856 lines
34 KiB
Python
856 lines
34 KiB
Python
|
"""Principal Component Analysis."""
|
||
|
|
||
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
||
|
# Olivier Grisel <olivier.grisel@ensta.org>
|
||
|
# Mathieu Blondel <mathieu@mblondel.org>
|
||
|
# Denis A. Engemann <denis-alexander.engemann@inria.fr>
|
||
|
# Michael Eickenberg <michael.eickenberg@inria.fr>
|
||
|
# Giorgio Patrini <giorgio.patrini@anu.edu.au>
|
||
|
#
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
from math import log, sqrt
|
||
|
from numbers import Integral, Real
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import linalg
|
||
|
from scipy.sparse import issparse
|
||
|
from scipy.sparse.linalg import svds
|
||
|
from scipy.special import gammaln
|
||
|
|
||
|
from ..base import _fit_context
|
||
|
from ..utils import check_random_state
|
||
|
from ..utils._arpack import _init_arpack_v0
|
||
|
from ..utils._array_api import _convert_to_numpy, get_namespace
|
||
|
from ..utils._param_validation import Interval, RealNotInt, StrOptions
|
||
|
from ..utils.extmath import fast_logdet, randomized_svd, stable_cumsum, svd_flip
|
||
|
from ..utils.sparsefuncs import _implicit_column_offset, mean_variance_axis
|
||
|
from ..utils.validation import check_is_fitted
|
||
|
from ._base import _BasePCA
|
||
|
|
||
|
|
||
|
def _assess_dimension(spectrum, rank, n_samples):
|
||
|
"""Compute the log-likelihood of a rank ``rank`` dataset.
|
||
|
|
||
|
The dataset is assumed to be embedded in gaussian noise of shape(n,
|
||
|
dimf) having spectrum ``spectrum``. This implements the method of
|
||
|
T. P. Minka.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
spectrum : ndarray of shape (n_features,)
|
||
|
Data spectrum.
|
||
|
rank : int
|
||
|
Tested rank value. It should be strictly lower than n_features,
|
||
|
otherwise the method isn't specified (division by zero in equation
|
||
|
(31) from the paper).
|
||
|
n_samples : int
|
||
|
Number of samples.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ll : float
|
||
|
The log-likelihood.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
This implements the method of `Thomas P. Minka:
|
||
|
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604
|
||
|
<https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf>`_
|
||
|
"""
|
||
|
xp, _ = get_namespace(spectrum)
|
||
|
|
||
|
n_features = spectrum.shape[0]
|
||
|
if not 1 <= rank < n_features:
|
||
|
raise ValueError("the tested rank should be in [1, n_features - 1]")
|
||
|
|
||
|
eps = 1e-15
|
||
|
|
||
|
if spectrum[rank - 1] < eps:
|
||
|
# When the tested rank is associated with a small eigenvalue, there's
|
||
|
# no point in computing the log-likelihood: it's going to be very
|
||
|
# small and won't be the max anyway. Also, it can lead to numerical
|
||
|
# issues below when computing pa, in particular in log((spectrum[i] -
|
||
|
# spectrum[j]) because this will take the log of something very small.
|
||
|
return -xp.inf
|
||
|
|
||
|
pu = -rank * log(2.0)
|
||
|
for i in range(1, rank + 1):
|
||
|
pu += (
|
||
|
gammaln((n_features - i + 1) / 2.0)
|
||
|
- log(xp.pi) * (n_features - i + 1) / 2.0
|
||
|
)
|
||
|
|
||
|
pl = xp.sum(xp.log(spectrum[:rank]))
|
||
|
pl = -pl * n_samples / 2.0
|
||
|
|
||
|
v = max(eps, xp.sum(spectrum[rank:]) / (n_features - rank))
|
||
|
pv = -log(v) * n_samples * (n_features - rank) / 2.0
|
||
|
|
||
|
m = n_features * rank - rank * (rank + 1.0) / 2.0
|
||
|
pp = log(2.0 * xp.pi) * (m + rank) / 2.0
|
||
|
|
||
|
pa = 0.0
|
||
|
spectrum_ = xp.asarray(spectrum, copy=True)
|
||
|
spectrum_[rank:n_features] = v
|
||
|
for i in range(rank):
|
||
|
for j in range(i + 1, spectrum.shape[0]):
|
||
|
pa += log(
|
||
|
(spectrum[i] - spectrum[j]) * (1.0 / spectrum_[j] - 1.0 / spectrum_[i])
|
||
|
) + log(n_samples)
|
||
|
|
||
|
ll = pu + pl + pv + pp - pa / 2.0 - rank * log(n_samples) / 2.0
|
||
|
|
||
|
return ll
|
||
|
|
||
|
|
||
|
def _infer_dimension(spectrum, n_samples):
|
||
|
"""Infers the dimension of a dataset with a given spectrum.
|
||
|
|
||
|
The returned value will be in [1, n_features - 1].
|
||
|
"""
|
||
|
xp, _ = get_namespace(spectrum)
|
||
|
|
||
|
ll = xp.empty_like(spectrum)
|
||
|
ll[0] = -xp.inf # we don't want to return n_components = 0
|
||
|
for rank in range(1, spectrum.shape[0]):
|
||
|
ll[rank] = _assess_dimension(spectrum, rank, n_samples)
|
||
|
return xp.argmax(ll)
|
||
|
|
||
|
|
||
|
class PCA(_BasePCA):
|
||
|
"""Principal component analysis (PCA).
|
||
|
|
||
|
Linear dimensionality reduction using Singular Value Decomposition of the
|
||
|
data to project it to a lower dimensional space. The input data is centered
|
||
|
but not scaled for each feature before applying the SVD.
|
||
|
|
||
|
It uses the LAPACK implementation of the full SVD or a randomized truncated
|
||
|
SVD by the method of Halko et al. 2009, depending on the shape of the input
|
||
|
data and the number of components to extract.
|
||
|
|
||
|
With sparse inputs, the ARPACK implementation of the truncated SVD can be
|
||
|
used (i.e. through :func:`scipy.sparse.linalg.svds`). Alternatively, one
|
||
|
may consider :class:`TruncatedSVD` where the data are not centered.
|
||
|
|
||
|
Notice that this class only supports sparse inputs for some solvers such as
|
||
|
"arpack" and "covariance_eigh". See :class:`TruncatedSVD` for an
|
||
|
alternative with sparse data.
|
||
|
|
||
|
For a usage example, see
|
||
|
:ref:`sphx_glr_auto_examples_decomposition_plot_pca_iris.py`
|
||
|
|
||
|
Read more in the :ref:`User Guide <PCA>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n_components : int, float or 'mle', default=None
|
||
|
Number of components to keep.
|
||
|
if n_components is not set all components are kept::
|
||
|
|
||
|
n_components == min(n_samples, n_features)
|
||
|
|
||
|
If ``n_components == 'mle'`` and ``svd_solver == 'full'``, Minka's
|
||
|
MLE is used to guess the dimension. Use of ``n_components == 'mle'``
|
||
|
will interpret ``svd_solver == 'auto'`` as ``svd_solver == 'full'``.
|
||
|
|
||
|
If ``0 < n_components < 1`` and ``svd_solver == 'full'``, select the
|
||
|
number of components such that the amount of variance that needs to be
|
||
|
explained is greater than the percentage specified by n_components.
|
||
|
|
||
|
If ``svd_solver == 'arpack'``, the number of components must be
|
||
|
strictly less than the minimum of n_features and n_samples.
|
||
|
|
||
|
Hence, the None case results in::
|
||
|
|
||
|
n_components == min(n_samples, n_features) - 1
|
||
|
|
||
|
copy : bool, default=True
|
||
|
If False, data passed to fit are overwritten and running
|
||
|
fit(X).transform(X) will not yield the expected results,
|
||
|
use fit_transform(X) instead.
|
||
|
|
||
|
whiten : bool, default=False
|
||
|
When True (False by default) the `components_` vectors are multiplied
|
||
|
by the square root of n_samples and then divided by the singular values
|
||
|
to ensure uncorrelated outputs with unit component-wise variances.
|
||
|
|
||
|
Whitening will remove some information from the transformed signal
|
||
|
(the relative variance scales of the components) but can sometime
|
||
|
improve the predictive accuracy of the downstream estimators by
|
||
|
making their data respect some hard-wired assumptions.
|
||
|
|
||
|
svd_solver : {'auto', 'full', 'covariance_eigh', 'arpack', 'randomized'},\
|
||
|
default='auto'
|
||
|
"auto" :
|
||
|
The solver is selected by a default 'auto' policy is based on `X.shape` and
|
||
|
`n_components`: if the input data has fewer than 1000 features and
|
||
|
more than 10 times as many samples, then the "covariance_eigh"
|
||
|
solver is used. Otherwise, if the input data is larger than 500x500
|
||
|
and the number of components to extract is lower than 80% of the
|
||
|
smallest dimension of the data, then the more efficient
|
||
|
"randomized" method is selected. Otherwise the exact "full" SVD is
|
||
|
computed and optionally truncated afterwards.
|
||
|
"full" :
|
||
|
Run exact full SVD calling the standard LAPACK solver via
|
||
|
`scipy.linalg.svd` and select the components by postprocessing
|
||
|
"covariance_eigh" :
|
||
|
Precompute the covariance matrix (on centered data), run a
|
||
|
classical eigenvalue decomposition on the covariance matrix
|
||
|
typically using LAPACK and select the components by postprocessing.
|
||
|
This solver is very efficient for n_samples >> n_features and small
|
||
|
n_features. It is, however, not tractable otherwise for large
|
||
|
n_features (large memory footprint required to materialize the
|
||
|
covariance matrix). Also note that compared to the "full" solver,
|
||
|
this solver effectively doubles the condition number and is
|
||
|
therefore less numerical stable (e.g. on input data with a large
|
||
|
range of singular values).
|
||
|
"arpack" :
|
||
|
Run SVD truncated to `n_components` calling ARPACK solver via
|
||
|
`scipy.sparse.linalg.svds`. It requires strictly
|
||
|
`0 < n_components < min(X.shape)`
|
||
|
"randomized" :
|
||
|
Run randomized SVD by the method of Halko et al.
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
.. versionchanged:: 1.5
|
||
|
Added the 'covariance_eigh' solver.
|
||
|
|
||
|
tol : float, default=0.0
|
||
|
Tolerance for singular values computed by svd_solver == 'arpack'.
|
||
|
Must be of range [0.0, infinity).
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
iterated_power : int or 'auto', default='auto'
|
||
|
Number of iterations for the power method computed by
|
||
|
svd_solver == 'randomized'.
|
||
|
Must be of range [0, infinity).
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
n_oversamples : int, default=10
|
||
|
This parameter is only relevant when `svd_solver="randomized"`.
|
||
|
It corresponds to the additional number of random vectors to sample the
|
||
|
range of `X` so as to ensure proper conditioning. See
|
||
|
:func:`~sklearn.utils.extmath.randomized_svd` for more details.
|
||
|
|
||
|
.. versionadded:: 1.1
|
||
|
|
||
|
power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto'
|
||
|
Power iteration normalizer for randomized SVD solver.
|
||
|
Not used by ARPACK. See :func:`~sklearn.utils.extmath.randomized_svd`
|
||
|
for more details.
|
||
|
|
||
|
.. versionadded:: 1.1
|
||
|
|
||
|
random_state : int, RandomState instance or None, default=None
|
||
|
Used when the 'arpack' or 'randomized' solvers are used. Pass an int
|
||
|
for reproducible results across multiple function calls.
|
||
|
See :term:`Glossary <random_state>`.
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
components_ : ndarray of shape (n_components, n_features)
|
||
|
Principal axes in feature space, representing the directions of
|
||
|
maximum variance in the data. Equivalently, the right singular
|
||
|
vectors of the centered input data, parallel to its eigenvectors.
|
||
|
The components are sorted by decreasing ``explained_variance_``.
|
||
|
|
||
|
explained_variance_ : ndarray of shape (n_components,)
|
||
|
The amount of variance explained by each of the selected components.
|
||
|
The variance estimation uses `n_samples - 1` degrees of freedom.
|
||
|
|
||
|
Equal to n_components largest eigenvalues
|
||
|
of the covariance matrix of X.
|
||
|
|
||
|
.. versionadded:: 0.18
|
||
|
|
||
|
explained_variance_ratio_ : ndarray of shape (n_components,)
|
||
|
Percentage of variance explained by each of the selected components.
|
||
|
|
||
|
If ``n_components`` is not set then all components are stored and the
|
||
|
sum of the ratios is equal to 1.0.
|
||
|
|
||
|
singular_values_ : ndarray of shape (n_components,)
|
||
|
The singular values corresponding to each of the selected components.
|
||
|
The singular values are equal to the 2-norms of the ``n_components``
|
||
|
variables in the lower-dimensional space.
|
||
|
|
||
|
.. versionadded:: 0.19
|
||
|
|
||
|
mean_ : ndarray of shape (n_features,)
|
||
|
Per-feature empirical mean, estimated from the training set.
|
||
|
|
||
|
Equal to `X.mean(axis=0)`.
|
||
|
|
||
|
n_components_ : int
|
||
|
The estimated number of components. When n_components is set
|
||
|
to 'mle' or a number between 0 and 1 (with svd_solver == 'full') this
|
||
|
number is estimated from input data. Otherwise it equals the parameter
|
||
|
n_components, or the lesser value of n_features and n_samples
|
||
|
if n_components is None.
|
||
|
|
||
|
n_samples_ : int
|
||
|
Number of samples in the training data.
|
||
|
|
||
|
noise_variance_ : float
|
||
|
The estimated noise covariance following the Probabilistic PCA model
|
||
|
from Tipping and Bishop 1999. See "Pattern Recognition and
|
||
|
Machine Learning" by C. Bishop, 12.2.1 p. 574 or
|
||
|
http://www.miketipping.com/papers/met-mppca.pdf. It is required to
|
||
|
compute the estimated data covariance and score samples.
|
||
|
|
||
|
Equal to the average of (min(n_features, n_samples) - n_components)
|
||
|
smallest eigenvalues of the covariance matrix of X.
|
||
|
|
||
|
n_features_in_ : int
|
||
|
Number of features seen during :term:`fit`.
|
||
|
|
||
|
.. versionadded:: 0.24
|
||
|
|
||
|
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||
|
Names of features seen during :term:`fit`. Defined only when `X`
|
||
|
has feature names that are all strings.
|
||
|
|
||
|
.. versionadded:: 1.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
KernelPCA : Kernel Principal Component Analysis.
|
||
|
SparsePCA : Sparse Principal Component Analysis.
|
||
|
TruncatedSVD : Dimensionality reduction using truncated SVD.
|
||
|
IncrementalPCA : Incremental Principal Component Analysis.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
For n_components == 'mle', this class uses the method from:
|
||
|
`Minka, T. P.. "Automatic choice of dimensionality for PCA".
|
||
|
In NIPS, pp. 598-604 <https://tminka.github.io/papers/pca/minka-pca.pdf>`_
|
||
|
|
||
|
Implements the probabilistic PCA model from:
|
||
|
`Tipping, M. E., and Bishop, C. M. (1999). "Probabilistic principal
|
||
|
component analysis". Journal of the Royal Statistical Society:
|
||
|
Series B (Statistical Methodology), 61(3), 611-622.
|
||
|
<http://www.miketipping.com/papers/met-mppca.pdf>`_
|
||
|
via the score and score_samples methods.
|
||
|
|
||
|
For svd_solver == 'arpack', refer to `scipy.sparse.linalg.svds`.
|
||
|
|
||
|
For svd_solver == 'randomized', see:
|
||
|
:doi:`Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).
|
||
|
"Finding structure with randomness: Probabilistic algorithms for
|
||
|
constructing approximate matrix decompositions".
|
||
|
SIAM review, 53(2), 217-288.
|
||
|
<10.1137/090771806>`
|
||
|
and also
|
||
|
:doi:`Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011).
|
||
|
"A randomized algorithm for the decomposition of matrices".
|
||
|
Applied and Computational Harmonic Analysis, 30(1), 47-68.
|
||
|
<10.1016/j.acha.2010.02.003>`
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.decomposition import PCA
|
||
|
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
||
|
>>> pca = PCA(n_components=2)
|
||
|
>>> pca.fit(X)
|
||
|
PCA(n_components=2)
|
||
|
>>> print(pca.explained_variance_ratio_)
|
||
|
[0.9924... 0.0075...]
|
||
|
>>> print(pca.singular_values_)
|
||
|
[6.30061... 0.54980...]
|
||
|
|
||
|
>>> pca = PCA(n_components=2, svd_solver='full')
|
||
|
>>> pca.fit(X)
|
||
|
PCA(n_components=2, svd_solver='full')
|
||
|
>>> print(pca.explained_variance_ratio_)
|
||
|
[0.9924... 0.00755...]
|
||
|
>>> print(pca.singular_values_)
|
||
|
[6.30061... 0.54980...]
|
||
|
|
||
|
>>> pca = PCA(n_components=1, svd_solver='arpack')
|
||
|
>>> pca.fit(X)
|
||
|
PCA(n_components=1, svd_solver='arpack')
|
||
|
>>> print(pca.explained_variance_ratio_)
|
||
|
[0.99244...]
|
||
|
>>> print(pca.singular_values_)
|
||
|
[6.30061...]
|
||
|
"""
|
||
|
|
||
|
_parameter_constraints: dict = {
|
||
|
"n_components": [
|
||
|
Interval(Integral, 0, None, closed="left"),
|
||
|
Interval(RealNotInt, 0, 1, closed="neither"),
|
||
|
StrOptions({"mle"}),
|
||
|
None,
|
||
|
],
|
||
|
"copy": ["boolean"],
|
||
|
"whiten": ["boolean"],
|
||
|
"svd_solver": [
|
||
|
StrOptions({"auto", "full", "covariance_eigh", "arpack", "randomized"})
|
||
|
],
|
||
|
"tol": [Interval(Real, 0, None, closed="left")],
|
||
|
"iterated_power": [
|
||
|
StrOptions({"auto"}),
|
||
|
Interval(Integral, 0, None, closed="left"),
|
||
|
],
|
||
|
"n_oversamples": [Interval(Integral, 1, None, closed="left")],
|
||
|
"power_iteration_normalizer": [StrOptions({"auto", "QR", "LU", "none"})],
|
||
|
"random_state": ["random_state"],
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
n_components=None,
|
||
|
*,
|
||
|
copy=True,
|
||
|
whiten=False,
|
||
|
svd_solver="auto",
|
||
|
tol=0.0,
|
||
|
iterated_power="auto",
|
||
|
n_oversamples=10,
|
||
|
power_iteration_normalizer="auto",
|
||
|
random_state=None,
|
||
|
):
|
||
|
self.n_components = n_components
|
||
|
self.copy = copy
|
||
|
self.whiten = whiten
|
||
|
self.svd_solver = svd_solver
|
||
|
self.tol = tol
|
||
|
self.iterated_power = iterated_power
|
||
|
self.n_oversamples = n_oversamples
|
||
|
self.power_iteration_normalizer = power_iteration_normalizer
|
||
|
self.random_state = random_state
|
||
|
|
||
|
@_fit_context(prefer_skip_nested_validation=True)
|
||
|
def fit(self, X, y=None):
|
||
|
"""Fit the model with X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
Training data, where `n_samples` is the number of samples
|
||
|
and `n_features` is the number of features.
|
||
|
|
||
|
y : Ignored
|
||
|
Ignored.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Returns the instance itself.
|
||
|
"""
|
||
|
self._fit(X)
|
||
|
return self
|
||
|
|
||
|
@_fit_context(prefer_skip_nested_validation=True)
|
||
|
def fit_transform(self, X, y=None):
|
||
|
"""Fit the model with X and apply the dimensionality reduction on X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
Training data, where `n_samples` is the number of samples
|
||
|
and `n_features` is the number of features.
|
||
|
|
||
|
y : Ignored
|
||
|
Ignored.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X_new : ndarray of shape (n_samples, n_components)
|
||
|
Transformed values.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method returns a Fortran-ordered array. To convert it to a
|
||
|
C-ordered array, use 'np.ascontiguousarray'.
|
||
|
"""
|
||
|
U, S, _, X, x_is_centered, xp = self._fit(X)
|
||
|
if U is not None:
|
||
|
U = U[:, : self.n_components_]
|
||
|
|
||
|
if self.whiten:
|
||
|
# X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)
|
||
|
U *= sqrt(X.shape[0] - 1)
|
||
|
else:
|
||
|
# X_new = X * V = U * S * Vt * V = U * S
|
||
|
U *= S[: self.n_components_]
|
||
|
|
||
|
return U
|
||
|
else: # solver="covariance_eigh" does not compute U at fit time.
|
||
|
return self._transform(X, xp, x_is_centered=x_is_centered)
|
||
|
|
||
|
def _fit(self, X):
|
||
|
"""Dispatch to the right submethod depending on the chosen solver."""
|
||
|
xp, is_array_api_compliant = get_namespace(X)
|
||
|
|
||
|
# Raise an error for sparse input and unsupported svd_solver
|
||
|
if issparse(X) and self.svd_solver not in ["auto", "arpack", "covariance_eigh"]:
|
||
|
raise TypeError(
|
||
|
'PCA only support sparse inputs with the "arpack" and'
|
||
|
f' "covariance_eigh" solvers, while "{self.svd_solver}" was passed. See'
|
||
|
" TruncatedSVD for a possible alternative."
|
||
|
)
|
||
|
if self.svd_solver == "arpack" and is_array_api_compliant:
|
||
|
raise ValueError(
|
||
|
"PCA with svd_solver='arpack' is not supported for Array API inputs."
|
||
|
)
|
||
|
|
||
|
# Validate the data, without ever forcing a copy as any solver that
|
||
|
# supports sparse input data and the `covariance_eigh` solver are
|
||
|
# written in a way to avoid the need for any inplace modification of
|
||
|
# the input data contrary to the other solvers.
|
||
|
# The copy will happen
|
||
|
# later, only if needed, once the solver negotiation below is done.
|
||
|
X = self._validate_data(
|
||
|
X,
|
||
|
dtype=[xp.float64, xp.float32],
|
||
|
accept_sparse=("csr", "csc"),
|
||
|
ensure_2d=True,
|
||
|
copy=False,
|
||
|
)
|
||
|
self._fit_svd_solver = self.svd_solver
|
||
|
if self._fit_svd_solver == "auto" and issparse(X):
|
||
|
self._fit_svd_solver = "arpack"
|
||
|
|
||
|
if self.n_components is None:
|
||
|
if self._fit_svd_solver != "arpack":
|
||
|
n_components = min(X.shape)
|
||
|
else:
|
||
|
n_components = min(X.shape) - 1
|
||
|
else:
|
||
|
n_components = self.n_components
|
||
|
|
||
|
if self._fit_svd_solver == "auto":
|
||
|
# Tall and skinny problems are best handled by precomputing the
|
||
|
# covariance matrix.
|
||
|
if X.shape[1] <= 1_000 and X.shape[0] >= 10 * X.shape[1]:
|
||
|
self._fit_svd_solver = "covariance_eigh"
|
||
|
# Small problem or n_components == 'mle', just call full PCA
|
||
|
elif max(X.shape) <= 500 or n_components == "mle":
|
||
|
self._fit_svd_solver = "full"
|
||
|
elif 1 <= n_components < 0.8 * min(X.shape):
|
||
|
self._fit_svd_solver = "randomized"
|
||
|
# This is also the case of n_components in (0, 1)
|
||
|
else:
|
||
|
self._fit_svd_solver = "full"
|
||
|
|
||
|
# Call different fits for either full or truncated SVD
|
||
|
if self._fit_svd_solver in ("full", "covariance_eigh"):
|
||
|
return self._fit_full(X, n_components, xp, is_array_api_compliant)
|
||
|
elif self._fit_svd_solver in ["arpack", "randomized"]:
|
||
|
return self._fit_truncated(X, n_components, xp)
|
||
|
|
||
|
def _fit_full(self, X, n_components, xp, is_array_api_compliant):
|
||
|
"""Fit the model by computing full SVD on X."""
|
||
|
n_samples, n_features = X.shape
|
||
|
|
||
|
if n_components == "mle":
|
||
|
if n_samples < n_features:
|
||
|
raise ValueError(
|
||
|
"n_components='mle' is only supported if n_samples >= n_features"
|
||
|
)
|
||
|
elif not 0 <= n_components <= min(n_samples, n_features):
|
||
|
raise ValueError(
|
||
|
f"n_components={n_components} must be between 0 and "
|
||
|
f"min(n_samples, n_features)={min(n_samples, n_features)} with "
|
||
|
f"svd_solver={self._fit_svd_solver!r}"
|
||
|
)
|
||
|
|
||
|
self.mean_ = xp.mean(X, axis=0)
|
||
|
# When X is a scipy sparse matrix, self.mean_ is a numpy matrix, so we need
|
||
|
# to transform it to a 1D array. Note that this is not the case when X
|
||
|
# is a scipy sparse array.
|
||
|
# TODO: remove the following two lines when scikit-learn only depends
|
||
|
# on scipy versions that no longer support scipy.sparse matrices.
|
||
|
self.mean_ = xp.reshape(xp.asarray(self.mean_), (-1,))
|
||
|
|
||
|
if self._fit_svd_solver == "full":
|
||
|
X_centered = xp.asarray(X, copy=True) if self.copy else X
|
||
|
X_centered -= self.mean_
|
||
|
x_is_centered = not self.copy
|
||
|
|
||
|
if not is_array_api_compliant:
|
||
|
# Use scipy.linalg with NumPy/SciPy inputs for the sake of not
|
||
|
# introducing unanticipated behavior changes. In the long run we
|
||
|
# could instead decide to always use xp.linalg.svd for all inputs,
|
||
|
# but that would make this code rely on numpy's SVD instead of
|
||
|
# scipy's. It's not 100% clear whether they use the same LAPACK
|
||
|
# solver by default though (assuming both are built against the
|
||
|
# same BLAS).
|
||
|
U, S, Vt = linalg.svd(X_centered, full_matrices=False)
|
||
|
else:
|
||
|
U, S, Vt = xp.linalg.svd(X_centered, full_matrices=False)
|
||
|
explained_variance_ = (S**2) / (n_samples - 1)
|
||
|
|
||
|
else:
|
||
|
assert self._fit_svd_solver == "covariance_eigh"
|
||
|
# In the following, we center the covariance matrix C afterwards
|
||
|
# (without centering the data X first) to avoid an unnecessary copy
|
||
|
# of X. Note that the mean_ attribute is still needed to center
|
||
|
# test data in the transform method.
|
||
|
#
|
||
|
# Note: at the time of writing, `xp.cov` does not exist in the
|
||
|
# Array API standard:
|
||
|
# https://github.com/data-apis/array-api/issues/43
|
||
|
#
|
||
|
# Besides, using `numpy.cov`, as of numpy 1.26.0, would not be
|
||
|
# memory efficient for our use case when `n_samples >> n_features`:
|
||
|
# `numpy.cov` centers a copy of the data before computing the
|
||
|
# matrix product instead of subtracting a small `(n_features,
|
||
|
# n_features)` square matrix from the gram matrix X.T @ X, as we do
|
||
|
# below.
|
||
|
x_is_centered = False
|
||
|
C = X.T @ X
|
||
|
C -= (
|
||
|
n_samples
|
||
|
* xp.reshape(self.mean_, (-1, 1))
|
||
|
* xp.reshape(self.mean_, (1, -1))
|
||
|
)
|
||
|
C /= n_samples - 1
|
||
|
eigenvals, eigenvecs = xp.linalg.eigh(C)
|
||
|
|
||
|
# When X is a scipy sparse matrix, the following two datastructures
|
||
|
# are returned as instances of the soft-deprecated numpy.matrix
|
||
|
# class. Note that this problem does not occur when X is a scipy
|
||
|
# sparse array (or another other kind of supported array).
|
||
|
# TODO: remove the following two lines when scikit-learn only
|
||
|
# depends on scipy versions that no longer support scipy.sparse
|
||
|
# matrices.
|
||
|
eigenvals = xp.reshape(xp.asarray(eigenvals), (-1,))
|
||
|
eigenvecs = xp.asarray(eigenvecs)
|
||
|
|
||
|
eigenvals = xp.flip(eigenvals, axis=0)
|
||
|
eigenvecs = xp.flip(eigenvecs, axis=1)
|
||
|
|
||
|
# The covariance matrix C is positive semi-definite by
|
||
|
# construction. However, the eigenvalues returned by xp.linalg.eigh
|
||
|
# can be slightly negative due to numerical errors. This would be
|
||
|
# an issue for the subsequent sqrt, hence the manual clipping.
|
||
|
eigenvals[eigenvals < 0.0] = 0.0
|
||
|
explained_variance_ = eigenvals
|
||
|
|
||
|
# Re-construct SVD of centered X indirectly and make it consistent
|
||
|
# with the other solvers.
|
||
|
S = xp.sqrt(eigenvals * (n_samples - 1))
|
||
|
Vt = eigenvecs.T
|
||
|
U = None
|
||
|
|
||
|
# flip eigenvectors' sign to enforce deterministic output
|
||
|
U, Vt = svd_flip(U, Vt, u_based_decision=False)
|
||
|
|
||
|
components_ = Vt
|
||
|
|
||
|
# Get variance explained by singular values
|
||
|
total_var = xp.sum(explained_variance_)
|
||
|
explained_variance_ratio_ = explained_variance_ / total_var
|
||
|
singular_values_ = xp.asarray(S, copy=True) # Store the singular values.
|
||
|
|
||
|
# Postprocess the number of components required
|
||
|
if n_components == "mle":
|
||
|
n_components = _infer_dimension(explained_variance_, n_samples)
|
||
|
elif 0 < n_components < 1.0:
|
||
|
# number of components for which the cumulated explained
|
||
|
# variance percentage is superior to the desired threshold
|
||
|
# side='right' ensures that number of features selected
|
||
|
# their variance is always greater than n_components float
|
||
|
# passed. More discussion in issue: #15669
|
||
|
if is_array_api_compliant:
|
||
|
# Convert to numpy as xp.cumsum and xp.searchsorted are not
|
||
|
# part of the Array API standard yet:
|
||
|
#
|
||
|
# https://github.com/data-apis/array-api/issues/597
|
||
|
# https://github.com/data-apis/array-api/issues/688
|
||
|
#
|
||
|
# Furthermore, it's not always safe to call them for namespaces
|
||
|
# that already implement them: for instance as
|
||
|
# cupy.searchsorted does not accept a float as second argument.
|
||
|
explained_variance_ratio_np = _convert_to_numpy(
|
||
|
explained_variance_ratio_, xp=xp
|
||
|
)
|
||
|
else:
|
||
|
explained_variance_ratio_np = explained_variance_ratio_
|
||
|
ratio_cumsum = stable_cumsum(explained_variance_ratio_np)
|
||
|
n_components = np.searchsorted(ratio_cumsum, n_components, side="right") + 1
|
||
|
|
||
|
# Compute noise covariance using Probabilistic PCA model
|
||
|
# The sigma2 maximum likelihood (cf. eq. 12.46)
|
||
|
if n_components < min(n_features, n_samples):
|
||
|
self.noise_variance_ = xp.mean(explained_variance_[n_components:])
|
||
|
else:
|
||
|
self.noise_variance_ = 0.0
|
||
|
|
||
|
self.n_samples_ = n_samples
|
||
|
self.n_components_ = n_components
|
||
|
# Assign a copy of the result of the truncation of the components in
|
||
|
# order to:
|
||
|
# - release the memory used by the discarded components,
|
||
|
# - ensure that the kept components are allocated contiguously in
|
||
|
# memory to make the transform method faster by leveraging cache
|
||
|
# locality.
|
||
|
self.components_ = xp.asarray(components_[:n_components, :], copy=True)
|
||
|
|
||
|
# We do the same for the other arrays for the sake of consistency.
|
||
|
self.explained_variance_ = xp.asarray(
|
||
|
explained_variance_[:n_components], copy=True
|
||
|
)
|
||
|
self.explained_variance_ratio_ = xp.asarray(
|
||
|
explained_variance_ratio_[:n_components], copy=True
|
||
|
)
|
||
|
self.singular_values_ = xp.asarray(singular_values_[:n_components], copy=True)
|
||
|
|
||
|
return U, S, Vt, X, x_is_centered, xp
|
||
|
|
||
|
def _fit_truncated(self, X, n_components, xp):
|
||
|
"""Fit the model by computing truncated SVD (by ARPACK or randomized)
|
||
|
on X.
|
||
|
"""
|
||
|
n_samples, n_features = X.shape
|
||
|
|
||
|
svd_solver = self._fit_svd_solver
|
||
|
if isinstance(n_components, str):
|
||
|
raise ValueError(
|
||
|
"n_components=%r cannot be a string with svd_solver='%s'"
|
||
|
% (n_components, svd_solver)
|
||
|
)
|
||
|
elif not 1 <= n_components <= min(n_samples, n_features):
|
||
|
raise ValueError(
|
||
|
"n_components=%r must be between 1 and "
|
||
|
"min(n_samples, n_features)=%r with "
|
||
|
"svd_solver='%s'"
|
||
|
% (n_components, min(n_samples, n_features), svd_solver)
|
||
|
)
|
||
|
elif svd_solver == "arpack" and n_components == min(n_samples, n_features):
|
||
|
raise ValueError(
|
||
|
"n_components=%r must be strictly less than "
|
||
|
"min(n_samples, n_features)=%r with "
|
||
|
"svd_solver='%s'"
|
||
|
% (n_components, min(n_samples, n_features), svd_solver)
|
||
|
)
|
||
|
|
||
|
random_state = check_random_state(self.random_state)
|
||
|
|
||
|
# Center data
|
||
|
total_var = None
|
||
|
if issparse(X):
|
||
|
self.mean_, var = mean_variance_axis(X, axis=0)
|
||
|
total_var = var.sum() * n_samples / (n_samples - 1) # ddof=1
|
||
|
X_centered = _implicit_column_offset(X, self.mean_)
|
||
|
x_is_centered = False
|
||
|
else:
|
||
|
self.mean_ = xp.mean(X, axis=0)
|
||
|
X_centered = xp.asarray(X, copy=True) if self.copy else X
|
||
|
X_centered -= self.mean_
|
||
|
x_is_centered = not self.copy
|
||
|
|
||
|
if svd_solver == "arpack":
|
||
|
v0 = _init_arpack_v0(min(X.shape), random_state)
|
||
|
U, S, Vt = svds(X_centered, k=n_components, tol=self.tol, v0=v0)
|
||
|
# svds doesn't abide by scipy.linalg.svd/randomized_svd
|
||
|
# conventions, so reverse its outputs.
|
||
|
S = S[::-1]
|
||
|
# flip eigenvectors' sign to enforce deterministic output
|
||
|
U, Vt = svd_flip(U[:, ::-1], Vt[::-1], u_based_decision=False)
|
||
|
|
||
|
elif svd_solver == "randomized":
|
||
|
# sign flipping is done inside
|
||
|
U, S, Vt = randomized_svd(
|
||
|
X_centered,
|
||
|
n_components=n_components,
|
||
|
n_oversamples=self.n_oversamples,
|
||
|
n_iter=self.iterated_power,
|
||
|
power_iteration_normalizer=self.power_iteration_normalizer,
|
||
|
flip_sign=False,
|
||
|
random_state=random_state,
|
||
|
)
|
||
|
U, Vt = svd_flip(U, Vt, u_based_decision=False)
|
||
|
|
||
|
self.n_samples_ = n_samples
|
||
|
self.components_ = Vt
|
||
|
self.n_components_ = n_components
|
||
|
|
||
|
# Get variance explained by singular values
|
||
|
self.explained_variance_ = (S**2) / (n_samples - 1)
|
||
|
|
||
|
# Workaround in-place variance calculation since at the time numpy
|
||
|
# did not have a way to calculate variance in-place.
|
||
|
#
|
||
|
# TODO: update this code to either:
|
||
|
# * Use the array-api variance calculation, unless memory usage suffers
|
||
|
# * Update sklearn.utils.extmath._incremental_mean_and_var to support array-api
|
||
|
# See: https://github.com/scikit-learn/scikit-learn/pull/18689#discussion_r1335540991
|
||
|
if total_var is None:
|
||
|
N = X.shape[0] - 1
|
||
|
X_centered **= 2
|
||
|
total_var = xp.sum(X_centered) / N
|
||
|
|
||
|
self.explained_variance_ratio_ = self.explained_variance_ / total_var
|
||
|
self.singular_values_ = xp.asarray(S, copy=True) # Store the singular values.
|
||
|
|
||
|
if self.n_components_ < min(n_features, n_samples):
|
||
|
self.noise_variance_ = total_var - xp.sum(self.explained_variance_)
|
||
|
self.noise_variance_ /= min(n_features, n_samples) - n_components
|
||
|
else:
|
||
|
self.noise_variance_ = 0.0
|
||
|
|
||
|
return U, S, Vt, X, x_is_centered, xp
|
||
|
|
||
|
def score_samples(self, X):
|
||
|
"""Return the log-likelihood of each sample.
|
||
|
|
||
|
See. "Pattern Recognition and Machine Learning"
|
||
|
by C. Bishop, 12.2.1 p. 574
|
||
|
or http://www.miketipping.com/papers/met-mppca.pdf
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
The data.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ll : ndarray of shape (n_samples,)
|
||
|
Log-likelihood of each sample under the current model.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
xp, _ = get_namespace(X)
|
||
|
X = self._validate_data(X, dtype=[xp.float64, xp.float32], reset=False)
|
||
|
Xr = X - self.mean_
|
||
|
n_features = X.shape[1]
|
||
|
precision = self.get_precision()
|
||
|
log_like = -0.5 * xp.sum(Xr * (Xr @ precision), axis=1)
|
||
|
log_like -= 0.5 * (n_features * log(2.0 * np.pi) - fast_logdet(precision))
|
||
|
return log_like
|
||
|
|
||
|
def score(self, X, y=None):
|
||
|
"""Return the average log-likelihood of all samples.
|
||
|
|
||
|
See. "Pattern Recognition and Machine Learning"
|
||
|
by C. Bishop, 12.2.1 p. 574
|
||
|
or http://www.miketipping.com/papers/met-mppca.pdf
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
The data.
|
||
|
|
||
|
y : Ignored
|
||
|
Ignored.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ll : float
|
||
|
Average log-likelihood of the samples under the current model.
|
||
|
"""
|
||
|
xp, _ = get_namespace(X)
|
||
|
return float(xp.mean(self.score_samples(X)))
|
||
|
|
||
|
def _more_tags(self):
|
||
|
return {"preserves_dtype": [np.float64, np.float32], "array_api_support": True}
|