3RNN/Lib/site-packages/h5py/tests/test_vds/test_lowlevel_vds.py

297 lines
12 KiB
Python
Raw Normal View History

2024-05-26 19:49:15 +02:00
'''
Unit test for the low level vds interface for eiger
https://support.hdfgroup.org/HDF5/docNewFeatures/VDS/HDF5-VDS-requirements-use-cases-2014-12-10.pdf
'''
from ..common import ut
import numpy as np
import h5py as h5
import tempfile
class TestEigerLowLevel(ut.TestCase):
def setUp(self):
self.working_dir = tempfile.mkdtemp()
self.fname = ['raw_file_1.h5', 'raw_file_2.h5', 'raw_file_3.h5']
k = 0
for outfile in self.fname:
filename = self.working_dir + outfile
f = h5.File(filename, 'w')
f['data'] = np.ones((20, 200, 200))*k
k += 1
f.close()
f = h5.File(self.working_dir+'raw_file_4.h5', 'w')
f['data'] = np.ones((18, 200, 200))*3
self.fname.append('raw_file_4.h5')
self.fname = [self.working_dir+ix for ix in self.fname]
f.close()
def test_eiger_low_level(self):
self.outfile = self.working_dir + 'eiger.h5'
with h5.File(self.outfile, 'w', libver='latest') as f:
vdset_shape = (78, 200, 200)
vdset_max_shape = vdset_shape
virt_dspace = h5.h5s.create_simple(vdset_shape, vdset_max_shape)
dcpl = h5.h5p.create(h5.h5p.DATASET_CREATE)
dcpl.set_fill_value(np.array([-1]))
# Create the source dataset dataspace
k = 0
for foo in self.fname:
in_data = h5.File(foo, 'r')['data']
src_shape = in_data.shape
max_src_shape = src_shape
in_data.file.close()
src_dspace = h5.h5s.create_simple(src_shape, max_src_shape)
# Select the source dataset hyperslab
src_dspace.select_hyperslab(start=(0, 0, 0),
stride=(1, 1, 1),
count=(1, 1, 1),
block=src_shape)
virt_dspace.select_hyperslab(start=(k, 0, 0),
stride=(1, 1, 1),
count=(1, 1, 1),
block=src_shape)
dcpl.set_virtual(virt_dspace, foo.encode('utf-8'),
b'data', src_dspace)
k += src_shape[0]
# Create the virtual dataset
h5.h5d.create(f.id, name=b"data", tid=h5.h5t.NATIVE_INT16,
space=virt_dspace, dcpl=dcpl)
f = h5.File(self.outfile, 'r')['data']
self.assertEqual(f[10, 100, 10], 0.0)
self.assertEqual(f[30, 100, 100], 1.0)
self.assertEqual(f[50, 100, 100], 2.0)
self.assertEqual(f[70, 100, 100], 3.0)
f.file.close()
def tearDown(self):
import os
for f in self.fname:
os.remove(f)
os.remove(self.outfile)
if __name__ == "__main__":
ut.main()
'''
Unit test for the low level vds interface for excalibur
https://support.hdfgroup.org/HDF5/docNewFeatures/VDS/HDF5-VDS-requirements-use-cases-2014-12-10.pdf
'''
class ExcaliburData:
FEM_PIXELS_PER_CHIP_X = 256
FEM_PIXELS_PER_CHIP_Y = 256
FEM_CHIPS_PER_STRIPE_X = 8
FEM_CHIPS_PER_STRIPE_Y = 1
FEM_STRIPES_PER_MODULE = 2
@property
def sensor_module_dimensions(self):
x_pixels = self.FEM_PIXELS_PER_CHIP_X * self.FEM_CHIPS_PER_STRIPE_X
y_pixels = self.FEM_PIXELS_PER_CHIP_Y * self.FEM_CHIPS_PER_STRIPE_Y * self.FEM_STRIPES_PER_MODULE
return y_pixels, x_pixels,
@property
def fem_stripe_dimensions(self):
x_pixels = self.FEM_PIXELS_PER_CHIP_X * self.FEM_CHIPS_PER_STRIPE_X
y_pixels = self.FEM_PIXELS_PER_CHIP_Y * self.FEM_CHIPS_PER_STRIPE_Y
return y_pixels, x_pixels,
def generate_sensor_module_image(self, value, dtype='uint16'):
dset = np.empty(shape=self.sensor_module_dimensions, dtype=dtype)
dset.fill(value)
return dset
def generate_fem_stripe_image(self, value, dtype='uint16'):
dset = np.empty(shape=self.fem_stripe_dimensions, dtype=dtype)
dset.fill(value)
return dset
class TestExcaliburLowLevel(ut.TestCase):
def create_excalibur_fem_stripe_datafile(self, fname, nframes, excalibur_data,scale):
shape = (nframes,) + excalibur_data.fem_stripe_dimensions
max_shape = (nframes,) + excalibur_data.fem_stripe_dimensions
chunk = (1,) + excalibur_data.fem_stripe_dimensions
with h5.File(fname, 'w', libver='latest') as f:
dset = f.create_dataset('data', shape=shape, maxshape=max_shape, chunks=chunk, dtype='uint16')
for data_value_index in np.arange(nframes):
dset[data_value_index] = excalibur_data.generate_fem_stripe_image(data_value_index*scale)
def setUp(self):
self.working_dir = tempfile.mkdtemp()
self.fname = ["stripe_%d.h5" % stripe for stripe in range(1,7)]
self.fname = [self.working_dir+ix for ix in self.fname]
nframes = 5
self.edata = ExcaliburData()
k=0
for raw_file in self.fname:
self.create_excalibur_fem_stripe_datafile(raw_file, nframes, self.edata,k)
k+=1
def test_excalibur_low_level(self):
excalibur_data = self.edata
self.outfile = self.working_dir+'excalibur.h5'
vdset_stripe_shape = (1,) + excalibur_data.fem_stripe_dimensions
vdset_stripe_max_shape = (5, ) + excalibur_data.fem_stripe_dimensions
vdset_shape = (5,
excalibur_data.fem_stripe_dimensions[0] * len(self.fname) + (10 * (len(self.fname)-1)),
excalibur_data.fem_stripe_dimensions[1])
vdset_max_shape = (5,
excalibur_data.fem_stripe_dimensions[0] * len(self.fname) + (10 * (len(self.fname)-1)),
excalibur_data.fem_stripe_dimensions[1])
vdset_y_offset = 0
# Create the virtual dataset file
with h5.File(self.outfile, 'w', libver='latest') as f:
# Create the source dataset dataspace
src_dspace = h5.h5s.create_simple(vdset_stripe_shape, vdset_stripe_max_shape)
# Create the virtual dataset dataspace
virt_dspace = h5.h5s.create_simple(vdset_shape, vdset_max_shape)
# Create the virtual dataset property list
dcpl = h5.h5p.create(h5.h5p.DATASET_CREATE)
dcpl.set_fill_value(np.array([0x01]))
# Select the source dataset hyperslab
src_dspace.select_hyperslab(start=(0, 0, 0), count=(1, 1, 1), block=vdset_stripe_max_shape)
for raw_file in self.fname:
# Select the virtual dataset hyperslab (for the source dataset)
virt_dspace.select_hyperslab(start=(0, vdset_y_offset, 0),
count=(1, 1, 1),
block=vdset_stripe_max_shape)
# Set the virtual dataset hyperslab to point to the real first dataset
dcpl.set_virtual(virt_dspace, raw_file.encode('utf-8'),
b"/data", src_dspace)
vdset_y_offset += vdset_stripe_shape[1] + 10
# Create the virtual dataset
dset = h5.h5d.create(f.id, name=b"data",
tid=h5.h5t.NATIVE_INT16, space=virt_dspace, dcpl=dcpl)
assert(f['data'].fillvalue == 0x01)
f = h5.File(self.outfile,'r')['data']
self.assertEqual(f[3,100,0], 0.0)
self.assertEqual(f[3,260,0], 1.0)
self.assertEqual(f[3,350,0], 3.0)
self.assertEqual(f[3,650,0], 6.0)
self.assertEqual(f[3,900,0], 9.0)
self.assertEqual(f[3,1150,0], 12.0)
self.assertEqual(f[3,1450,0], 15.0)
f.file.close()
def tearDown(self):
import os
for f in self.fname:
os.remove(f)
os.remove(self.outfile)
'''
Unit test for the low level vds interface for percival
https://support.hdfgroup.org/HDF5/docNewFeatures/VDS/HDF5-VDS-requirements-use-cases-2014-12-10.pdf
'''
class TestPercivalLowLevel(ut.TestCase):
def setUp(self):
self.working_dir = tempfile.mkdtemp()
self.fname = ['raw_file_1.h5','raw_file_2.h5','raw_file_3.h5']
k = 0
for outfile in self.fname:
filename = self.working_dir + outfile
f = h5.File(filename,'w')
f['data'] = np.ones((20,200,200))*k
k +=1
f.close()
f = h5.File(self.working_dir+'raw_file_4.h5','w')
f['data'] = np.ones((19,200,200))*3
self.fname.append('raw_file_4.h5')
self.fname = [self.working_dir+ix for ix in self.fname]
f.close()
def test_percival_low_level(self):
self.outfile = self.working_dir + 'percival.h5'
with h5.File(self.outfile, 'w', libver='latest') as f:
vdset_shape = (1,200,200)
num = h5.h5s.UNLIMITED
vdset_max_shape = (num,)+vdset_shape[1:]
virt_dspace = h5.h5s.create_simple(vdset_shape, vdset_max_shape)
dcpl = h5.h5p.create(h5.h5p.DATASET_CREATE)
dcpl.set_fill_value(np.array([-1]))
# Create the source dataset dataspace
k = 0
for foo in self.fname:
in_data = h5.File(foo, 'r')['data']
src_shape = in_data.shape
max_src_shape = (num,)+src_shape[1:]
in_data.file.close()
src_dspace = h5.h5s.create_simple(src_shape, max_src_shape)
# Select the source dataset hyperslab
src_dspace.select_hyperslab(start=(0, 0, 0),
stride=(1,1,1),
count=(num, 1, 1),
block=(1,)+src_shape[1:])
virt_dspace.select_hyperslab(start=(k, 0, 0),
stride=(4,1,1),
count=(num, 1, 1),
block=(1,)+src_shape[1:])
dcpl.set_virtual(virt_dspace, foo.encode('utf-8'), b'data', src_dspace)
k+=1
# Create the virtual dataset
dset = h5.h5d.create(f.id, name=b"data", tid=h5.h5t.NATIVE_INT16, space=virt_dspace, dcpl=dcpl)
f = h5.File(self.outfile,'r')
sh = f['data'].shape
line = f['data'][:8,100,100]
foo = np.array(2*list(range(4)))
f.close()
self.assertEqual(sh,(79,200,200),)
np.testing.assert_array_equal(line,foo)
def tearDown(self):
import os
for f in self.fname:
os.remove(f)
os.remove(self.outfile)
def test_virtual_prefix(tmp_path):
(tmp_path / 'a').mkdir()
(tmp_path / 'b').mkdir()
src_file = h5.File(tmp_path / 'a' / 'src.h5', 'w')
src_file['data'] = np.arange(10)
vds_file = h5.File(tmp_path / 'b' / 'vds.h5', 'w')
layout = h5.VirtualLayout(shape=(10,), dtype=np.int64)
layout[:] = h5.VirtualSource('src.h5', 'data', shape=(10,))
vds_file.create_virtual_dataset('data', layout, fillvalue=-1)
# Path doesn't resolve
np.testing.assert_array_equal(vds_file['data'], np.full(10, fill_value=-1))
path_a = bytes(tmp_path / 'a')
dapl = h5.h5p.create(h5.h5p.DATASET_ACCESS)
dapl.set_virtual_prefix(path_a)
vds_id = h5.h5d.open(vds_file.id, b'data', dapl=dapl)
vds = h5.Dataset(vds_id)
# Now it should find the source file and read the data correctly
np.testing.assert_array_equal(vds[:], np.arange(10))
# Check that get_virtual_prefix gives back what we put in
assert vds.id.get_access_plist().get_virtual_prefix() == path_a