3RNN/Lib/site-packages/scipy/sparse/csgraph/tests/test_pydata_sparse.py

150 lines
3.5 KiB
Python
Raw Permalink Normal View History

2024-05-26 19:49:15 +02:00
import pytest
import numpy as np
import scipy.sparse as sp
import scipy.sparse.csgraph as spgraph
from numpy.testing import assert_equal
try:
import sparse
except Exception:
sparse = None
pytestmark = pytest.mark.skipif(sparse is None,
reason="pydata/sparse not installed")
msg = "pydata/sparse (0.15.1) does not implement necessary operations"
sparse_params = (pytest.param("COO"),
pytest.param("DOK", marks=[pytest.mark.xfail(reason=msg)]))
@pytest.fixture(params=sparse_params)
def sparse_cls(request):
return getattr(sparse, request.param)
@pytest.fixture
def graphs(sparse_cls):
graph = [
[0, 1, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 0],
]
A_dense = np.array(graph)
A_sparse = sparse_cls(A_dense)
return A_dense, A_sparse
@pytest.mark.parametrize(
"func",
[
spgraph.shortest_path,
spgraph.dijkstra,
spgraph.floyd_warshall,
spgraph.bellman_ford,
spgraph.johnson,
spgraph.reverse_cuthill_mckee,
spgraph.maximum_bipartite_matching,
spgraph.structural_rank,
]
)
def test_csgraph_equiv(func, graphs):
A_dense, A_sparse = graphs
actual = func(A_sparse)
desired = func(sp.csc_matrix(A_dense))
assert_equal(actual, desired)
def test_connected_components(graphs):
A_dense, A_sparse = graphs
func = spgraph.connected_components
actual_comp, actual_labels = func(A_sparse)
desired_comp, desired_labels, = func(sp.csc_matrix(A_dense))
assert actual_comp == desired_comp
assert_equal(actual_labels, desired_labels)
def test_laplacian(graphs):
A_dense, A_sparse = graphs
sparse_cls = type(A_sparse)
func = spgraph.laplacian
actual = func(A_sparse)
desired = func(sp.csc_matrix(A_dense))
assert isinstance(actual, sparse_cls)
assert_equal(actual.todense(), desired.todense())
@pytest.mark.parametrize(
"func", [spgraph.breadth_first_order, spgraph.depth_first_order]
)
def test_order_search(graphs, func):
A_dense, A_sparse = graphs
actual = func(A_sparse, 0)
desired = func(sp.csc_matrix(A_dense), 0)
assert_equal(actual, desired)
@pytest.mark.parametrize(
"func", [spgraph.breadth_first_tree, spgraph.depth_first_tree]
)
def test_tree_search(graphs, func):
A_dense, A_sparse = graphs
sparse_cls = type(A_sparse)
actual = func(A_sparse, 0)
desired = func(sp.csc_matrix(A_dense), 0)
assert isinstance(actual, sparse_cls)
assert_equal(actual.todense(), desired.todense())
def test_minimum_spanning_tree(graphs):
A_dense, A_sparse = graphs
sparse_cls = type(A_sparse)
func = spgraph.minimum_spanning_tree
actual = func(A_sparse)
desired = func(sp.csc_matrix(A_dense))
assert isinstance(actual, sparse_cls)
assert_equal(actual.todense(), desired.todense())
def test_maximum_flow(graphs):
A_dense, A_sparse = graphs
sparse_cls = type(A_sparse)
func = spgraph.maximum_flow
actual = func(A_sparse, 0, 2)
desired = func(sp.csr_matrix(A_dense), 0, 2)
assert actual.flow_value == desired.flow_value
assert isinstance(actual.flow, sparse_cls)
assert_equal(actual.flow.todense(), desired.flow.todense())
def test_min_weight_full_bipartite_matching(graphs):
A_dense, A_sparse = graphs
func = spgraph.min_weight_full_bipartite_matching
actual = func(A_sparse[0:2, 1:3])
desired = func(sp.csc_matrix(A_dense)[0:2, 1:3])
assert_equal(actual, desired)