279 lines
10 KiB
Python
279 lines
10 KiB
Python
|
# This file is part of h5py, a Python interface to the HDF5 library.
|
||
|
#
|
||
|
# http://www.h5py.org
|
||
|
#
|
||
|
# Copyright 2008-2013 Andrew Collette and contributors
|
||
|
#
|
||
|
# License: Standard 3-clause BSD; see "license.txt" for full license terms
|
||
|
# and contributor agreement.
|
||
|
|
||
|
"""
|
||
|
Implements high-level operations for attributes.
|
||
|
|
||
|
Provides the AttributeManager class, available on high-level objects
|
||
|
as <obj>.attrs.
|
||
|
"""
|
||
|
|
||
|
import numpy
|
||
|
import uuid
|
||
|
|
||
|
from .. import h5, h5s, h5t, h5a, h5p
|
||
|
from . import base
|
||
|
from .base import phil, with_phil, Empty, is_empty_dataspace, product
|
||
|
from .datatype import Datatype
|
||
|
|
||
|
|
||
|
class AttributeManager(base.MutableMappingHDF5, base.CommonStateObject):
|
||
|
|
||
|
"""
|
||
|
Allows dictionary-style access to an HDF5 object's attributes.
|
||
|
|
||
|
These are created exclusively by the library and are available as
|
||
|
a Python attribute at <object>.attrs
|
||
|
|
||
|
Like Group objects, attributes provide a minimal dictionary-
|
||
|
style interface. Anything which can be reasonably converted to a
|
||
|
Numpy array or Numpy scalar can be stored.
|
||
|
|
||
|
Attributes are automatically created on assignment with the
|
||
|
syntax <obj>.attrs[name] = value, with the HDF5 type automatically
|
||
|
deduced from the value. Existing attributes are overwritten.
|
||
|
|
||
|
To modify an existing attribute while preserving its type, use the
|
||
|
method modify(). To specify an attribute of a particular type and
|
||
|
shape, use create().
|
||
|
"""
|
||
|
|
||
|
def __init__(self, parent):
|
||
|
""" Private constructor.
|
||
|
"""
|
||
|
self._id = parent.id
|
||
|
|
||
|
@with_phil
|
||
|
def __getitem__(self, name):
|
||
|
""" Read the value of an attribute.
|
||
|
"""
|
||
|
attr = h5a.open(self._id, self._e(name))
|
||
|
shape = attr.shape
|
||
|
|
||
|
# shape is None for empty dataspaces
|
||
|
if shape is None:
|
||
|
return Empty(attr.dtype)
|
||
|
|
||
|
dtype = attr.dtype
|
||
|
|
||
|
# Do this first, as we'll be fiddling with the dtype for top-level
|
||
|
# array types
|
||
|
htype = h5t.py_create(dtype)
|
||
|
|
||
|
# NumPy doesn't support top-level array types, so we have to "fake"
|
||
|
# the correct type and shape for the array. For example, consider
|
||
|
# attr.shape == (5,) and attr.dtype == '(3,)f'. Then:
|
||
|
if dtype.subdtype is not None:
|
||
|
subdtype, subshape = dtype.subdtype
|
||
|
shape = attr.shape + subshape # (5, 3)
|
||
|
dtype = subdtype # 'f'
|
||
|
|
||
|
arr = numpy.zeros(shape, dtype=dtype, order='C')
|
||
|
attr.read(arr, mtype=htype)
|
||
|
|
||
|
string_info = h5t.check_string_dtype(dtype)
|
||
|
if string_info and (string_info.length is None):
|
||
|
# Vlen strings: convert bytes to Python str
|
||
|
arr = numpy.array([
|
||
|
b.decode('utf-8', 'surrogateescape') for b in arr.flat
|
||
|
], dtype=dtype).reshape(arr.shape)
|
||
|
|
||
|
if arr.ndim == 0:
|
||
|
return arr[()]
|
||
|
return arr
|
||
|
|
||
|
def get_id(self, name):
|
||
|
"""Get a low-level AttrID object for the named attribute.
|
||
|
"""
|
||
|
return h5a.open(self._id, self._e(name))
|
||
|
|
||
|
@with_phil
|
||
|
def __setitem__(self, name, value):
|
||
|
""" Set a new attribute, overwriting any existing attribute.
|
||
|
|
||
|
The type and shape of the attribute are determined from the data. To
|
||
|
use a specific type or shape, or to preserve the type of an attribute,
|
||
|
use the methods create() and modify().
|
||
|
"""
|
||
|
self.create(name, data=value)
|
||
|
|
||
|
@with_phil
|
||
|
def __delitem__(self, name):
|
||
|
""" Delete an attribute (which must already exist). """
|
||
|
h5a.delete(self._id, self._e(name))
|
||
|
|
||
|
def create(self, name, data, shape=None, dtype=None):
|
||
|
""" Create a new attribute, overwriting any existing attribute.
|
||
|
|
||
|
name
|
||
|
Name of the new attribute (required)
|
||
|
data
|
||
|
An array to initialize the attribute (required)
|
||
|
shape
|
||
|
Shape of the attribute. Overrides data.shape if both are
|
||
|
given, in which case the total number of points must be unchanged.
|
||
|
dtype
|
||
|
Data type of the attribute. Overrides data.dtype if both
|
||
|
are given.
|
||
|
"""
|
||
|
name = self._e(name)
|
||
|
|
||
|
with phil:
|
||
|
# First, make sure we have a NumPy array. We leave the data type
|
||
|
# conversion for HDF5 to perform.
|
||
|
if not isinstance(data, Empty):
|
||
|
data = base.array_for_new_object(data, specified_dtype=dtype)
|
||
|
|
||
|
if shape is None:
|
||
|
shape = data.shape
|
||
|
elif isinstance(shape, int):
|
||
|
shape = (shape,)
|
||
|
|
||
|
use_htype = None # If a committed type is given, we must use it
|
||
|
# in the call to h5a.create.
|
||
|
|
||
|
if isinstance(dtype, Datatype):
|
||
|
use_htype = dtype.id
|
||
|
dtype = dtype.dtype
|
||
|
elif dtype is None:
|
||
|
dtype = data.dtype
|
||
|
else:
|
||
|
dtype = numpy.dtype(dtype) # In case a string, e.g. 'i8' is passed
|
||
|
|
||
|
original_dtype = dtype # We'll need this for top-level array types
|
||
|
|
||
|
# Where a top-level array type is requested, we have to do some
|
||
|
# fiddling around to present the data as a smaller array of
|
||
|
# subarrays.
|
||
|
if dtype.subdtype is not None:
|
||
|
|
||
|
subdtype, subshape = dtype.subdtype
|
||
|
|
||
|
# Make sure the subshape matches the last N axes' sizes.
|
||
|
if shape[-len(subshape):] != subshape:
|
||
|
raise ValueError("Array dtype shape %s is incompatible with data shape %s" % (subshape, shape))
|
||
|
|
||
|
# New "advertised" shape and dtype
|
||
|
shape = shape[0:len(shape)-len(subshape)]
|
||
|
dtype = subdtype
|
||
|
|
||
|
# Not an array type; make sure to check the number of elements
|
||
|
# is compatible, and reshape if needed.
|
||
|
else:
|
||
|
|
||
|
if shape is not None and product(shape) != product(data.shape):
|
||
|
raise ValueError("Shape of new attribute conflicts with shape of data")
|
||
|
|
||
|
if shape != data.shape:
|
||
|
data = data.reshape(shape)
|
||
|
|
||
|
# We need this to handle special string types.
|
||
|
if not isinstance(data, Empty):
|
||
|
data = numpy.asarray(data, dtype=dtype)
|
||
|
|
||
|
# Make HDF5 datatype and dataspace for the H5A calls
|
||
|
if use_htype is None:
|
||
|
htype = h5t.py_create(original_dtype, logical=True)
|
||
|
htype2 = h5t.py_create(original_dtype) # Must be bit-for-bit representation rather than logical
|
||
|
else:
|
||
|
htype = use_htype
|
||
|
htype2 = None
|
||
|
|
||
|
if isinstance(data, Empty):
|
||
|
space = h5s.create(h5s.NULL)
|
||
|
else:
|
||
|
space = h5s.create_simple(shape)
|
||
|
|
||
|
# For a long time, h5py would create attributes with a random name
|
||
|
# and then rename them, imitating how you can atomically replace
|
||
|
# a file in a filesystem. But HDF5 does not offer atomic replacement
|
||
|
# (you have to delete the existing attribute first), and renaming
|
||
|
# exposes some bugs - see https://github.com/h5py/h5py/issues/1385
|
||
|
# So we've gone back to the simpler delete & recreate model.
|
||
|
if h5a.exists(self._id, name):
|
||
|
h5a.delete(self._id, name)
|
||
|
|
||
|
attr = h5a.create(self._id, name, htype, space)
|
||
|
try:
|
||
|
if not isinstance(data, Empty):
|
||
|
attr.write(data, mtype=htype2)
|
||
|
except:
|
||
|
attr.close()
|
||
|
h5a.delete(self._id, name)
|
||
|
raise
|
||
|
attr.close()
|
||
|
|
||
|
def modify(self, name, value):
|
||
|
""" Change the value of an attribute while preserving its type.
|
||
|
|
||
|
Differs from __setitem__ in that if the attribute already exists, its
|
||
|
type is preserved. This can be very useful for interacting with
|
||
|
externally generated files.
|
||
|
|
||
|
If the attribute doesn't exist, it will be automatically created.
|
||
|
"""
|
||
|
with phil:
|
||
|
if not name in self:
|
||
|
self[name] = value
|
||
|
else:
|
||
|
attr = h5a.open(self._id, self._e(name))
|
||
|
|
||
|
if is_empty_dataspace(attr):
|
||
|
raise OSError("Empty attributes can't be modified")
|
||
|
|
||
|
# If the input data is already an array, let HDF5 do the conversion.
|
||
|
# If it's a list or similar, don't make numpy guess a dtype for it.
|
||
|
dt = None if isinstance(value, numpy.ndarray) else attr.dtype
|
||
|
value = numpy.asarray(value, order='C', dtype=dt)
|
||
|
|
||
|
# Allow the case of () <-> (1,)
|
||
|
if (value.shape != attr.shape) and not \
|
||
|
(value.size == 1 and product(attr.shape) == 1):
|
||
|
raise TypeError("Shape of data is incompatible with existing attribute")
|
||
|
attr.write(value)
|
||
|
|
||
|
@with_phil
|
||
|
def __len__(self):
|
||
|
""" Number of attributes attached to the object. """
|
||
|
# I expect we will not have more than 2**32 attributes
|
||
|
return h5a.get_num_attrs(self._id)
|
||
|
|
||
|
def __iter__(self):
|
||
|
""" Iterate over the names of attributes. """
|
||
|
with phil:
|
||
|
|
||
|
attrlist = []
|
||
|
def iter_cb(name, *args):
|
||
|
""" Callback to gather attribute names """
|
||
|
attrlist.append(self._d(name))
|
||
|
|
||
|
cpl = self._id.get_create_plist()
|
||
|
crt_order = cpl.get_attr_creation_order()
|
||
|
cpl.close()
|
||
|
if crt_order & h5p.CRT_ORDER_TRACKED:
|
||
|
idx_type = h5.INDEX_CRT_ORDER
|
||
|
else:
|
||
|
idx_type = h5.INDEX_NAME
|
||
|
|
||
|
h5a.iterate(self._id, iter_cb, index_type=idx_type)
|
||
|
|
||
|
for name in attrlist:
|
||
|
yield name
|
||
|
|
||
|
@with_phil
|
||
|
def __contains__(self, name):
|
||
|
""" Determine if an attribute exists, by name. """
|
||
|
return h5a.exists(self._id, self._e(name))
|
||
|
|
||
|
@with_phil
|
||
|
def __repr__(self):
|
||
|
if not self._id:
|
||
|
return "<Attributes of closed HDF5 object>"
|
||
|
return "<Attributes of HDF5 object at %s>" % id(self._id)
|