over multiple axes.
|
||
|
|
||
|
`func` is called as `res = func(a, axis)`, where `axis` is the first
|
||
|
element of `axes`. The result `res` of the function call must have
|
||
|
either the same dimensions as `a` or one less dimension. If `res`
|
||
|
has one less dimension than `a`, a dimension is inserted before
|
||
|
`axis`. The call to `func` is then repeated for each axis in `axes`,
|
||
|
with `res` as the first argument.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : function
|
||
|
This function must take two arguments, `func(a, axis)`.
|
||
|
a : array_like
|
||
|
Input array.
|
||
|
axes : array_like
|
||
|
Axes over which `func` is applied; the elements must be integers.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
apply_over_axis : ndarray
|
||
|
The output array. The number of dimensions is the same as `a`,
|
||
|
but the shape can be different. This depends on whether `func`
|
||
|
changes the shape of its output with respect to its input.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
apply_along_axis :
|
||
|
Apply a function to 1-D slices of an array along the given axis.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function is equivalent to tuple axis arguments to reorderable ufuncs
|
||
|
with keepdims=True. Tuple axis arguments to ufuncs have been available since
|
||
|
version 1.7.0.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> a = np.arange(24).reshape(2,3,4)
|
||
|
>>> a
|
||
|
array([[[ 0, 1, 2, 3],
|
||
|
[ 4, 5, 6, 7],
|
||
|
[ 8, 9, 10, 11]],
|
||
|
[[12, 13, 14, 15],
|
||
|
[16, 17, 18, 19],
|
||
|
[20, 21, 22, 23]]])
|
||
|
|
||
|
Sum over axes 0 and 2. The result has same number of dimensions
|
||
|
as the original array:
|
||
|
|
||
|
>>> np.apply_over_axes(np.sum, a, [0,2])
|
||
|
array([[[ 60],
|
||
|
[ 92],
|
||
|
[124]]])
|
||
|
|
||
|
Tuple axis arguments to ufuncs are equivalent:
|
||
|
|
||
|
>>> np.sum(a, axis=(0,2), keepdims=True)
|
||
|
array([[[ 60],
|
||
|
[ 92],
|
||
|
[124]]])
|
||
|
|
||
|
"""
|
||
|
val = asarray(a)
|
||
|
N = a.ndim
|
||
|
if array(axes).ndim == 0:
|
||
|
axes = (axes,)
|
||
|
for axis in axes:
|
||
|
if axis < 0:
|
||
|
axis = N + axis
|
||
|
args = (val, axis)
|
||
|
res = func(*args)
|
||
|
if res.ndim == val.ndim:
|
||
|
val = res
|
||
|
else:
|
||
|
res = expand_dims(res, axis)
|
||
|
if res.ndim == val.ndim:
|
||
|
val = res
|
||
|
else:
|
||
|
raise ValueError("function is not returning "
|
||
|
"an array of the correct shape")
|
||
|
return val
|
||
|
|
||
|
|
||
|
def _expand_dims_dispatcher(a, axis):
|
||
|
return (a,)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_expand_dims_dispatcher)
|
||
|
def expand_dims(a, axis):
|
||
|
"""
|
||
|
Expand the shape of an array.
|
||
|
|
||
|
Insert a new axis that will appear at the `axis` position in the expanded
|
||
|
array shape.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like
|
||
|
Input array.
|
||
|
axis : int or tuple of ints
|
||
|
Position in the expanded axes where the new axis (or axes) is placed.
|
||
|
|
||
|
.. deprecated:: 1.13.0
|
||
|
Passing an axis where ``axis > a.ndim`` will be treated as
|
||
|
``axis == a.ndim``, and passing ``axis < -a.ndim - 1`` will
|
||
|
be treated as ``axis == 0``. This behavior is deprecated.
|
||
|
|
||
|
.. versionchanged:: 1.18.0
|
||
|
A tuple of axes is now supported. Out of range axes as
|
||
|
described above are now forbidden and raise an `AxisError`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : ndarray
|
||
|
View of `a` with the number of dimensions increased.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
squeeze : The inverse operation, removing singleton dimensions
|
||
|
reshape : Insert, remove, and combine dimensions, and resize existing ones
|
||
|
doc.indexing, atleast_1d, atleast_2d, atleast_3d
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> x = np.array([1, 2])
|
||
|
>>> x.shape
|
||
|
(2,)
|
||
|
|
||
|
The following is equivalent to ``x[np.newaxis, :]`` or ``x[np.newaxis]``:
|
||
|
|
||
|
>>> y = np.expand_dims(x, axis=0)
|
||
|
>>> y
|
||
|
array([[1, 2]])
|
||
|
>>> y.shape
|
||
|
(1, 2)
|
||
|
|
||
|
The following is equivalent to ``x[:, np.newaxis]``:
|
||
|
|
||
|
>>> y = np.expand_dims(x, axis=1)
|
||
|
>>> y
|
||
|
array([[1],
|
||
|
[2]])
|
||
|
>>> y.shape
|
||
|
(2, 1)
|
||
|
|
||
|
``axis`` may also be a tuple:
|
||
|
|
||
|
>>> y = np.expand_dims(x, axis=(0, 1))
|
||
|
>>> y
|
||
|
array([[[1, 2]]])
|
||
|
|
||
|
>>> y = np.expand_dims(x, axis=(2, 0))
|
||
|
>>> y
|
||
|
array([[[1],
|
||
|
[2]]])
|
||
|
|
||
|
Note that some examples may use ``None`` instead of ``np.newaxis``. These
|
||
|
are the same objects:
|
||
|
|
||
|
>>> np.newaxis is None
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
if isinstance(a, matrix):
|
||
|
a = asarray(a)
|
||
|
else:
|
||
|
a = asanyarray(a)
|
||
|
|
||
|
if type(axis) not in (tuple, list):
|
||
|
axis = (axis,)
|
||
|
|
||
|
out_ndim = len(axis) + a.ndim
|
||
|
axis = normalize_axis_tuple(axis, out_ndim)
|
||
|
|
||
|
shape_it = iter(a.shape)
|
||
|
shape = [1 if ax in axis else next(shape_it) for ax in range(out_ndim)]
|
||
|
|
||
|
return a.reshape(shape)
|
||
|
|
||
|
|
||
|
row_stack = vstack
|
||
|
|
||
|
|
||
|
def _column_stack_dispatcher(tup):
|
||
|
return _arrays_for_stack_dispatcher(tup)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_column_stack_dispatcher)
|
||
|
def column_stack(tup):
|
||
|
"""
|
||
|
Stack 1-D arrays as columns into a 2-D array.
|
||
|
|
||
|
Take a sequence of 1-D arrays and stack them as columns
|
||
|
to make a single 2-D array. 2-D arrays are stacked as-is,
|
||
|
just like with `hstack`. 1-D arrays are turned into 2-D columns
|
||
|
first.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
tup : sequence of 1-D or 2-D arrays.
|
||
|
Arrays to stack. All of them must have the same first dimension.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
stacked : 2-D array
|
||
|
The array formed by stacking the given arrays.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
stack, hstack, vstack, concatenate
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> a = np.array((1,2,3))
|
||
|
>>> b = np.array((2,3,4))
|
||
|
>>> np.column_stack((a,b))
|
||
|
array([[1, 2],
|
||
|
[2, 3],
|
||
|
[3, 4]])
|
||
|
|
||
|
"""
|
||
|
arrays = []
|
||
|
for v in tup:
|
||
|
arr = asanyarray(v)
|
||
|
if arr.ndim < 2:
|
||
|
arr = array(arr, copy=False, subok=True, ndmin=2).T
|
||
|
arrays.append(arr)
|
||
|
return _nx.concatenate(arrays, 1)
|
||
|
|
||
|
|
||
|
def _dstack_dispatcher(tup):
|
||
|
return _arrays_for_stack_dispatcher(tup)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_dstack_dispatcher)
|
||
|
def dstack(tup):
|
||
|
"""
|
||
|
Stack arrays in sequence depth wise (along third axis).
|
||
|
|
||
|
This is equivalent to concatenation along the third axis after 2-D arrays
|
||
|
of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape
|
||
|
`(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by
|
||
|
`dsplit`.
|
||
|
|
||
|
This function makes most sense for arrays with up to 3 dimensions. For
|
||
|
instance, for pixel-data with a height (first axis), width (second axis),
|
||
|
and r/g/b channels (third axis). The functions `concatenate`, `stack` and
|
||
|
`block` provide more general stacking and concatenation operations.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
tup : sequence of arrays
|
||
|
The arrays must have the same shape along all but the third axis.
|
||
|
1-D or 2-D arrays must have the same shape.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
stacked : ndarray
|
||
|
The array formed by stacking the given arrays, will be at least 3-D.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
concatenate : Join a sequence of arrays along an existing axis.
|
||
|
stack : Join a sequence of arrays along a new axis.
|
||
|
block : Assemble an nd-array from nested lists of blocks.
|
||
|
vstack : Stack arrays in sequence vertically (row wise).
|
||
|
hstack : Stack arrays in sequence horizontally (column wise).
|
||
|
column_stack : Stack 1-D arrays as columns into a 2-D array.
|
||
|
dsplit : Split array along third axis.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> a = np.array((1,2,3))
|
||
|
>>> b = np.array((2,3,4))
|
||
|
>>> np.dstack((a,b))
|
||
|
array([[[1, 2],
|
||
|
[2, 3],
|
||
|
[3, 4]]])
|
||
|
|
||
|
>>> a = np.array([[1],[2],[3]])
|
||
|
>>> b = np.array([[2],[3],[4]])
|
||
|
>>> np.dstack((a,b))
|
||
|
array([[[1, 2]],
|
||
|
[[2, 3]],
|
||
|
[[3, 4]]])
|
||
|
|
||
|
"""
|
||
|
arrs = atleast_3d(*tup)
|
||
|
if not isinstance(arrs, list):
|
||
|
arrs = [arrs]
|
||
|
return _nx.concatenate(arrs, 2)
|
||
|
|
||
|
|
||
|
def _replace_zero_by_x_arrays(sub_arys):
|
||
|
for i in range(len(sub_arys)):
|
||
|
if _nx.ndim(sub_arys[i]) == 0:
|
||
|
sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
|
||
|
elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]), 0)):
|
||
|
sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
|
||
|
return sub_arys
|
||
|
|
||
|
|
||
|
def _array_split_dispatcher(ary, indices_or_sections, axis=None):
|
||
|
return (ary, indices_or_sections)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_array_split_dispatcher)
|
||
|
def array_split(ary, indices_or_sections, axis=0):
|
||
|
"""
|
||
|
Split an array into multiple sub-arrays.
|
||
|
|
||
|
Please refer to the ``split`` documentation. The only difference
|
||
|
between these functions is that ``array_split`` allows
|
||
|
`indices_or_sections` to be an integer that does *not* equally
|
||
|
divide the axis. For an array of length l that should be split
|
||
|
into n sections, it returns l % n sub-arrays of size l//n + 1
|
||
|
and the rest of size l//n.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
split : Split array into multiple sub-arrays of equal size.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> x = np.arange(8.0)
|
||
|
>>> np.array_split(x, 3)
|
||
|
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])]
|
||
|
|
||
|
>>> x = np.arange(9)
|
||
|
>>> np.array_split(x, 4)
|
||
|
[array([0, 1, 2]), array([3, 4]), array([5, 6]), array([7, 8])]
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
Ntotal = ary.shape[axis]
|
||
|
except AttributeError:
|
||
|
Ntotal = len(ary)
|
||
|
try:
|
||
|
# handle array case.
|
||
|
Nsections = len(indices_or_sections) + 1
|
||
|
div_points = [0] + list(indices_or_sections) + [Ntotal]
|
||
|
except TypeError:
|
||
|
# indices_or_sections is a scalar, not an array.
|
||
|
Nsections = int(indices_or_sections)
|
||
|
if Nsections <= 0:
|
||
|
raise ValueError('number sections must be larger than 0.') from None
|
||
|
Neach_section, extras = divmod(Ntotal, Nsections)
|
||
|
section_sizes = ([0] +
|
||
|
extras * [Neach_section+1] +
|
||
|
(Nsections-extras) * [Neach_section])
|
||
|
div_points = _nx.array(section_sizes, dtype=_nx.intp).cumsum()
|
||
|
|
||
|
sub_arys = []
|
||
|
sary = _nx.swapaxes(ary, axis, 0)
|
||
|
for i in range(Nsections):
|
||
|
st = div_points[i]
|
||
|
end = div_points[i + 1]
|
||
|
sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))
|
||
|
|
||
|
return sub_arys
|
||
|
|
||
|
|
||
|
def _split_dispatcher(ary, indices_or_sections, axis=None):
|
||
|
return (ary, indices_or_sections)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_split_dispatcher)
|
||
|
def split(ary, indices_or_sections, axis=0):
|
||
|
"""
|
||
|
Split an array into multiple sub-arrays as views into `ary`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ary : ndarray
|
||
|
Array to be divided into sub-arrays.
|
||
|
indices_or_sections : int or 1-D array
|
||
|
If `indices_or_sections` is an integer, N, the array will be divided
|
||
|
into N equal arrays along `axis`. If such a split is not possible,
|
||
|
an error is raised.
|
||
|
|
||
|
If `indices_or_sections` is a 1-D array of sorted integers, the entries
|
||
|
indicate where along `axis` the array is split. For example,
|
||
|
``[2, 3]`` would, for ``axis=0``, result in
|
||
|
|
||
|
- ary[:2]
|
||
|
- ary[2:3]
|
||
|
- ary[3:]
|
||
|
|
||
|
If an index exceeds the dimension of the array along `axis`,
|
||
|
an empty sub-array is returned correspondingly.
|
||
|
axis : int, optional
|
||
|
The axis along which to split, default is 0.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sub-arrays : list of ndarrays
|
||
|
A list of sub-arrays as views into `ary`.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If `indices_or_sections` is given as an integer, but
|
||
|
a split does not result in equal division.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
array_split : Split an array into multiple sub-arrays of equal or
|
||
|
near-equal size. Does not raise an exception if
|
||
|
an equal division cannot be made.
|
||
|
hsplit : Split array into multiple sub-arrays horizontally (column-wise).
|
||
|
vsplit : Split array into multiple sub-arrays vertically (row wise).
|
||
|
dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
|
||
|
concatenate : Join a sequence of arrays along an existing axis.
|
||
|
stack : Join a sequence of arrays along a new axis.
|
||
|
hstack : Stack arrays in sequence horizontally (column wise).
|
||
|
vstack : Stack arrays in sequence vertically (row wise).
|
||
|
dstack : Stack arrays in sequence depth wise (along third dimension).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> x = np.arange(9.0)
|
||
|
>>> np.split(x, 3)
|
||
|
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]
|
||
|
|
||
|
>>> x = np.arange(8.0)
|
||
|
>>> np.split(x, [3, 5, 6, 10])
|
||
|
[array([0., 1., 2.]),
|
||
|
array([3., 4.]),
|
||
|
array([5.]),
|
||
|
array([6., 7.]),
|
||
|
array([], dtype=float64)]
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
len(indices_or_sections)
|
||
|
except TypeError:
|
||
|
sections = indices_or_sections
|
||
|
N = ary.shape[axis]
|
||
|
if N % sections:
|
||
|
raise ValueError(
|
||
|
'array split does not result in an equal division') from None
|
||
|
return array_split(ary, indices_or_sections, axis)
|
||
|
|
||
|
|
||
|
def _hvdsplit_dispatcher(ary, indices_or_sections):
|
||
|
return (ary, indices_or_sections)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_hvdsplit_dispatcher)
|
||
|
def hsplit(ary, indices_or_sections):
|
||
|
"""
|
||
|
Split an array into multiple sub-arrays horizontally (column-wise).
|
||
|
|
||
|
Please refer to the `split` documentation. `hsplit` is equivalent
|
||
|
to `split` with ``axis=1``, the array is always split along the second
|
||
|
axis except for 1-D arrays, where it is split at ``axis=0``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
split : Split an array into multiple sub-arrays of equal size.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> x = np.arange(16.0).reshape(4, 4)
|
||
|
>>> x
|
||
|
array([[ 0., 1., 2., 3.],
|
||
|
[ 4., 5., 6., 7.],
|
||
|
[ 8., 9., 10., 11.],
|
||
|
[12., 13., 14., 15.]])
|
||
|
>>> np.hsplit(x, 2)
|
||
|
[array([[ 0., 1.],
|
||
|
[ 4., 5.],
|
||
|
[ 8., 9.],
|
||
|
[12., 13.]]),
|
||
|
array([[ 2., 3.],
|
||
|
[ 6., 7.],
|
||
|
[10., 11.],
|
||
|
[14., 15.]])]
|
||
|
>>> np.hsplit(x, np.array([3, 6]))
|
||
|
[array([[ 0., 1., 2.],
|
||
|
[ 4., 5., 6.],
|
||
|
[ 8., 9., 10.],
|
||
|
[12., 13., 14.]]),
|
||
|
array([[ 3.],
|
||
|
[ 7.],
|
||
|
[11.],
|
||
|
[15.]]),
|
||
|
array([], shape=(4, 0), dtype=float64)]
|
||
|
|
||
|
With a higher dimensional array the split is still along the second axis.
|
||
|
|
||
|
>>> x = np.arange(8.0).reshape(2, 2, 2)
|
||
|
>>> x
|
||
|
array([[[0., 1.],
|
||
|
[2., 3.]],
|
||
|
[[4., 5.],
|
||
|
[6., 7.]]])
|
||
|
>>> np.hsplit(x, 2)
|
||
|
[array([[[0., 1.]],
|
||
|
[[4., 5.]]]),
|
||
|
array([[[2., 3.]],
|
||
|
[[6., 7.]]])]
|
||
|
|
||
|
With a 1-D array, the split is along axis 0.
|
||
|
|
||
|
>>> x = np.array([0, 1, 2, 3, 4, 5])
|
||
|
>>> np.hsplit(x, 2)
|
||
|
[array([0, 1, 2]), array([3, 4, 5])]
|
||
|
|
||
|
"""
|
||
|
if _nx.ndim(ary) == 0:
|
||
|
raise ValueError('hsplit only works on arrays of 1 or more dimensions')
|
||
|
if ary.ndim > 1:
|
||
|
return split(ary, indices_or_sections, 1)
|
||
|
else:
|
||
|
return split(ary, indices_or_sections, 0)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_hvdsplit_dispatcher)
|
||
|
def vsplit(ary, indices_or_sections):
|
||
|
"""
|
||
|
Split an array into multiple sub-arrays vertically (row-wise).
|
||
|
|
||
|
Please refer to the ``split`` documentation. ``vsplit`` is equivalent
|
||
|
to ``split`` with `axis=0` (default), the array is always split along the
|
||
|
first axis regardless of the array dimension.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
split : Split an array into multiple sub-arrays of equal size.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> x = np.arange(16.0).reshape(4, 4)
|
||
|
>>> x
|
||
|
array([[ 0., 1., 2., 3.],
|
||
|
[ 4., 5., 6., 7.],
|
||
|
[ 8., 9., 10., 11.],
|
||
|
[12., 13., 14., 15.]])
|
||
|
>>> np.vsplit(x, 2)
|
||
|
[array([[0., 1., 2., 3.],
|
||
|
[4., 5., 6., 7.]]), array([[ 8., 9., 10., 11.],
|
||
|
[12., 13., 14., 15.]])]
|
||
|
>>> np.vsplit(x, np.array([3, 6]))
|
||
|
[array([[ 0., 1., 2., 3.],
|
||
|
[ 4., 5., 6., 7.],
|
||
|
[ 8., 9., 10., 11.]]), array([[12., 13., 14., 15.]]), array([], shape=(0, 4), dtype=float64)]
|
||
|
|
||
|
With a higher dimensional array the split is still along the first axis.
|
||
|
|
||
|
>>> x = np.arange(8.0).reshape(2, 2, 2)
|
||
|
>>> x
|
||
|
array([[[0., 1.],
|
||
|
[2., 3.]],
|
||
|
[[4., 5.],
|
||
|
[6., 7.]]])
|
||
|
>>> np.vsplit(x, 2)
|
||
|
[array([[[0., 1.],
|
||
|
[2., 3.]]]), array([[[4., 5.],
|
||
|
[6., 7.]]])]
|
||
|
|
||
|
"""
|
||
|
if _nx.ndim(ary) < 2:
|
||
|
raise ValueError('vsplit only works on arrays of 2 or more dimensions')
|
||
|
return split(ary, indices_or_sections, 0)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_hvdsplit_dispatcher)
|
||
|
def dsplit(ary, indices_or_sections):
|
||
|
"""
|
||
|
Split array into multiple sub-arrays along the 3rd axis (depth).
|
||
|
|
||
|
Please refer to the `split` documentation. `dsplit` is equivalent
|
||
|
to `split` with ``axis=2``, the array is always split along the third
|
||
|
axis provided the array dimension is greater than or equal to 3.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
split : Split an array into multiple sub-arrays of equal size.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> x = np.arange(16.0).reshape(2, 2, 4)
|
||
|
>>> x
|
||
|
array([[[ 0., 1., 2., 3.],
|
||
|
[ 4., 5., 6., 7.]],
|
||
|
[[ 8., 9., 10., 11.],
|
||
|
[12., 13., 14., 15.]]])
|
||
|
>>> np.dsplit(x, 2)
|
||
|
[array([[[ 0., 1.],
|
||
|
[ 4., 5.]],
|
||
|
[[ 8., 9.],
|
||
|
[12., 13.]]]), array([[[ 2., 3.],
|
||
|
[ 6., 7.]],
|
||
|
[[10., 11.],
|
||
|
[14., 15.]]])]
|
||
|
>>> np.dsplit(x, np.array([3, 6]))
|
||
|
[array([[[ 0., 1., 2.],
|
||
|
[ 4., 5., 6.]],
|
||
|
[[ 8., 9., 10.],
|
||
|
[12., 13., 14.]]]),
|
||
|
array([[[ 3.],
|
||
|
[ 7.]],
|
||
|
[[11.],
|
||
|
[15.]]]),
|
||
|
array([], shape=(2, 2, 0), dtype=float64)]
|
||
|
"""
|
||
|
if _nx.ndim(ary) < 3:
|
||
|
raise ValueError('dsplit only works on arrays of 3 or more dimensions')
|
||
|
return split(ary, indices_or_sections, 2)
|
||
|
|
||
|
|
||
|
def get_array_prepare(*args):
|
||
|
"""Find the wrapper for the array with the highest priority.
|
||
|
|
||
|
In case of ties, leftmost wins. If no wrapper is found, return None
|
||
|
"""
|
||
|
wrappers = sorted((getattr(x, '__array_priority__', 0), -i,
|
||
|
x.__array_prepare__) for i, x in enumerate(args)
|
||
|
if hasattr(x, '__array_prepare__'))
|
||
|
if wrappers:
|
||
|
return wrappers[-1][-1]
|
||
|
return None
|
||
|
|
||
|
|
||
|
def get_array_wrap(*args):
|
||
|
"""Find the wrapper for the array with the highest priority.
|
||
|
|
||
|
In case of ties, leftmost wins. If no wrapper is found, return None
|
||
|
"""
|
||
|
wrappers = sorted((getattr(x, '__array_priority__', 0), -i,
|
||
|
x.__array_wrap__) for i, x in enumerate(args)
|
||
|
if hasattr(x, '__array_wrap__'))
|
||
|
if wrappers:
|
||
|
return wrappers[-1][-1]
|
||
|
return None
|
||
|
|
||
|
|
||
|
def _kron_dispatcher(a, b):
|
||
|
return (a, b)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_kron_dispatcher)
|
||
|
def kron(a, b):
|
||
|
"""
|
||
|
Kronecker product of two arrays.
|
||
|
|
||
|
Computes the Kronecker product, a composite array made of blocks of the
|
||
|
second array scaled by the first.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a, b : array_like
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
outer : The outer product
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The function assumes that the number of dimensions of `a` and `b`
|
||
|
are the same, if necessary prepending the smallest with ones.
|
||
|
If ``a.shape = (r0,r1,..,rN)`` and ``b.shape = (s0,s1,...,sN)``,
|
||
|
the Kronecker product has shape ``(r0*s0, r1*s1, ..., rN*SN)``.
|
||
|
The elements are products of elements from `a` and `b`, organized
|
||
|
explicitly by::
|
||
|
|
||
|
kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]
|
||
|
|
||
|
where::
|
||
|
|
||
|
kt = it * st + jt, t = 0,...,N
|
||
|
|
||
|
In the common 2-D case (N=1), the block structure can be visualized::
|
||
|
|
||
|
[[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ],
|
||
|
[ ... ... ],
|
||
|
[ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]]
|
||
|
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> np.kron([1,10,100], [5,6,7])
|
||
|
array([ 5, 6, 7, ..., 500, 600, 700])
|
||
|
>>> np.kron([5,6,7], [1,10,100])
|
||
|
array([ 5, 50, 500, ..., 7, 70, 700])
|
||
|
|
||
|
>>> np.kron(np.eye(2), np.ones((2,2)))
|
||
|
array([[1., 1., 0., 0.],
|
||
|
[1., 1., 0., 0.],
|
||
|
[0., 0., 1., 1.],
|
||
|
[0., 0., 1., 1.]])
|
||
|
|
||
|
>>> a = np.arange(100).reshape((2,5,2,5))
|
||
|
>>> b = np.arange(24).reshape((2,3,4))
|
||
|
>>> c = np.kron(a,b)
|
||
|
>>> c.shape
|
||
|
(2, 10, 6, 20)
|
||
|
>>> I = (1,3,0,2)
|
||
|
>>> J = (0,2,1)
|
||
|
>>> J1 = (0,) + J # extend to ndim=4
|
||
|
>>> S1 = (1,) + b.shape
|
||
|
>>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
|
||
|
>>> c[K] == a[I]*b[J]
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
# Working:
|
||
|
# 1. Equalise the shapes by prepending smaller array with 1s
|
||
|
# 2. Expand shapes of both the arrays by adding new axes at
|
||
|
# odd positions for 1st array and even positions for 2nd
|
||
|
# 3. Compute the product of the modified array
|
||
|
# 4. The inner most array elements now contain the rows of
|
||
|
# the Kronecker product
|
||
|
# 5. Reshape the result to kron's shape, which is same as
|
||
|
# product of shapes of the two arrays.
|
||
|
b = asanyarray(b)
|
||
|
a = array(a, copy=False, subok=True, ndmin=b.ndim)
|
||
|
is_any_mat = isinstance(a, matrix) or isinstance(b, matrix)
|
||
|
ndb, nda = b.ndim, a.ndim
|
||
|
nd = max(ndb, nda)
|
||
|
|
||
|
if (nda == 0 or ndb == 0):
|
||
|
return _nx.multiply(a, b)
|
||
|
|
||
|
as_ = a.shape
|
||
|
bs = b.shape
|
||
|
if not a.flags.contiguous:
|
||
|
a = reshape(a, as_)
|
||
|
if not b.flags.contiguous:
|
||
|
b = reshape(b, bs)
|
||
|
|
||
|
# Equalise the shapes by prepending smaller one with 1s
|
||
|
as_ = (1,)*max(0, ndb-nda) + as_
|
||
|
bs = (1,)*max(0, nda-ndb) + bs
|
||
|
|
||
|
# Insert empty dimensions
|
||
|
a_arr = expand_dims(a, axis=tuple(range(ndb-nda)))
|
||
|
b_arr = expand_dims(b, axis=tuple(range(nda-ndb)))
|
||
|
|
||
|
# Compute the product
|
||
|
a_arr = expand_dims(a_arr, axis=tuple(range(1, nd*2, 2)))
|
||
|
b_arr = expand_dims(b_arr, axis=tuple(range(0, nd*2, 2)))
|
||
|
# In case of `mat`, convert result to `array`
|
||
|
result = _nx.multiply(a_arr, b_arr, subok=(not is_any_mat))
|
||
|
|
||
|
# Reshape back
|
||
|
result = result.reshape(_nx.multiply(as_, bs))
|
||
|
|
||
|
return result if not is_any_mat else matrix(result, copy=False)
|
||
|
|
||
|
|
||
|
def _tile_dispatcher(A, reps):
|
||
|
return (A, reps)
|
||
|
|
||
|
|
||
|
@array_function_dispatch(_tile_dispatcher)
|
||
|
def tile(A, reps):
|
||
|
"""
|
||
|
Construct an array by repeating A the number of times given by reps.
|
||
|
|
||
|
If `reps` has length ``d``, the result will have dimension of
|
||
|
``max(d, A.ndim)``.
|
||
|
|
||
|
If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new
|
||
|
axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication,
|
||
|
or shape (1, 1, 3) for 3-D replication. If this is not the desired
|
||
|
behavior, promote `A` to d-dimensions manually before calling this
|
||
|
function.
|
||
|
|
||
|
If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it.
|
||
|
Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as
|
||
|
(1, 1, 2, 2).
|
||
|
|
||
|
Note : Although tile may be used for broadcasting, it is strongly
|
||
|
recommended to use numpy's broadcasting operations and functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : array_like
|
||
|
The input array.
|
||
|
reps : array_like
|
||
|
The number of repetitions of `A` along each axis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
c : ndarray
|
||
|
The tiled output array.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
repeat : Repeat elements of an array.
|
||
|
broadcast_to : Broadcast an array to a new shape
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> a = np.array([0, 1, 2])
|
||
|
>>> np.tile(a, 2)
|
||
|
array([0, 1, 2, 0, 1, 2])
|
||
|
>>> np.tile(a, (2, 2))
|
||
|
array([[0, 1, 2, 0, 1, 2],
|
||
|
[0, 1, 2, 0, 1, 2]])
|
||
|
>>> np.tile(a, (2, 1, 2))
|
||
|
array([[[0, 1, 2, 0, 1, 2]],
|
||
|
[[0, 1, 2, 0, 1, 2]]])
|
||
|
|
||
|
>>> b = np.array([[1, 2], [3, 4]])
|
||
|
>>> np.tile(b, 2)
|
||
|
array([[1, 2, 1, 2],
|
||
|
[3, 4, 3, 4]])
|
||
|
>>> np.tile(b, (2, 1))
|
||
|
array([[1, 2],
|
||
|
[3, 4],
|
||
|
[1, 2],
|
||
|
[3, 4]])
|
||
|
|
||
|
>>> c = np.array([1,2,3,4])
|
||
|
>>> np.tile(c,(4,1))
|
||
|
array([[1, 2, 3, 4],
|
||
|
[1, 2, 3, 4],
|
||
|
[1, 2, 3, 4],
|
||
|
[1, 2, 3, 4]])
|
||
|
"""
|
||
|
try:
|
||
|
tup = tuple(reps)
|
||
|
except TypeError:
|
||
|
tup = (reps,)
|
||
|
d = len(tup)
|
||
|
if all(x == 1 for x in tup) and isinstance(A, _nx.ndarray):
|
||
|
# Fixes the problem that the function does not make a copy if A is a
|
||
|
# numpy array and the repetitions are 1 in all dimensions
|
||
|
return _nx.array(A, copy=True, subok=True, ndmin=d)
|
||
|
else:
|
||
|
# Note that no copy of zero-sized arrays is made. However since they
|
||
|
# have no data there is no risk of an inadvertent overwrite.
|
||
|
c = _nx.array(A, copy=False, subok=True, ndmin=d)
|
||
|
if (d < c.ndim):
|
||
|
tup = (1,)*(c.ndim-d) + tup
|
||
|
shape_out = tuple(s*t for s, t in zip(c.shape, tup))
|
||
|
n = c.size
|
||
|
if n > 0:
|
||
|
for dim_in, nrep in zip(c.shape, tup):
|
||
|
if nrep != 1:
|
||
|
c = c.reshape(-1, n).repeat(nrep, 0)
|
||
|
n //= dim_in
|
||
|
return c.reshape(shape_out)
|