3RNN/Lib/site-packages/sklearn/linear_model/_sag_fast.pyx.tp

843 lines
30 KiB
Plaintext
Raw Permalink Normal View History

2024-05-26 19:49:15 +02:00
{{py:
"""
Template file for easily generate fused types consistent code using Tempita
(https://github.com/cython/cython/blob/master/Cython/Tempita/_tempita.py).
Generated file: sag_fast.pyx
Each class is duplicated for all dtypes (float and double). The keywords
between double braces are substituted in setup.py.
Authors: Danny Sullivan <dbsullivan23@gmail.com>
Tom Dupre la Tour <tom.dupre-la-tour@m4x.org>
Arthur Mensch <arthur.mensch@m4x.org
Arthur Imbert <arthurimbert05@gmail.com>
Joan Massich <mailsik@gmail.com>
License: BSD 3 clause
"""
# name_suffix, c_type, np_type
dtypes = [('64', 'double', 'np.float64'),
('32', 'float', 'np.float32')]
}}
"""SAG and SAGA implementation"""
import numpy as np
from libc.math cimport exp, fabs, isfinite, log
from libc.time cimport time, time_t
from ._sgd_fast cimport LossFunction
from ._sgd_fast cimport Log, SquaredLoss
from ..utils._seq_dataset cimport SequentialDataset32, SequentialDataset64
from libc.stdio cimport printf
{{for name_suffix, c_type, np_type in dtypes}}
cdef inline {{c_type}} fmax{{name_suffix}}({{c_type}} x, {{c_type}} y) noexcept nogil:
if x > y:
return x
return y
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
cdef {{c_type}} _logsumexp{{name_suffix}}({{c_type}}* arr, int n_classes) noexcept nogil:
"""Computes the sum of arr assuming arr is in the log domain.
Returns log(sum(exp(arr))) while minimizing the possibility of
over/underflow.
"""
# Use the max to normalize, as with the log this is what accumulates
# the less errors
cdef {{c_type}} vmax = arr[0]
cdef {{c_type}} out = 0.0
cdef int i
for i in range(1, n_classes):
if vmax < arr[i]:
vmax = arr[i]
for i in range(n_classes):
out += exp(arr[i] - vmax)
return log(out) + vmax
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
cdef class MultinomialLogLoss{{name_suffix}}:
cdef {{c_type}} _loss(self, {{c_type}} y, {{c_type}}* prediction, int n_classes,
{{c_type}} sample_weight) noexcept nogil:
r"""Multinomial Logistic regression loss.
The multinomial logistic loss for one sample is:
loss = - sw \sum_c \delta_{y,c} (prediction[c] - logsumexp(prediction))
= sw (logsumexp(prediction) - prediction[y])
where:
prediction = dot(x_sample, weights) + intercept
\delta_{y,c} = 1 if (y == c) else 0
sw = sample_weight
Parameters
----------
y : {{c_type}}, between 0 and n_classes - 1
Indice of the correct class for current sample (i.e. label encoded).
prediction : pointer to a np.ndarray[{{c_type}}] of shape (n_classes,)
Prediction of the multinomial classifier, for current sample.
n_classes : integer
Total number of classes.
sample_weight : {{c_type}}
Weight of current sample.
Returns
-------
loss : {{c_type}}
Multinomial loss for current sample.
Reference
---------
Bishop, C. M. (2006). Pattern recognition and machine learning.
Springer. (Chapter 4.3.4)
"""
cdef {{c_type}} logsumexp_prediction = _logsumexp{{name_suffix}}(prediction, n_classes)
cdef {{c_type}} loss
# y is the indice of the correct class of current sample.
loss = (logsumexp_prediction - prediction[int(y)]) * sample_weight
return loss
cdef void dloss(self, {{c_type}} y, {{c_type}}* prediction, int n_classes,
{{c_type}} sample_weight, {{c_type}}* gradient_ptr) noexcept nogil:
r"""Multinomial Logistic regression gradient of the loss.
The gradient of the multinomial logistic loss with respect to a class c,
and for one sample is:
grad_c = - sw * (p[c] - \delta_{y,c})
where:
p[c] = exp(logsumexp(prediction) - prediction[c])
prediction = dot(sample, weights) + intercept
\delta_{y,c} = 1 if (y == c) else 0
sw = sample_weight
Note that to obtain the true gradient, this value has to be multiplied
by the sample vector x.
Parameters
----------
prediction : pointer to a np.ndarray[{{c_type}}] of shape (n_classes,)
Prediction of the multinomial classifier, for current sample.
y : {{c_type}}, between 0 and n_classes - 1
Indice of the correct class for current sample (i.e. label encoded)
n_classes : integer
Total number of classes.
sample_weight : {{c_type}}
Weight of current sample.
gradient_ptr : pointer to a np.ndarray[{{c_type}}] of shape (n_classes,)
Gradient vector to be filled.
Reference
---------
Bishop, C. M. (2006). Pattern recognition and machine learning.
Springer. (Chapter 4.3.4)
"""
cdef {{c_type}} logsumexp_prediction = _logsumexp{{name_suffix}}(prediction, n_classes)
cdef int class_ind
for class_ind in range(n_classes):
gradient_ptr[class_ind] = exp(prediction[class_ind] -
logsumexp_prediction)
# y is the indice of the correct class of current sample.
if class_ind == y:
gradient_ptr[class_ind] -= 1.0
gradient_ptr[class_ind] *= sample_weight
def __reduce__(self):
return MultinomialLogLoss{{name_suffix}}, ()
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
cdef inline {{c_type}} _soft_thresholding{{name_suffix}}({{c_type}} x, {{c_type}} shrinkage) noexcept nogil:
return fmax{{name_suffix}}(x - shrinkage, 0) - fmax{{name_suffix}}(- x - shrinkage, 0)
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
def sag{{name_suffix}}(
SequentialDataset{{name_suffix}} dataset,
{{c_type}}[:, ::1] weights_array,
{{c_type}}[::1] intercept_array,
int n_samples,
int n_features,
int n_classes,
double tol,
int max_iter,
str loss_function,
double step_size,
double alpha,
double beta,
{{c_type}}[:, ::1] sum_gradient_init,
{{c_type}}[:, ::1] gradient_memory_init,
bint[::1] seen_init,
int num_seen,
bint fit_intercept,
{{c_type}}[::1] intercept_sum_gradient_init,
double intercept_decay,
bint saga,
bint verbose
):
"""Stochastic Average Gradient (SAG) and SAGA solvers.
Used in Ridge and LogisticRegression.
Some implementation details:
- Just-in-time (JIT) update: In SAG(A), the average-gradient update is
collinear with the drawn sample X_i. Therefore, if the data is sparse, the
random sample X_i will change the average gradient only on features j where
X_ij != 0. In some cases, the average gradient on feature j might change
only after k random samples with no change. In these cases, instead of
applying k times the same gradient step on feature j, we apply the gradient
step only once, scaled by k. This is called the "just-in-time update", and
it is performed in `lagged_update{{name_suffix}}`. This function also
applies the proximal operator after the gradient step (if L1 regularization
is used in SAGA).
- Weight scale: In SAG(A), the weights are scaled down at each iteration
due to the L2 regularization. To avoid updating all the weights at each
iteration, the weight scale is factored out in a separate variable `wscale`
which is only used in the JIT update. When this variable is too small, it
is reset for numerical stability using the function
`scale_weights{{name_suffix}}`. This reset requires applying all remaining
JIT updates. This reset is also performed every `n_samples` iterations
before each convergence check, so when the algorithm stops, we are sure
that there is no remaining JIT updates.
Reference
---------
Schmidt, M., Roux, N. L., & Bach, F. (2013).
Minimizing finite sums with the stochastic average gradient
https://hal.inria.fr/hal-00860051/document
(section 4.3)
:arxiv:`Defazio, A., Bach F. & Lacoste-Julien S. (2014).
"SAGA: A Fast Incremental Gradient Method With Support
for Non-Strongly Convex Composite Objectives" <1407.0202>`
"""
# the data pointer for x, the current sample
cdef {{c_type}} *x_data_ptr = NULL
# the index pointer for the column of the data
cdef int *x_ind_ptr = NULL
# the number of non-zero features for current sample
cdef int xnnz = -1
# the label value for current sample
# the label value for current sample
cdef {{c_type}} y
# the sample weight
cdef {{c_type}} sample_weight
# helper variable for indexes
cdef int f_idx, s_idx, feature_ind, class_ind, j
# the number of pass through all samples
cdef int n_iter = 0
# helper to track iterations through samples
cdef int sample_itr
# the index (row number) of the current sample
cdef int sample_ind
# the maximum change in weights, used to compute stopping criteria
cdef {{c_type}} max_change
# a holder variable for the max weight, used to compute stopping criteria
cdef {{c_type}} max_weight
# the start time of the fit
cdef time_t start_time
# the end time of the fit
cdef time_t end_time
# precomputation since the step size does not change in this implementation
cdef {{c_type}} wscale_update = 1.0 - step_size * alpha
# helper for cumulative sum
cdef {{c_type}} cum_sum
# the pointer to the coef_ or weights
cdef {{c_type}}* weights = &weights_array[0, 0]
# the sum of gradients for each feature
cdef {{c_type}}* sum_gradient = &sum_gradient_init[0, 0]
# the previously seen gradient for each sample
cdef {{c_type}}* gradient_memory = &gradient_memory_init[0, 0]
# the cumulative sums needed for JIT params
cdef {{c_type}}[::1] cumulative_sums = np.empty(n_samples, dtype={{np_type}}, order="c")
# the index for the last time this feature was updated
cdef int[::1] feature_hist = np.zeros(n_features, dtype=np.int32, order="c")
# the previous weights to use to compute stopping criteria
cdef {{c_type}}[:, ::1] previous_weights_array = np.zeros((n_features, n_classes), dtype={{np_type}}, order="c")
cdef {{c_type}}* previous_weights = &previous_weights_array[0, 0]
cdef {{c_type}}[::1] prediction = np.zeros(n_classes, dtype={{np_type}}, order="c")
cdef {{c_type}}[::1] gradient = np.zeros(n_classes, dtype={{np_type}}, order="c")
# Intermediate variable that need declaration since cython cannot infer when templating
cdef {{c_type}} val
# Bias correction term in saga
cdef {{c_type}} gradient_correction
# the scalar used for multiplying z
cdef {{c_type}} wscale = 1.0
# return value (-1 if an error occurred, 0 otherwise)
cdef int status = 0
# the cumulative sums for each iteration for the sparse implementation
cumulative_sums[0] = 0.0
# the multipliative scale needed for JIT params
cdef {{c_type}}[::1] cumulative_sums_prox
cdef {{c_type}}* cumulative_sums_prox_ptr
cdef bint prox = beta > 0 and saga
# Loss function to optimize
cdef LossFunction loss
# Whether the loss function is multinomial
cdef bint multinomial = False
# Multinomial loss function
cdef MultinomialLogLoss{{name_suffix}} multiloss
if loss_function == "multinomial":
multinomial = True
multiloss = MultinomialLogLoss{{name_suffix}}()
elif loss_function == "log":
loss = Log()
elif loss_function == "squared":
loss = SquaredLoss()
else:
raise ValueError("Invalid loss parameter: got %s instead of "
"one of ('log', 'squared', 'multinomial')"
% loss_function)
if prox:
cumulative_sums_prox = np.empty(n_samples, dtype={{np_type}}, order="c")
cumulative_sums_prox_ptr = &cumulative_sums_prox[0]
else:
cumulative_sums_prox = None
cumulative_sums_prox_ptr = NULL
with nogil:
start_time = time(NULL)
for n_iter in range(max_iter):
for sample_itr in range(n_samples):
# extract a random sample
sample_ind = dataset.random(&x_data_ptr, &x_ind_ptr, &xnnz, &y, &sample_weight)
# cached index for gradient_memory
s_idx = sample_ind * n_classes
# update the number of samples seen and the seen array
if seen_init[sample_ind] == 0:
num_seen += 1
seen_init[sample_ind] = 1
# make the weight updates (just-in-time gradient step, and prox operator)
if sample_itr > 0:
status = lagged_update{{name_suffix}}(
weights=weights,
wscale=wscale,
xnnz=xnnz,
n_samples=n_samples,
n_classes=n_classes,
sample_itr=sample_itr,
cumulative_sums=&cumulative_sums[0],
cumulative_sums_prox=cumulative_sums_prox_ptr,
feature_hist=&feature_hist[0],
prox=prox,
sum_gradient=sum_gradient,
x_ind_ptr=x_ind_ptr,
reset=False,
n_iter=n_iter
)
if status == -1:
break
# find the current prediction
predict_sample{{name_suffix}}(
x_data_ptr=x_data_ptr,
x_ind_ptr=x_ind_ptr,
xnnz=xnnz,
w_data_ptr=weights,
wscale=wscale,
intercept=&intercept_array[0],
prediction=&prediction[0],
n_classes=n_classes
)
# compute the gradient for this sample, given the prediction
if multinomial:
multiloss.dloss(y, &prediction[0], n_classes, sample_weight, &gradient[0])
else:
gradient[0] = loss.dloss(y, prediction[0]) * sample_weight
# L2 regularization by simply rescaling the weights
wscale *= wscale_update
# make the updates to the sum of gradients
for j in range(xnnz):
feature_ind = x_ind_ptr[j]
val = x_data_ptr[j]
f_idx = feature_ind * n_classes
for class_ind in range(n_classes):
gradient_correction = \
val * (gradient[class_ind] -
gradient_memory[s_idx + class_ind])
if saga:
# Note that this is not the main gradient step,
# which is performed just-in-time in lagged_update.
# This part is done outside the JIT update
# as it does not depend on the average gradient.
# The prox operator is applied after the JIT update
weights[f_idx + class_ind] -= \
(gradient_correction * step_size
* (1 - 1. / num_seen) / wscale)
sum_gradient[f_idx + class_ind] += gradient_correction
# fit the intercept
if fit_intercept:
for class_ind in range(n_classes):
gradient_correction = (gradient[class_ind] -
gradient_memory[s_idx + class_ind])
intercept_sum_gradient_init[class_ind] += gradient_correction
gradient_correction *= step_size * (1. - 1. / num_seen)
if saga:
intercept_array[class_ind] -= \
(step_size * intercept_sum_gradient_init[class_ind] /
num_seen * intercept_decay) + gradient_correction
else:
intercept_array[class_ind] -= \
(step_size * intercept_sum_gradient_init[class_ind] /
num_seen * intercept_decay)
# check to see that the intercept is not inf or NaN
if not isfinite(intercept_array[class_ind]):
status = -1
break
# Break from the n_samples outer loop if an error happened
# in the fit_intercept n_classes inner loop
if status == -1:
break
# update the gradient memory for this sample
for class_ind in range(n_classes):
gradient_memory[s_idx + class_ind] = gradient[class_ind]
if sample_itr == 0:
cumulative_sums[0] = step_size / (wscale * num_seen)
if prox:
cumulative_sums_prox[0] = step_size * beta / wscale
else:
cumulative_sums[sample_itr] = \
(cumulative_sums[sample_itr - 1] +
step_size / (wscale * num_seen))
if prox:
cumulative_sums_prox[sample_itr] = \
(cumulative_sums_prox[sample_itr - 1] +
step_size * beta / wscale)
# If wscale gets too small, we need to reset the scale.
# This also resets the just-in-time update system.
if wscale < 1e-9:
if verbose:
with gil:
print("rescaling...")
status = scale_weights{{name_suffix}}(
weights=weights,
wscale=&wscale,
n_features=n_features,
n_samples=n_samples,
n_classes=n_classes,
sample_itr=sample_itr,
cumulative_sums=&cumulative_sums[0],
cumulative_sums_prox=cumulative_sums_prox_ptr,
feature_hist=&feature_hist[0],
prox=prox,
sum_gradient=sum_gradient,
n_iter=n_iter
)
if status == -1:
break
# Break from the n_iter outer loop if an error happened in the
# n_samples inner loop
if status == -1:
break
# We scale the weights every n_samples iterations and reset the
# just-in-time update system for numerical stability.
# Because this reset is done before every convergence check, we are
# sure there is no remaining lagged update when the algorithm stops.
status = scale_weights{{name_suffix}}(
weights=weights,
wscale=&wscale,
n_features=n_features,
n_samples=n_samples,
n_classes=n_classes,
sample_itr=n_samples - 1,
cumulative_sums=&cumulative_sums[0],
cumulative_sums_prox=cumulative_sums_prox_ptr,
feature_hist=&feature_hist[0],
prox=prox,
sum_gradient=sum_gradient,
n_iter=n_iter
)
if status == -1:
break
# check if the stopping criteria is reached
max_change = 0.0
max_weight = 0.0
for idx in range(n_features * n_classes):
max_weight = fmax{{name_suffix}}(max_weight, fabs(weights[idx]))
max_change = fmax{{name_suffix}}(max_change, fabs(weights[idx] - previous_weights[idx]))
previous_weights[idx] = weights[idx]
if ((max_weight != 0 and max_change / max_weight <= tol)
or max_weight == 0 and max_change == 0):
if verbose:
end_time = time(NULL)
with gil:
print("convergence after %d epochs took %d seconds" %
(n_iter + 1, end_time - start_time))
break
elif verbose:
printf('Epoch %d, change: %.8f\n', n_iter + 1,
max_change / max_weight)
n_iter += 1
# We do the error treatment here based on error code in status to avoid
# re-acquiring the GIL within the cython code, which slows the computation
# when the sag/saga solver is used concurrently in multiple Python threads.
if status == -1:
raise ValueError(("Floating-point under-/overflow occurred at epoch"
" #%d. Scaling input data with StandardScaler or"
" MinMaxScaler might help.") % n_iter)
if verbose and n_iter >= max_iter:
end_time = time(NULL)
print(("max_iter reached after %d seconds") %
(end_time - start_time))
return num_seen, n_iter
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
cdef int scale_weights{{name_suffix}}(
{{c_type}}* weights,
{{c_type}}* wscale,
int n_features,
int n_samples,
int n_classes,
int sample_itr,
{{c_type}}* cumulative_sums,
{{c_type}}* cumulative_sums_prox,
int* feature_hist,
bint prox,
{{c_type}}* sum_gradient,
int n_iter
) noexcept nogil:
"""Scale the weights and reset wscale to 1.0 for numerical stability, and
reset the just-in-time (JIT) update system.
See `sag{{name_suffix}}`'s docstring about the JIT update system.
wscale = (1 - step_size * alpha) ** (n_iter * n_samples + sample_itr)
can become very small, so we reset it every n_samples iterations to 1.0 for
numerical stability. To be able to scale, we first need to update every
coefficients and reset the just-in-time update system.
This also limits the size of `cumulative_sums`.
"""
cdef int status
status = lagged_update{{name_suffix}}(
weights,
wscale[0],
n_features,
n_samples,
n_classes,
sample_itr + 1,
cumulative_sums,
cumulative_sums_prox,
feature_hist,
prox,
sum_gradient,
NULL,
True,
n_iter
)
# if lagged update succeeded, reset wscale to 1.0
if status == 0:
wscale[0] = 1.0
return status
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
cdef int lagged_update{{name_suffix}}(
{{c_type}}* weights,
{{c_type}} wscale,
int xnnz,
int n_samples,
int n_classes,
int sample_itr,
{{c_type}}* cumulative_sums,
{{c_type}}* cumulative_sums_prox,
int* feature_hist,
bint prox,
{{c_type}}* sum_gradient,
int* x_ind_ptr,
bint reset,
int n_iter
) noexcept nogil:
"""Hard perform the JIT updates for non-zero features of present sample.
See `sag{{name_suffix}}`'s docstring about the JIT update system.
The updates that awaits are kept in memory using cumulative_sums,
cumulative_sums_prox, wscale and feature_hist. See original SAGA paper
(Defazio et al. 2014) for details. If reset=True, we also reset wscale to
1 (this is done at the end of each epoch).
"""
cdef int feature_ind, class_ind, idx, f_idx, lagged_ind, last_update_ind
cdef {{c_type}} cum_sum, grad_step, prox_step, cum_sum_prox
for feature_ind in range(xnnz):
if not reset:
feature_ind = x_ind_ptr[feature_ind]
f_idx = feature_ind * n_classes
cum_sum = cumulative_sums[sample_itr - 1]
if prox:
cum_sum_prox = cumulative_sums_prox[sample_itr - 1]
if feature_hist[feature_ind] != 0:
cum_sum -= cumulative_sums[feature_hist[feature_ind] - 1]
if prox:
cum_sum_prox -= cumulative_sums_prox[feature_hist[feature_ind] - 1]
if not prox:
for class_ind in range(n_classes):
idx = f_idx + class_ind
weights[idx] -= cum_sum * sum_gradient[idx]
if reset:
weights[idx] *= wscale
if not isfinite(weights[idx]):
# returning here does not require the gil as the return
# type is a C integer
return -1
else:
for class_ind in range(n_classes):
idx = f_idx + class_ind
if fabs(sum_gradient[idx] * cum_sum) < cum_sum_prox:
# In this case, we can perform all the gradient steps and
# all the proximal steps in this order, which is more
# efficient than unrolling all the lagged updates.
# Idea taken from scikit-learn-contrib/lightning.
weights[idx] -= cum_sum * sum_gradient[idx]
weights[idx] = _soft_thresholding{{name_suffix}}(weights[idx],
cum_sum_prox)
else:
last_update_ind = feature_hist[feature_ind]
if last_update_ind == -1:
last_update_ind = sample_itr - 1
for lagged_ind in range(sample_itr - 1,
last_update_ind - 1, -1):
if lagged_ind > 0:
grad_step = (cumulative_sums[lagged_ind]
- cumulative_sums[lagged_ind - 1])
prox_step = (cumulative_sums_prox[lagged_ind]
- cumulative_sums_prox[lagged_ind - 1])
else:
grad_step = cumulative_sums[lagged_ind]
prox_step = cumulative_sums_prox[lagged_ind]
weights[idx] -= sum_gradient[idx] * grad_step
weights[idx] = _soft_thresholding{{name_suffix}}(weights[idx],
prox_step)
if reset:
weights[idx] *= wscale
# check to see that the weight is not inf or NaN
if not isfinite(weights[idx]):
return -1
if reset:
feature_hist[feature_ind] = sample_itr % n_samples
else:
feature_hist[feature_ind] = sample_itr
if reset:
cumulative_sums[sample_itr - 1] = 0.0
if prox:
cumulative_sums_prox[sample_itr - 1] = 0.0
return 0
{{endfor}}
{{for name_suffix, c_type, np_type in dtypes}}
cdef void predict_sample{{name_suffix}}(
{{c_type}}* x_data_ptr,
int* x_ind_ptr,
int xnnz,
{{c_type}}* w_data_ptr,
{{c_type}} wscale,
{{c_type}}* intercept,
{{c_type}}* prediction,
int n_classes
) noexcept nogil:
"""Compute the prediction given sparse sample x and dense weight w.
Parameters
----------
x_data_ptr : pointer
Pointer to the data of the sample x
x_ind_ptr : pointer
Pointer to the indices of the sample x
xnnz : int
Number of non-zero element in the sample x
w_data_ptr : pointer
Pointer to the data of the weights w
wscale : {{c_type}}
Scale of the weights w
intercept : pointer
Pointer to the intercept
prediction : pointer
Pointer to store the resulting prediction
n_classes : int
Number of classes in multinomial case. Equals 1 in binary case.
"""
cdef int feature_ind, class_ind, j
cdef {{c_type}} innerprod
for class_ind in range(n_classes):
innerprod = 0.0
# Compute the dot product only on non-zero elements of x
for j in range(xnnz):
feature_ind = x_ind_ptr[j]
innerprod += (w_data_ptr[feature_ind * n_classes + class_ind] *
x_data_ptr[j])
prediction[class_ind] = wscale * innerprod + intercept[class_ind]
{{endfor}}
def _multinomial_grad_loss_all_samples(
SequentialDataset64 dataset,
double[:, ::1] weights_array,
double[::1] intercept_array,
int n_samples,
int n_features,
int n_classes
):
"""Compute multinomial gradient and loss across all samples.
Used for testing purpose only.
"""
cdef double *x_data_ptr = NULL
cdef int *x_ind_ptr = NULL
cdef int xnnz = -1
cdef double y
cdef double sample_weight
cdef double wscale = 1.0
cdef int i, j, class_ind, feature_ind
cdef double val
cdef double sum_loss = 0.0
cdef MultinomialLogLoss64 multiloss = MultinomialLogLoss64()
cdef double[:, ::1] sum_gradient_array = np.zeros((n_features, n_classes), dtype=np.double, order="c")
cdef double* sum_gradient = &sum_gradient_array[0, 0]
cdef double[::1] prediction = np.zeros(n_classes, dtype=np.double, order="c")
cdef double[::1] gradient = np.zeros(n_classes, dtype=np.double, order="c")
with nogil:
for i in range(n_samples):
# get next sample on the dataset
dataset.next(
&x_data_ptr,
&x_ind_ptr,
&xnnz,
&y,
&sample_weight
)
# prediction of the multinomial classifier for the sample
predict_sample64(
x_data_ptr,
x_ind_ptr,
xnnz,
&weights_array[0, 0],
wscale,
&intercept_array[0],
&prediction[0],
n_classes
)
# compute the gradient for this sample, given the prediction
multiloss.dloss(y, &prediction[0], n_classes, sample_weight, &gradient[0])
# compute the loss for this sample, given the prediction
sum_loss += multiloss._loss(y, &prediction[0], n_classes, sample_weight)
# update the sum of the gradient
for j in range(xnnz):
feature_ind = x_ind_ptr[j]
val = x_data_ptr[j]
for class_ind in range(n_classes):
sum_gradient[feature_ind * n_classes + class_ind] += gradient[class_ind] * val
return sum_loss, sum_gradient_array