1130 lines
41 KiB
Python
1130 lines
41 KiB
Python
|
"""
|
||
|
Contains the path technology behind opt_einsum in addition to several path helpers
|
||
|
"""
|
||
|
|
||
|
import functools
|
||
|
import heapq
|
||
|
import itertools
|
||
|
import random
|
||
|
from collections import Counter, OrderedDict, defaultdict
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from . import helpers
|
||
|
|
||
|
__all__ = [
|
||
|
"optimal", "BranchBound", "branch", "greedy", "auto", "auto_hq", "get_path_fn", "DynamicProgramming",
|
||
|
"dynamic_programming"
|
||
|
]
|
||
|
|
||
|
_UNLIMITED_MEM = {-1, None, float('inf')}
|
||
|
|
||
|
|
||
|
class PathOptimizer(object):
|
||
|
"""Base class for different path optimizers to inherit from.
|
||
|
|
||
|
Subclassed optimizers should define a call method with signature::
|
||
|
|
||
|
def __call__(self, inputs, output, size_dict, memory_limit=None):
|
||
|
\"\"\"
|
||
|
Parameters
|
||
|
----------
|
||
|
inputs : list[set[str]]
|
||
|
The indices of each input array.
|
||
|
outputs : set[str]
|
||
|
The output indices
|
||
|
size_dict : dict[str, int]
|
||
|
The size of each index
|
||
|
memory_limit : int, optional
|
||
|
If given, the maximum allowed memory.
|
||
|
\"\"\"
|
||
|
# ... compute path here ...
|
||
|
return path
|
||
|
|
||
|
where ``path`` is a list of int-tuples specifiying a contraction order.
|
||
|
"""
|
||
|
|
||
|
def _check_args_against_first_call(self, inputs, output, size_dict):
|
||
|
"""Utility that stateful optimizers can use to ensure they are not
|
||
|
called with different contractions across separate runs.
|
||
|
"""
|
||
|
args = (inputs, output, size_dict)
|
||
|
if not hasattr(self, '_first_call_args'):
|
||
|
# simply set the attribute as currently there is no global PathOptimizer init
|
||
|
self._first_call_args = args
|
||
|
elif args != self._first_call_args:
|
||
|
raise ValueError("The arguments specifiying the contraction that this path optimizer "
|
||
|
"instance was called with have changed - try creating a new instance.")
|
||
|
|
||
|
def __call__(self, inputs, output, size_dict, memory_limit=None):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
def ssa_to_linear(ssa_path):
|
||
|
"""
|
||
|
Convert a path with static single assignment ids to a path with recycled
|
||
|
linear ids. For example::
|
||
|
|
||
|
>>> ssa_to_linear([(0, 3), (2, 4), (1, 5)])
|
||
|
[(0, 3), (1, 2), (0, 1)]
|
||
|
"""
|
||
|
ids = np.arange(1 + max(map(max, ssa_path)), dtype=np.int32)
|
||
|
path = []
|
||
|
for ssa_ids in ssa_path:
|
||
|
path.append(tuple(int(ids[ssa_id]) for ssa_id in ssa_ids))
|
||
|
for ssa_id in ssa_ids:
|
||
|
ids[ssa_id:] -= 1
|
||
|
return path
|
||
|
|
||
|
|
||
|
def linear_to_ssa(path):
|
||
|
"""
|
||
|
Convert a path with recycled linear ids to a path with static single
|
||
|
assignment ids. For example::
|
||
|
|
||
|
>>> linear_to_ssa([(0, 3), (1, 2), (0, 1)])
|
||
|
[(0, 3), (2, 4), (1, 5)]
|
||
|
"""
|
||
|
num_inputs = sum(map(len, path)) - len(path) + 1
|
||
|
linear_to_ssa = list(range(num_inputs))
|
||
|
new_ids = itertools.count(num_inputs)
|
||
|
ssa_path = []
|
||
|
for ids in path:
|
||
|
ssa_path.append(tuple(linear_to_ssa[id_] for id_ in ids))
|
||
|
for id_ in sorted(ids, reverse=True):
|
||
|
del linear_to_ssa[id_]
|
||
|
linear_to_ssa.append(next(new_ids))
|
||
|
return ssa_path
|
||
|
|
||
|
|
||
|
def calc_k12_flops(inputs, output, remaining, i, j, size_dict):
|
||
|
"""
|
||
|
Calculate the resulting indices and flops for a potential pairwise
|
||
|
contraction - used in the recursive (optimal/branch) algorithms.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
inputs : tuple[frozenset[str]]
|
||
|
The indices of each tensor in this contraction, note this includes
|
||
|
tensors unavaiable to contract as static single assignment is used ->
|
||
|
contracted tensors are not removed from the list.
|
||
|
output : frozenset[str]
|
||
|
The set of output indices for the whole contraction.
|
||
|
remaining : frozenset[int]
|
||
|
The set of indices (corresponding to ``inputs``) of tensors still
|
||
|
available to contract.
|
||
|
i : int
|
||
|
Index of potential tensor to contract.
|
||
|
j : int
|
||
|
Index of potential tensor to contract.
|
||
|
size_dict dict[str, int]
|
||
|
Size mapping of all the indices.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
k12 : frozenset
|
||
|
The resulting indices of the potential tensor.
|
||
|
cost : int
|
||
|
Estimated flop count of operation.
|
||
|
"""
|
||
|
k1, k2 = inputs[i], inputs[j]
|
||
|
either = k1 | k2
|
||
|
shared = k1 & k2
|
||
|
keep = frozenset.union(output, *map(inputs.__getitem__, remaining - {i, j}))
|
||
|
|
||
|
k12 = either & keep
|
||
|
cost = helpers.flop_count(either, shared - keep, 2, size_dict)
|
||
|
|
||
|
return k12, cost
|
||
|
|
||
|
|
||
|
def _compute_oversize_flops(inputs, remaining, output, size_dict):
|
||
|
"""
|
||
|
Compute the flop count for a contraction of all remaining arguments. This
|
||
|
is used when a memory limit means that no pairwise contractions can be made.
|
||
|
"""
|
||
|
idx_contraction = frozenset.union(*map(inputs.__getitem__, remaining))
|
||
|
inner = idx_contraction - output
|
||
|
num_terms = len(remaining)
|
||
|
return helpers.flop_count(idx_contraction, inner, num_terms, size_dict)
|
||
|
|
||
|
|
||
|
def optimal(inputs, output, size_dict, memory_limit=None):
|
||
|
"""
|
||
|
Computes all possible pair contractions in a depth-first recursive manner,
|
||
|
sieving results based on ``memory_limit`` and the best path found so far.
|
||
|
Returns the lowest cost path. This algorithm scales factoriallly with
|
||
|
respect to the elements in the list ``input_sets``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
inputs : list
|
||
|
List of sets that represent the lhs side of the einsum subscript.
|
||
|
output : set
|
||
|
Set that represents the rhs side of the overall einsum subscript.
|
||
|
size_dict : dictionary
|
||
|
Dictionary of index sizes.
|
||
|
memory_limit : int
|
||
|
The maximum number of elements in a temporary array.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
path : list
|
||
|
The optimal contraction order within the memory limit constraint.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> isets = [set('abd'), set('ac'), set('bdc')]
|
||
|
>>> oset = set('')
|
||
|
>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
|
||
|
>>> optimal(isets, oset, idx_sizes, 5000)
|
||
|
[(0, 2), (0, 1)]
|
||
|
"""
|
||
|
inputs = tuple(map(frozenset, inputs))
|
||
|
output = frozenset(output)
|
||
|
|
||
|
best = {'flops': float('inf'), 'ssa_path': (tuple(range(len(inputs))), )}
|
||
|
size_cache = {}
|
||
|
result_cache = {}
|
||
|
|
||
|
def _optimal_iterate(path, remaining, inputs, flops):
|
||
|
|
||
|
# reached end of path (only ever get here if flops is best found so far)
|
||
|
if len(remaining) == 1:
|
||
|
best['flops'] = flops
|
||
|
best['ssa_path'] = path
|
||
|
return
|
||
|
|
||
|
# check all possible remaining paths
|
||
|
for i, j in itertools.combinations(remaining, 2):
|
||
|
if i > j:
|
||
|
i, j = j, i
|
||
|
key = (inputs[i], inputs[j])
|
||
|
try:
|
||
|
k12, flops12 = result_cache[key]
|
||
|
except KeyError:
|
||
|
k12, flops12 = result_cache[key] = calc_k12_flops(inputs, output, remaining, i, j, size_dict)
|
||
|
|
||
|
# sieve based on current best flops
|
||
|
new_flops = flops + flops12
|
||
|
if new_flops >= best['flops']:
|
||
|
continue
|
||
|
|
||
|
# sieve based on memory limit
|
||
|
if memory_limit not in _UNLIMITED_MEM:
|
||
|
try:
|
||
|
size12 = size_cache[k12]
|
||
|
except KeyError:
|
||
|
size12 = size_cache[k12] = helpers.compute_size_by_dict(k12, size_dict)
|
||
|
|
||
|
# possibly terminate this path with an all-terms einsum
|
||
|
if size12 > memory_limit:
|
||
|
new_flops = flops + _compute_oversize_flops(inputs, remaining, output, size_dict)
|
||
|
if new_flops < best['flops']:
|
||
|
best['flops'] = new_flops
|
||
|
best['ssa_path'] = path + (tuple(remaining), )
|
||
|
continue
|
||
|
|
||
|
# add contraction and recurse into all remaining
|
||
|
_optimal_iterate(path=path + ((i, j), ),
|
||
|
inputs=inputs + (k12, ),
|
||
|
remaining=remaining - {i, j} | {len(inputs)},
|
||
|
flops=new_flops)
|
||
|
|
||
|
_optimal_iterate(path=(), inputs=inputs, remaining=set(range(len(inputs))), flops=0)
|
||
|
|
||
|
return ssa_to_linear(best['ssa_path'])
|
||
|
|
||
|
|
||
|
# functions for comparing which of two paths is 'better'
|
||
|
|
||
|
|
||
|
def better_flops_first(flops, size, best_flops, best_size):
|
||
|
return (flops, size) < (best_flops, best_size)
|
||
|
|
||
|
|
||
|
def better_size_first(flops, size, best_flops, best_size):
|
||
|
return (size, flops) < (best_size, best_flops)
|
||
|
|
||
|
|
||
|
_BETTER_FNS = {
|
||
|
'flops': better_flops_first,
|
||
|
'size': better_size_first,
|
||
|
}
|
||
|
|
||
|
|
||
|
def get_better_fn(key):
|
||
|
return _BETTER_FNS[key]
|
||
|
|
||
|
|
||
|
# functions for assigning a heuristic 'cost' to a potential contraction
|
||
|
|
||
|
|
||
|
def cost_memory_removed(size12, size1, size2, k12, k1, k2):
|
||
|
"""The default heuristic cost, corresponding to the total reduction in
|
||
|
memory of performing a contraction.
|
||
|
"""
|
||
|
return size12 - size1 - size2
|
||
|
|
||
|
|
||
|
def cost_memory_removed_jitter(size12, size1, size2, k12, k1, k2):
|
||
|
"""Like memory-removed, but with a slight amount of noise that breaks ties
|
||
|
and thus jumbles the contractions a bit.
|
||
|
"""
|
||
|
return random.gauss(1.0, 0.01) * (size12 - size1 - size2)
|
||
|
|
||
|
|
||
|
_COST_FNS = {
|
||
|
'memory-removed': cost_memory_removed,
|
||
|
'memory-removed-jitter': cost_memory_removed_jitter,
|
||
|
}
|
||
|
|
||
|
|
||
|
class BranchBound(PathOptimizer):
|
||
|
"""
|
||
|
Explores possible pair contractions in a depth-first recursive manner like
|
||
|
the ``optimal`` approach, but with extra heuristic early pruning of branches
|
||
|
as well sieving by ``memory_limit`` and the best path found so far. Returns
|
||
|
the lowest cost path. This algorithm still scales factorially with respect
|
||
|
to the elements in the list ``input_sets`` if ``nbranch`` is not set, but it
|
||
|
scales exponentially like ``nbranch**len(input_sets)`` otherwise.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nbranch : None or int, optional
|
||
|
How many branches to explore at each contraction step. If None, explore
|
||
|
all possible branches. If an integer, branch into this many paths at
|
||
|
each step. Defaults to None.
|
||
|
cutoff_flops_factor : float, optional
|
||
|
If at any point, a path is doing this much worse than the best path
|
||
|
found so far was, terminate it. The larger this is made, the more paths
|
||
|
will be fully explored and the slower the algorithm. Defaults to 4.
|
||
|
minimize : {'flops', 'size'}, optional
|
||
|
Whether to optimize the path with regard primarily to the total
|
||
|
estimated flop-count, or the size of the largest intermediate. The
|
||
|
option not chosen will still be used as a secondary criterion.
|
||
|
cost_fn : callable, optional
|
||
|
A function that returns a heuristic 'cost' of a potential contraction
|
||
|
with which to sort candidates. Should have signature
|
||
|
``cost_fn(size12, size1, size2, k12, k1, k2)``.
|
||
|
"""
|
||
|
def __init__(self, nbranch=None, cutoff_flops_factor=4, minimize='flops', cost_fn='memory-removed'):
|
||
|
self.nbranch = nbranch
|
||
|
self.cutoff_flops_factor = cutoff_flops_factor
|
||
|
self.minimize = minimize
|
||
|
self.cost_fn = _COST_FNS.get(cost_fn, cost_fn)
|
||
|
|
||
|
self.better = get_better_fn(minimize)
|
||
|
self.best = {'flops': float('inf'), 'size': float('inf')}
|
||
|
self.best_progress = defaultdict(lambda: float('inf'))
|
||
|
|
||
|
@property
|
||
|
def path(self):
|
||
|
return ssa_to_linear(self.best['ssa_path'])
|
||
|
|
||
|
def __call__(self, inputs, output, size_dict, memory_limit=None):
|
||
|
"""
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input_sets : list
|
||
|
List of sets that represent the lhs side of the einsum subscript
|
||
|
output_set : set
|
||
|
Set that represents the rhs side of the overall einsum subscript
|
||
|
idx_dict : dictionary
|
||
|
Dictionary of index sizes
|
||
|
memory_limit : int
|
||
|
The maximum number of elements in a temporary array
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
path : list
|
||
|
The contraction order within the memory limit constraint.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> isets = [set('abd'), set('ac'), set('bdc')]
|
||
|
>>> oset = set('')
|
||
|
>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
|
||
|
>>> optimal(isets, oset, idx_sizes, 5000)
|
||
|
[(0, 2), (0, 1)]
|
||
|
"""
|
||
|
self._check_args_against_first_call(inputs, output, size_dict)
|
||
|
|
||
|
inputs = tuple(map(frozenset, inputs))
|
||
|
output = frozenset(output)
|
||
|
|
||
|
size_cache = {k: helpers.compute_size_by_dict(k, size_dict) for k in inputs}
|
||
|
result_cache = {}
|
||
|
|
||
|
def _branch_iterate(path, inputs, remaining, flops, size):
|
||
|
|
||
|
# reached end of path (only ever get here if flops is best found so far)
|
||
|
if len(remaining) == 1:
|
||
|
self.best['size'] = size
|
||
|
self.best['flops'] = flops
|
||
|
self.best['ssa_path'] = path
|
||
|
return
|
||
|
|
||
|
def _assess_candidate(k1, k2, i, j):
|
||
|
# find resulting indices and flops
|
||
|
try:
|
||
|
k12, flops12 = result_cache[k1, k2]
|
||
|
except KeyError:
|
||
|
k12, flops12 = result_cache[k1, k2] = calc_k12_flops(inputs, output, remaining, i, j, size_dict)
|
||
|
|
||
|
try:
|
||
|
size12 = size_cache[k12]
|
||
|
except KeyError:
|
||
|
size12 = size_cache[k12] = helpers.compute_size_by_dict(k12, size_dict)
|
||
|
|
||
|
new_flops = flops + flops12
|
||
|
new_size = max(size, size12)
|
||
|
|
||
|
# sieve based on current best i.e. check flops and size still better
|
||
|
if not self.better(new_flops, new_size, self.best['flops'], self.best['size']):
|
||
|
return None
|
||
|
|
||
|
# compare to how the best method was doing as this point
|
||
|
if new_flops < self.best_progress[len(inputs)]:
|
||
|
self.best_progress[len(inputs)] = new_flops
|
||
|
# sieve based on current progress relative to best
|
||
|
elif new_flops > self.cutoff_flops_factor * self.best_progress[len(inputs)]:
|
||
|
return None
|
||
|
|
||
|
# sieve based on memory limit
|
||
|
if (memory_limit not in _UNLIMITED_MEM) and (size12 > memory_limit):
|
||
|
# terminate path here, but check all-terms contract first
|
||
|
new_flops = flops + _compute_oversize_flops(inputs, remaining, output, size_dict)
|
||
|
if new_flops < self.best['flops']:
|
||
|
self.best['flops'] = new_flops
|
||
|
self.best['ssa_path'] = path + (tuple(remaining), )
|
||
|
return None
|
||
|
|
||
|
# set cost heuristic in order to locally sort possible contractions
|
||
|
size1, size2 = size_cache[inputs[i]], size_cache[inputs[j]]
|
||
|
cost = self.cost_fn(size12, size1, size2, k12, k1, k2)
|
||
|
|
||
|
return cost, flops12, new_flops, new_size, (i, j), k12
|
||
|
|
||
|
# check all possible remaining paths
|
||
|
candidates = []
|
||
|
for i, j in itertools.combinations(remaining, 2):
|
||
|
if i > j:
|
||
|
i, j = j, i
|
||
|
k1, k2 = inputs[i], inputs[j]
|
||
|
|
||
|
# initially ignore outer products
|
||
|
if k1.isdisjoint(k2):
|
||
|
continue
|
||
|
|
||
|
candidate = _assess_candidate(k1, k2, i, j)
|
||
|
if candidate:
|
||
|
heapq.heappush(candidates, candidate)
|
||
|
|
||
|
# assess outer products if nothing left
|
||
|
if not candidates:
|
||
|
for i, j in itertools.combinations(remaining, 2):
|
||
|
if i > j:
|
||
|
i, j = j, i
|
||
|
k1, k2 = inputs[i], inputs[j]
|
||
|
candidate = _assess_candidate(k1, k2, i, j)
|
||
|
if candidate:
|
||
|
heapq.heappush(candidates, candidate)
|
||
|
|
||
|
# recurse into all or some of the best candidate contractions
|
||
|
bi = 0
|
||
|
while (self.nbranch is None or bi < self.nbranch) and candidates:
|
||
|
_, _, new_flops, new_size, (i, j), k12 = heapq.heappop(candidates)
|
||
|
_branch_iterate(path=path + ((i, j), ),
|
||
|
inputs=inputs + (k12, ),
|
||
|
remaining=(remaining - {i, j}) | {len(inputs)},
|
||
|
flops=new_flops,
|
||
|
size=new_size)
|
||
|
bi += 1
|
||
|
|
||
|
_branch_iterate(path=(), inputs=inputs, remaining=set(range(len(inputs))), flops=0, size=0)
|
||
|
|
||
|
return self.path
|
||
|
|
||
|
|
||
|
def branch(inputs, output, size_dict, memory_limit=None, **optimizer_kwargs):
|
||
|
optimizer = BranchBound(**optimizer_kwargs)
|
||
|
return optimizer(inputs, output, size_dict, memory_limit)
|
||
|
|
||
|
|
||
|
branch_all = functools.partial(branch, nbranch=None)
|
||
|
branch_2 = functools.partial(branch, nbranch=2)
|
||
|
branch_1 = functools.partial(branch, nbranch=1)
|
||
|
|
||
|
|
||
|
def _get_candidate(output, sizes, remaining, footprints, dim_ref_counts, k1, k2, cost_fn):
|
||
|
either = k1 | k2
|
||
|
two = k1 & k2
|
||
|
one = either - two
|
||
|
k12 = (either & output) | (two & dim_ref_counts[3]) | (one & dim_ref_counts[2])
|
||
|
cost = cost_fn(helpers.compute_size_by_dict(k12, sizes), footprints[k1], footprints[k2], k12, k1, k2)
|
||
|
id1 = remaining[k1]
|
||
|
id2 = remaining[k2]
|
||
|
if id1 > id2:
|
||
|
k1, id1, k2, id2 = k2, id2, k1, id1
|
||
|
cost = cost, id2, id1 # break ties to ensure determinism
|
||
|
return cost, k1, k2, k12
|
||
|
|
||
|
|
||
|
def _push_candidate(output, sizes, remaining, footprints, dim_ref_counts, k1, k2s, queue, push_all, cost_fn):
|
||
|
candidates = (_get_candidate(output, sizes, remaining, footprints, dim_ref_counts, k1, k2, cost_fn) for k2 in k2s)
|
||
|
if push_all:
|
||
|
# want to do this if we e.g. are using a custom 'choose_fn'
|
||
|
for candidate in candidates:
|
||
|
heapq.heappush(queue, candidate)
|
||
|
else:
|
||
|
heapq.heappush(queue, min(candidates))
|
||
|
|
||
|
|
||
|
def _update_ref_counts(dim_to_keys, dim_ref_counts, dims):
|
||
|
for dim in dims:
|
||
|
count = len(dim_to_keys[dim])
|
||
|
if count <= 1:
|
||
|
dim_ref_counts[2].discard(dim)
|
||
|
dim_ref_counts[3].discard(dim)
|
||
|
elif count == 2:
|
||
|
dim_ref_counts[2].add(dim)
|
||
|
dim_ref_counts[3].discard(dim)
|
||
|
else:
|
||
|
dim_ref_counts[2].add(dim)
|
||
|
dim_ref_counts[3].add(dim)
|
||
|
|
||
|
|
||
|
def _simple_chooser(queue, remaining):
|
||
|
"""Default contraction chooser that simply takes the minimum cost option.
|
||
|
"""
|
||
|
cost, k1, k2, k12 = heapq.heappop(queue)
|
||
|
if k1 not in remaining or k2 not in remaining:
|
||
|
return None # candidate is obsolete
|
||
|
return cost, k1, k2, k12
|
||
|
|
||
|
|
||
|
def ssa_greedy_optimize(inputs, output, sizes, choose_fn=None, cost_fn='memory-removed'):
|
||
|
"""
|
||
|
This is the core function for :func:`greedy` but produces a path with
|
||
|
static single assignment ids rather than recycled linear ids.
|
||
|
SSA ids are cheaper to work with and easier to reason about.
|
||
|
"""
|
||
|
if len(inputs) == 1:
|
||
|
# Perform a single contraction to match output shape.
|
||
|
return [(0, )]
|
||
|
|
||
|
# set the function that assigns a heuristic cost to a possible contraction
|
||
|
cost_fn = _COST_FNS.get(cost_fn, cost_fn)
|
||
|
|
||
|
# set the function that chooses which contraction to take
|
||
|
if choose_fn is None:
|
||
|
choose_fn = _simple_chooser
|
||
|
push_all = False
|
||
|
else:
|
||
|
# assume chooser wants access to all possible contractions
|
||
|
push_all = True
|
||
|
|
||
|
# A dim that is common to all tensors might as well be an output dim, since it
|
||
|
# cannot be contracted until the final step. This avoids an expensive all-pairs
|
||
|
# comparison to search for possible contractions at each step, leading to speedup
|
||
|
# in many practical problems where all tensors share a common batch dimension.
|
||
|
inputs = list(map(frozenset, inputs))
|
||
|
output = frozenset(output) | frozenset.intersection(*inputs)
|
||
|
|
||
|
# Deduplicate shapes by eagerly computing Hadamard products.
|
||
|
remaining = {} # key -> ssa_id
|
||
|
ssa_ids = itertools.count(len(inputs))
|
||
|
ssa_path = []
|
||
|
for ssa_id, key in enumerate(inputs):
|
||
|
if key in remaining:
|
||
|
ssa_path.append((remaining[key], ssa_id))
|
||
|
remaining[key] = next(ssa_ids)
|
||
|
else:
|
||
|
remaining[key] = ssa_id
|
||
|
|
||
|
# Keep track of possible contraction dims.
|
||
|
dim_to_keys = defaultdict(set)
|
||
|
for key in remaining:
|
||
|
for dim in key - output:
|
||
|
dim_to_keys[dim].add(key)
|
||
|
|
||
|
# Keep track of the number of tensors using each dim; when the dim is no longer
|
||
|
# used it can be contracted. Since we specialize to binary ops, we only care about
|
||
|
# ref counts of >=2 or >=3.
|
||
|
dim_ref_counts = {
|
||
|
count: set(dim for dim, keys in dim_to_keys.items() if len(keys) >= count) - output
|
||
|
for count in [2, 3]
|
||
|
}
|
||
|
|
||
|
# Compute separable part of the objective function for contractions.
|
||
|
footprints = {key: helpers.compute_size_by_dict(key, sizes) for key in remaining}
|
||
|
|
||
|
# Find initial candidate contractions.
|
||
|
queue = []
|
||
|
for dim, keys in dim_to_keys.items():
|
||
|
keys = sorted(keys, key=remaining.__getitem__)
|
||
|
for i, k1 in enumerate(keys[:-1]):
|
||
|
k2s = keys[1 + i:]
|
||
|
_push_candidate(output, sizes, remaining, footprints, dim_ref_counts, k1, k2s, queue, push_all, cost_fn)
|
||
|
|
||
|
# Greedily contract pairs of tensors.
|
||
|
while queue:
|
||
|
|
||
|
con = choose_fn(queue, remaining)
|
||
|
if con is None:
|
||
|
continue # allow choose_fn to flag all candidates obsolete
|
||
|
cost, k1, k2, k12 = con
|
||
|
|
||
|
ssa_id1 = remaining.pop(k1)
|
||
|
ssa_id2 = remaining.pop(k2)
|
||
|
for dim in k1 - output:
|
||
|
dim_to_keys[dim].remove(k1)
|
||
|
for dim in k2 - output:
|
||
|
dim_to_keys[dim].remove(k2)
|
||
|
ssa_path.append((ssa_id1, ssa_id2))
|
||
|
if k12 in remaining:
|
||
|
ssa_path.append((remaining[k12], next(ssa_ids)))
|
||
|
else:
|
||
|
for dim in k12 - output:
|
||
|
dim_to_keys[dim].add(k12)
|
||
|
remaining[k12] = next(ssa_ids)
|
||
|
_update_ref_counts(dim_to_keys, dim_ref_counts, k1 | k2 - output)
|
||
|
footprints[k12] = helpers.compute_size_by_dict(k12, sizes)
|
||
|
|
||
|
# Find new candidate contractions.
|
||
|
k1 = k12
|
||
|
k2s = set(k2 for dim in k1 for k2 in dim_to_keys[dim])
|
||
|
k2s.discard(k1)
|
||
|
if k2s:
|
||
|
_push_candidate(output, sizes, remaining, footprints, dim_ref_counts, k1, k2s, queue, push_all, cost_fn)
|
||
|
|
||
|
# Greedily compute pairwise outer products.
|
||
|
queue = [(helpers.compute_size_by_dict(key & output, sizes), ssa_id, key) for key, ssa_id in remaining.items()]
|
||
|
heapq.heapify(queue)
|
||
|
_, ssa_id1, k1 = heapq.heappop(queue)
|
||
|
while queue:
|
||
|
_, ssa_id2, k2 = heapq.heappop(queue)
|
||
|
ssa_path.append((min(ssa_id1, ssa_id2), max(ssa_id1, ssa_id2)))
|
||
|
k12 = (k1 | k2) & output
|
||
|
cost = helpers.compute_size_by_dict(k12, sizes)
|
||
|
ssa_id12 = next(ssa_ids)
|
||
|
_, ssa_id1, k1 = heapq.heappushpop(queue, (cost, ssa_id12, k12))
|
||
|
|
||
|
return ssa_path
|
||
|
|
||
|
|
||
|
def greedy(inputs, output, size_dict, memory_limit=None, choose_fn=None, cost_fn='memory-removed'):
|
||
|
"""
|
||
|
Finds the path by a three stage algorithm:
|
||
|
|
||
|
1. Eagerly compute Hadamard products.
|
||
|
2. Greedily compute contractions to maximize ``removed_size``
|
||
|
3. Greedily compute outer products.
|
||
|
|
||
|
This algorithm scales quadratically with respect to the
|
||
|
maximum number of elements sharing a common dim.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
inputs : list
|
||
|
List of sets that represent the lhs side of the einsum subscript
|
||
|
output : set
|
||
|
Set that represents the rhs side of the overall einsum subscript
|
||
|
size_dict : dictionary
|
||
|
Dictionary of index sizes
|
||
|
memory_limit : int
|
||
|
The maximum number of elements in a temporary array
|
||
|
choose_fn : callable, optional
|
||
|
A function that chooses which contraction to perform from the queu
|
||
|
cost_fn : callable, optional
|
||
|
A function that assigns a potential contraction a cost.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
path : list
|
||
|
The contraction order (a list of tuples of ints).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> isets = [set('abd'), set('ac'), set('bdc')]
|
||
|
>>> oset = set('')
|
||
|
>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
|
||
|
>>> greedy(isets, oset, idx_sizes)
|
||
|
[(0, 2), (0, 1)]
|
||
|
"""
|
||
|
if memory_limit not in _UNLIMITED_MEM:
|
||
|
return branch(inputs, output, size_dict, memory_limit, nbranch=1, cost_fn=cost_fn)
|
||
|
|
||
|
ssa_path = ssa_greedy_optimize(inputs, output, size_dict, cost_fn=cost_fn, choose_fn=choose_fn)
|
||
|
return ssa_to_linear(ssa_path)
|
||
|
|
||
|
|
||
|
def _tree_to_sequence(c):
|
||
|
"""
|
||
|
Converts a contraction tree to a contraction path as it has to be
|
||
|
returned by path optimizers. A contraction tree can either be an int
|
||
|
(=no contraction) or a tuple containing the terms to be contracted. An
|
||
|
arbitrary number (>= 1) of terms can be contracted at once. Note that
|
||
|
contractions are commutative, e.g. (j, k, l) = (k, l, j). Note that in
|
||
|
general, solutions are not unique.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
c : tuple or int
|
||
|
Contraction tree
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
path : list[set[int]]
|
||
|
Contraction path
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> _tree_to_sequence(((1,2),(0,(4,5,3))))
|
||
|
[(1, 2), (1, 2, 3), (0, 2), (0, 1)]
|
||
|
"""
|
||
|
|
||
|
# ((1,2),(0,(4,5,3))) --> [(1, 2), (1, 2, 3), (0, 2), (0, 1)]
|
||
|
#
|
||
|
# 0 0 0 (1,2) --> ((1,2),(0,(3,4,5)))
|
||
|
# 1 3 (1,2) --> (0,(3,4,5))
|
||
|
# 2 --> 4 --> (3,4,5)
|
||
|
# 3 5
|
||
|
# 4 (1,2)
|
||
|
# 5
|
||
|
#
|
||
|
# this function iterates through the table shown above from right to left;
|
||
|
|
||
|
if type(c) == int:
|
||
|
return []
|
||
|
|
||
|
c = [c] # list of remaining contractions (lower part of columns shown above)
|
||
|
t = [] # list of elementary tensors (upper part of colums)
|
||
|
s = [] # resulting contraction sequence
|
||
|
|
||
|
while len(c) > 0:
|
||
|
j = c.pop(-1)
|
||
|
s.insert(0, tuple())
|
||
|
|
||
|
for i in sorted([i for i in j if type(i) == int]):
|
||
|
s[0] += (sum(1 for q in t if q < i), )
|
||
|
t.insert(s[0][-1], i)
|
||
|
|
||
|
for i in [i for i in j if type(i) != int]:
|
||
|
s[0] += (len(t) + len(c), )
|
||
|
c.append(i)
|
||
|
|
||
|
return s
|
||
|
|
||
|
|
||
|
def _find_disconnected_subgraphs(inputs, output):
|
||
|
"""
|
||
|
Finds disconnected subgraphs in the given list of inputs. Inputs are
|
||
|
connected if they share summation indices. Note: Disconnected subgraphs
|
||
|
can be contracted independently before forming outer products.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
inputs : list[set]
|
||
|
List of sets that represent the lhs side of the einsum subscript
|
||
|
output : set
|
||
|
Set that represents the rhs side of the overall einsum subscript
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
subgraphs : list[set[int]]
|
||
|
List containing sets of indices for each subgraph
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> _find_disconnected_subgraphs([set("ab"), set("c"), set("ad")], set("bd"))
|
||
|
[{0, 2}, {1}]
|
||
|
|
||
|
>>> _find_disconnected_subgraphs([set("ab"), set("c"), set("ad")], set("abd"))
|
||
|
[{0}, {1}, {2}]
|
||
|
"""
|
||
|
|
||
|
subgraphs = []
|
||
|
unused_inputs = set(range(len(inputs)))
|
||
|
|
||
|
i_sum = set.union(*inputs) - output # all summation indices
|
||
|
|
||
|
while len(unused_inputs) > 0:
|
||
|
g = set()
|
||
|
q = [unused_inputs.pop()]
|
||
|
while len(q) > 0:
|
||
|
j = q.pop()
|
||
|
g.add(j)
|
||
|
i_tmp = i_sum & inputs[j]
|
||
|
n = {k for k in unused_inputs if len(i_tmp & inputs[k]) > 0}
|
||
|
q.extend(n)
|
||
|
unused_inputs.difference_update(n)
|
||
|
|
||
|
subgraphs.append(g)
|
||
|
|
||
|
return subgraphs
|
||
|
|
||
|
|
||
|
def _bitmap_select(s, seq):
|
||
|
"""Select elements of ``seq`` which are marked by the bitmap set ``s``.
|
||
|
|
||
|
E.g.:
|
||
|
|
||
|
>>> list(_bitmap_select(0b11010, ['A', 'B', 'C', 'D', 'E']))
|
||
|
['B', 'D', 'E']
|
||
|
"""
|
||
|
return (x for x, b in zip(seq, bin(s)[:1:-1]) if b == '1')
|
||
|
|
||
|
|
||
|
def _dp_calc_legs(g, all_tensors, s, inputs, i1_cut_i2_wo_output, i1_union_i2):
|
||
|
"""Calculates the effective outer indices of the intermediate tensor
|
||
|
corresponding to the subgraph ``s``.
|
||
|
"""
|
||
|
# set of remaining tensors (=g-s)
|
||
|
r = g & (all_tensors ^ s)
|
||
|
# indices of remaining indices:
|
||
|
if r:
|
||
|
i_r = set.union(*_bitmap_select(r, inputs))
|
||
|
else:
|
||
|
i_r = set()
|
||
|
# contraction indices:
|
||
|
i_contract = i1_cut_i2_wo_output - i_r
|
||
|
return i1_union_i2 - i_contract
|
||
|
|
||
|
|
||
|
def _dp_compare_flops(cost1, cost2, i1_union_i2, size_dict, cost_cap, s1, s2, xn, g, all_tensors, inputs,
|
||
|
i1_cut_i2_wo_output, memory_limit, cntrct1, cntrct2):
|
||
|
"""Performs the inner comparison of whether the two subgraphs (the bitmaps
|
||
|
``s1`` and ``s2``) should be merged and added to the dynamic programming
|
||
|
search. Will skip for a number of reasons:
|
||
|
|
||
|
1. If the number of operations to form ``s = s1 | s2`` including previous
|
||
|
contractions is above the cost-cap.
|
||
|
2. If we've already found a better way of making ``s``.
|
||
|
3. If the intermediate tensor corresponding to ``s`` is going to break the
|
||
|
memory limit.
|
||
|
"""
|
||
|
cost = cost1 + cost2 + helpers.compute_size_by_dict(i1_union_i2, size_dict)
|
||
|
if cost <= cost_cap:
|
||
|
s = s1 | s2
|
||
|
if s not in xn or cost < xn[s][1]:
|
||
|
i = _dp_calc_legs(g, all_tensors, s, inputs, i1_cut_i2_wo_output, i1_union_i2)
|
||
|
mem = helpers.compute_size_by_dict(i, size_dict)
|
||
|
if memory_limit is None or mem <= memory_limit:
|
||
|
xn[s] = (i, cost, (cntrct1, cntrct2))
|
||
|
|
||
|
|
||
|
def _dp_compare_size(cost1, cost2, i1_union_i2, size_dict, cost_cap, s1, s2, xn, g, all_tensors, inputs,
|
||
|
i1_cut_i2_wo_output, memory_limit, cntrct1, cntrct2):
|
||
|
"""Like ``_dp_compare_flops`` but sieves the potential contraction based
|
||
|
on the size of the intermediate tensor created, rather than the number of
|
||
|
operations, and so calculates that first.
|
||
|
"""
|
||
|
s = s1 | s2
|
||
|
i = _dp_calc_legs(g, all_tensors, s, inputs, i1_cut_i2_wo_output, i1_union_i2)
|
||
|
mem = helpers.compute_size_by_dict(i, size_dict)
|
||
|
cost = max(cost1, cost2, mem)
|
||
|
if cost <= cost_cap:
|
||
|
if s not in xn or cost < xn[s][1]:
|
||
|
if memory_limit is None or mem <= memory_limit:
|
||
|
xn[s] = (i, cost, (cntrct1, cntrct2))
|
||
|
|
||
|
|
||
|
def simple_tree_tuple(seq):
|
||
|
"""Make a simple left to right binary tree out of iterable ``seq``.
|
||
|
|
||
|
>>> tuple_nest([1, 2, 3, 4])
|
||
|
(((1, 2), 3), 4)
|
||
|
|
||
|
"""
|
||
|
return functools.reduce(lambda x, y: (x, y), seq)
|
||
|
|
||
|
|
||
|
def _dp_parse_out_single_term_ops(inputs, all_inds, ind_counts):
|
||
|
"""Take ``inputs`` and parse for single term index operations, i.e. where
|
||
|
an index appears on one tensor and nowhere else.
|
||
|
|
||
|
If a term is completely reduced to a scalar in this way it can be removed
|
||
|
to ``inputs_done``. If only some indices can be summed then add a 'single
|
||
|
term contraction' that will perform this summation.
|
||
|
"""
|
||
|
i_single = {i for i, c in enumerate(all_inds) if ind_counts[c] == 1}
|
||
|
inputs_parsed, inputs_done, inputs_contractions = [], [], []
|
||
|
for j, i in enumerate(inputs):
|
||
|
i_reduced = i - i_single
|
||
|
if not i_reduced:
|
||
|
# input reduced to scalar already - remove
|
||
|
inputs_done.append((j, ))
|
||
|
else:
|
||
|
# if the input has any index reductions, add single contraction
|
||
|
inputs_parsed.append(i_reduced)
|
||
|
inputs_contractions.append((j, ) if i_reduced != i else j)
|
||
|
|
||
|
return inputs_parsed, inputs_done, inputs_contractions
|
||
|
|
||
|
|
||
|
class DynamicProgramming(PathOptimizer):
|
||
|
"""
|
||
|
Finds the optimal path of pairwise contractions without intermediate outer
|
||
|
products based a dynamic programming approach presented in
|
||
|
Phys. Rev. E 90, 033315 (2014) (the corresponding preprint is publically
|
||
|
available at https://arxiv.org/abs/1304.6112). This method is especially
|
||
|
well-suited in the area of tensor network states, where it usually
|
||
|
outperforms all the other optimization strategies.
|
||
|
|
||
|
This algorithm shows exponential scaling with the number of inputs
|
||
|
in the worst case scenario (see example below). If the graph to be
|
||
|
contracted consists of disconnected subgraphs, the algorithm scales
|
||
|
linearly in the number of disconnected subgraphs and only exponentially
|
||
|
with the number of inputs per subgraph.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
minimize : {'flops', 'size'}, optional
|
||
|
Whether to find the contraction that minimizes the number of
|
||
|
operations or the size of the largest intermediate tensor.
|
||
|
cost_cap : {True, False, int}, optional
|
||
|
How to implement cost-capping:
|
||
|
|
||
|
* True - iteratively increase the cost-cap
|
||
|
* False - implement no cost-cap at all
|
||
|
* int - use explicit cost cap
|
||
|
|
||
|
search_outer : bool, optional
|
||
|
In rare circumstances the optimal contraction may involve an outer
|
||
|
product, this option allows searching such contractions but may well
|
||
|
slow down the path finding considerably on all but very small graphs.
|
||
|
"""
|
||
|
def __init__(self, minimize='flops', cost_cap=True, search_outer=False):
|
||
|
|
||
|
# set whether inner function minimizes against flops or size
|
||
|
self.minimize = minimize
|
||
|
self._check_contraction = {
|
||
|
'flops': _dp_compare_flops,
|
||
|
'size': _dp_compare_size,
|
||
|
}[self.minimize]
|
||
|
|
||
|
# set whether inner function considers outer products
|
||
|
self.search_outer = search_outer
|
||
|
self._check_outer = {
|
||
|
False: lambda x: x,
|
||
|
True: lambda x: True,
|
||
|
}[self.search_outer]
|
||
|
|
||
|
self.cost_cap = cost_cap
|
||
|
|
||
|
def __call__(self, inputs, output, size_dict, memory_limit=None):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
inputs : list
|
||
|
List of sets that represent the lhs side of the einsum subscript
|
||
|
output : set
|
||
|
Set that represents the rhs side of the overall einsum subscript
|
||
|
size_dict : dictionary
|
||
|
Dictionary of index sizes
|
||
|
memory_limit : int
|
||
|
The maximum number of elements in a temporary array
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
path : list
|
||
|
The contraction order (a list of tuples of ints).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> n_in = 3 # exponential scaling
|
||
|
>>> n_out = 2 # linear scaling
|
||
|
>>> s = dict()
|
||
|
>>> i_all = []
|
||
|
>>> for _ in range(n_out):
|
||
|
>>> i = [set() for _ in range(n_in)]
|
||
|
>>> for j in range(n_in):
|
||
|
>>> for k in range(j+1, n_in):
|
||
|
>>> c = oe.get_symbol(len(s))
|
||
|
>>> i[j].add(c)
|
||
|
>>> i[k].add(c)
|
||
|
>>> s[c] = 2
|
||
|
>>> i_all.extend(i)
|
||
|
>>> o = DynamicProgramming()
|
||
|
>>> o(i_all, set(), s)
|
||
|
[(1, 2), (0, 4), (1, 2), (0, 2), (0, 1)]
|
||
|
"""
|
||
|
ind_counts = Counter(itertools.chain(*inputs, output))
|
||
|
all_inds = tuple(ind_counts)
|
||
|
|
||
|
# convert all indices to integers (makes set operations ~10 % faster)
|
||
|
symbol2int = {c: j for j, c in enumerate(all_inds)}
|
||
|
inputs = [set(symbol2int[c] for c in i) for i in inputs]
|
||
|
output = set(symbol2int[c] for c in output)
|
||
|
size_dict = {symbol2int[c]: v for c, v in size_dict.items() if c in symbol2int}
|
||
|
size_dict = [size_dict[j] for j in range(len(size_dict))]
|
||
|
|
||
|
inputs, inputs_done, inputs_contractions = _dp_parse_out_single_term_ops(inputs, all_inds, ind_counts)
|
||
|
|
||
|
if not inputs:
|
||
|
# nothing left to do after single axis reductions!
|
||
|
return _tree_to_sequence(simple_tree_tuple(inputs_done))
|
||
|
|
||
|
# a list of all neccessary contraction expressions for each of the
|
||
|
# disconnected subgraphs and their size
|
||
|
subgraph_contractions = inputs_done
|
||
|
subgraph_contractions_size = [1] * len(inputs_done)
|
||
|
|
||
|
if self.search_outer:
|
||
|
# optimize everything together if we are considering outer products
|
||
|
subgraphs = [set(range(len(inputs)))]
|
||
|
else:
|
||
|
subgraphs = _find_disconnected_subgraphs(inputs, output)
|
||
|
|
||
|
# the bitmap set of all tensors is computed as it is needed to
|
||
|
# compute set differences: s1 - s2 transforms into
|
||
|
# s1 & (all_tensors ^ s2)
|
||
|
all_tensors = (1 << len(inputs)) - 1
|
||
|
|
||
|
for g in subgraphs:
|
||
|
|
||
|
# dynamic programming approach to compute x[n] for subgraph g;
|
||
|
# x[n][set of n tensors] = (indices, cost, contraction)
|
||
|
# the set of n tensors is represented by a bitmap: if bit j is 1,
|
||
|
# tensor j is in the set, e.g. 0b100101 = {0,2,5}; set unions
|
||
|
# (intersections) can then be computed by bitwise or (and);
|
||
|
x = [None] * 2 + [dict() for j in range(len(g) - 1)]
|
||
|
x[1] = OrderedDict((1 << j, (inputs[j], 0, inputs_contractions[j])) for j in g)
|
||
|
|
||
|
# convert set of tensors g to a bitmap set:
|
||
|
g = functools.reduce(lambda x, y: x | y, (1 << j for j in g))
|
||
|
|
||
|
# try to find contraction with cost <= cost_cap and increase
|
||
|
# cost_cap successively if no such contraction is found;
|
||
|
# this is a major performance improvement; start with product of
|
||
|
# output index dimensions as initial cost_cap
|
||
|
subgraph_inds = set.union(*_bitmap_select(g, inputs))
|
||
|
if self.cost_cap is True:
|
||
|
cost_cap = helpers.compute_size_by_dict(subgraph_inds & output, size_dict)
|
||
|
elif self.cost_cap is False:
|
||
|
cost_cap = float('inf')
|
||
|
else:
|
||
|
cost_cap = self.cost_cap
|
||
|
# set the factor to increase the cost by each iteration (ensure > 1)
|
||
|
cost_increment = max(min(map(size_dict.__getitem__, subgraph_inds)), 2)
|
||
|
|
||
|
while len(x[-1]) == 0:
|
||
|
for n in range(2, len(x[1]) + 1):
|
||
|
xn = x[n]
|
||
|
|
||
|
# try to combine solutions from x[m] and x[n-m]
|
||
|
for m in range(1, n // 2 + 1):
|
||
|
for s1, (i1, cost1, cntrct1) in x[m].items():
|
||
|
for s2, (i2, cost2, cntrct2) in x[n - m].items():
|
||
|
|
||
|
# can only merge if s1 and s2 are disjoint
|
||
|
# and avoid e.g. s1={0}, s2={1} and s1={1}, s2={0}
|
||
|
if (not s1 & s2) and (m != n - m or s1 < s2):
|
||
|
i1_cut_i2_wo_output = (i1 & i2) - output
|
||
|
|
||
|
# maybe ignore outer products:
|
||
|
if self._check_outer(i1_cut_i2_wo_output):
|
||
|
|
||
|
i1_union_i2 = i1 | i2
|
||
|
self._check_contraction(cost1, cost2, i1_union_i2, size_dict, cost_cap, s1, s2,
|
||
|
xn, g, all_tensors, inputs, i1_cut_i2_wo_output,
|
||
|
memory_limit, cntrct1, cntrct2)
|
||
|
|
||
|
# increase cost cap for next iteration:
|
||
|
cost_cap = cost_increment * cost_cap
|
||
|
|
||
|
i, cost, contraction = list(x[-1].values())[0]
|
||
|
subgraph_contractions.append(contraction)
|
||
|
subgraph_contractions_size.append(helpers.compute_size_by_dict(i, size_dict))
|
||
|
|
||
|
# sort the subgraph contractions by the size of the subgraphs in
|
||
|
# ascending order (will give the cheapest contractions); note that
|
||
|
# outer products should be performed pairwise (to use BLAS functions)
|
||
|
subgraph_contractions = [
|
||
|
subgraph_contractions[j]
|
||
|
for j in sorted(range(len(subgraph_contractions_size)), key=subgraph_contractions_size.__getitem__)
|
||
|
]
|
||
|
|
||
|
# build the final contraction tree
|
||
|
tree = simple_tree_tuple(subgraph_contractions)
|
||
|
return _tree_to_sequence(tree)
|
||
|
|
||
|
|
||
|
def dynamic_programming(inputs, output, size_dict, memory_limit=None, **kwargs):
|
||
|
optimizer = DynamicProgramming(**kwargs)
|
||
|
return optimizer(inputs, output, size_dict, memory_limit)
|
||
|
|
||
|
|
||
|
_AUTO_CHOICES = {}
|
||
|
for i in range(1, 5):
|
||
|
_AUTO_CHOICES[i] = optimal
|
||
|
for i in range(5, 7):
|
||
|
_AUTO_CHOICES[i] = branch_all
|
||
|
for i in range(7, 9):
|
||
|
_AUTO_CHOICES[i] = branch_2
|
||
|
for i in range(9, 15):
|
||
|
_AUTO_CHOICES[i] = branch_1
|
||
|
|
||
|
|
||
|
def auto(inputs, output, size_dict, memory_limit=None):
|
||
|
"""Finds the contraction path by automatically choosing the method based on
|
||
|
how many input arguments there are.
|
||
|
"""
|
||
|
N = len(inputs)
|
||
|
return _AUTO_CHOICES.get(N, greedy)(inputs, output, size_dict, memory_limit)
|
||
|
|
||
|
|
||
|
_AUTO_HQ_CHOICES = {}
|
||
|
for i in range(1, 6):
|
||
|
_AUTO_HQ_CHOICES[i] = optimal
|
||
|
for i in range(6, 17):
|
||
|
_AUTO_HQ_CHOICES[i] = dynamic_programming
|
||
|
|
||
|
|
||
|
def auto_hq(inputs, output, size_dict, memory_limit=None):
|
||
|
"""Finds the contraction path by automatically choosing the method based on
|
||
|
how many input arguments there are, but targeting a more generous
|
||
|
amount of search time than ``'auto'``.
|
||
|
"""
|
||
|
from .path_random import random_greedy_128
|
||
|
|
||
|
N = len(inputs)
|
||
|
return _AUTO_HQ_CHOICES.get(N, random_greedy_128)(inputs, output, size_dict, memory_limit)
|
||
|
|
||
|
|
||
|
_PATH_OPTIONS = {
|
||
|
'auto': auto,
|
||
|
'auto-hq': auto_hq,
|
||
|
'optimal': optimal,
|
||
|
'branch-all': branch_all,
|
||
|
'branch-2': branch_2,
|
||
|
'branch-1': branch_1,
|
||
|
'greedy': greedy,
|
||
|
'eager': greedy,
|
||
|
'opportunistic': greedy,
|
||
|
'dp': dynamic_programming,
|
||
|
'dynamic-programming': dynamic_programming
|
||
|
}
|
||
|
|
||
|
|
||
|
def register_path_fn(name, fn):
|
||
|
"""Add path finding function ``fn`` as an option with ``name``.
|
||
|
"""
|
||
|
if name in _PATH_OPTIONS:
|
||
|
raise KeyError("Path optimizer '{}' already exists.".format(name))
|
||
|
|
||
|
_PATH_OPTIONS[name.lower()] = fn
|
||
|
|
||
|
|
||
|
def get_path_fn(path_type):
|
||
|
"""Get the correct path finding function from str ``path_type``.
|
||
|
"""
|
||
|
if path_type not in _PATH_OPTIONS:
|
||
|
raise KeyError("Path optimizer '{}' not found, valid options are {}.".format(
|
||
|
path_type, set(_PATH_OPTIONS.keys())))
|
||
|
|
||
|
return _PATH_OPTIONS[path_type]
|