599 lines
19 KiB
Python
599 lines
19 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from typing import (
|
||
|
TYPE_CHECKING,
|
||
|
cast,
|
||
|
)
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas._libs import (
|
||
|
NaT,
|
||
|
algos as libalgos,
|
||
|
internals as libinternals,
|
||
|
lib,
|
||
|
)
|
||
|
from pandas._libs.missing import NA
|
||
|
from pandas.util._decorators import cache_readonly
|
||
|
from pandas.util._exceptions import find_stack_level
|
||
|
|
||
|
from pandas.core.dtypes.cast import (
|
||
|
ensure_dtype_can_hold_na,
|
||
|
find_common_type,
|
||
|
)
|
||
|
from pandas.core.dtypes.common import (
|
||
|
is_1d_only_ea_dtype,
|
||
|
is_scalar,
|
||
|
needs_i8_conversion,
|
||
|
)
|
||
|
from pandas.core.dtypes.concat import concat_compat
|
||
|
from pandas.core.dtypes.dtypes import (
|
||
|
ExtensionDtype,
|
||
|
SparseDtype,
|
||
|
)
|
||
|
from pandas.core.dtypes.missing import (
|
||
|
is_valid_na_for_dtype,
|
||
|
isna,
|
||
|
isna_all,
|
||
|
)
|
||
|
|
||
|
from pandas.core.construction import ensure_wrapped_if_datetimelike
|
||
|
from pandas.core.internals.array_manager import ArrayManager
|
||
|
from pandas.core.internals.blocks import (
|
||
|
ensure_block_shape,
|
||
|
new_block_2d,
|
||
|
)
|
||
|
from pandas.core.internals.managers import (
|
||
|
BlockManager,
|
||
|
make_na_array,
|
||
|
)
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from collections.abc import Sequence
|
||
|
|
||
|
from pandas._typing import (
|
||
|
ArrayLike,
|
||
|
AxisInt,
|
||
|
DtypeObj,
|
||
|
Manager2D,
|
||
|
Shape,
|
||
|
)
|
||
|
|
||
|
from pandas import Index
|
||
|
from pandas.core.internals.blocks import (
|
||
|
Block,
|
||
|
BlockPlacement,
|
||
|
)
|
||
|
|
||
|
|
||
|
def _concatenate_array_managers(
|
||
|
mgrs: list[ArrayManager], axes: list[Index], concat_axis: AxisInt
|
||
|
) -> Manager2D:
|
||
|
"""
|
||
|
Concatenate array managers into one.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mgrs_indexers : list of (ArrayManager, {axis: indexer,...}) tuples
|
||
|
axes : list of Index
|
||
|
concat_axis : int
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ArrayManager
|
||
|
"""
|
||
|
if concat_axis == 1:
|
||
|
return mgrs[0].concat_vertical(mgrs, axes)
|
||
|
else:
|
||
|
# concatting along the columns -> combine reindexed arrays in a single manager
|
||
|
assert concat_axis == 0
|
||
|
return mgrs[0].concat_horizontal(mgrs, axes)
|
||
|
|
||
|
|
||
|
def concatenate_managers(
|
||
|
mgrs_indexers, axes: list[Index], concat_axis: AxisInt, copy: bool
|
||
|
) -> Manager2D:
|
||
|
"""
|
||
|
Concatenate block managers into one.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mgrs_indexers : list of (BlockManager, {axis: indexer,...}) tuples
|
||
|
axes : list of Index
|
||
|
concat_axis : int
|
||
|
copy : bool
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
BlockManager
|
||
|
"""
|
||
|
|
||
|
needs_copy = copy and concat_axis == 0
|
||
|
|
||
|
# TODO(ArrayManager) this assumes that all managers are of the same type
|
||
|
if isinstance(mgrs_indexers[0][0], ArrayManager):
|
||
|
mgrs = _maybe_reindex_columns_na_proxy(axes, mgrs_indexers, needs_copy)
|
||
|
# error: Argument 1 to "_concatenate_array_managers" has incompatible
|
||
|
# type "List[BlockManager]"; expected "List[Union[ArrayManager,
|
||
|
# SingleArrayManager, BlockManager, SingleBlockManager]]"
|
||
|
return _concatenate_array_managers(
|
||
|
mgrs, axes, concat_axis # type: ignore[arg-type]
|
||
|
)
|
||
|
|
||
|
# Assertions disabled for performance
|
||
|
# for tup in mgrs_indexers:
|
||
|
# # caller is responsible for ensuring this
|
||
|
# indexers = tup[1]
|
||
|
# assert concat_axis not in indexers
|
||
|
|
||
|
if concat_axis == 0:
|
||
|
mgrs = _maybe_reindex_columns_na_proxy(axes, mgrs_indexers, needs_copy)
|
||
|
return mgrs[0].concat_horizontal(mgrs, axes)
|
||
|
|
||
|
if len(mgrs_indexers) > 0 and mgrs_indexers[0][0].nblocks > 0:
|
||
|
first_dtype = mgrs_indexers[0][0].blocks[0].dtype
|
||
|
if first_dtype in [np.float64, np.float32]:
|
||
|
# TODO: support more dtypes here. This will be simpler once
|
||
|
# JoinUnit.is_na behavior is deprecated.
|
||
|
if (
|
||
|
all(_is_homogeneous_mgr(mgr, first_dtype) for mgr, _ in mgrs_indexers)
|
||
|
and len(mgrs_indexers) > 1
|
||
|
):
|
||
|
# Fastpath!
|
||
|
# Length restriction is just to avoid having to worry about 'copy'
|
||
|
shape = tuple(len(x) for x in axes)
|
||
|
nb = _concat_homogeneous_fastpath(mgrs_indexers, shape, first_dtype)
|
||
|
return BlockManager((nb,), axes)
|
||
|
|
||
|
mgrs = _maybe_reindex_columns_na_proxy(axes, mgrs_indexers, needs_copy)
|
||
|
|
||
|
if len(mgrs) == 1:
|
||
|
mgr = mgrs[0]
|
||
|
out = mgr.copy(deep=False)
|
||
|
out.axes = axes
|
||
|
return out
|
||
|
|
||
|
concat_plan = _get_combined_plan(mgrs)
|
||
|
|
||
|
blocks = []
|
||
|
values: ArrayLike
|
||
|
|
||
|
for placement, join_units in concat_plan:
|
||
|
unit = join_units[0]
|
||
|
blk = unit.block
|
||
|
|
||
|
if _is_uniform_join_units(join_units):
|
||
|
vals = [ju.block.values for ju in join_units]
|
||
|
|
||
|
if not blk.is_extension:
|
||
|
# _is_uniform_join_units ensures a single dtype, so
|
||
|
# we can use np.concatenate, which is more performant
|
||
|
# than concat_compat
|
||
|
# error: Argument 1 to "concatenate" has incompatible type
|
||
|
# "List[Union[ndarray[Any, Any], ExtensionArray]]";
|
||
|
# expected "Union[_SupportsArray[dtype[Any]],
|
||
|
# _NestedSequence[_SupportsArray[dtype[Any]]]]"
|
||
|
values = np.concatenate(vals, axis=1) # type: ignore[arg-type]
|
||
|
elif is_1d_only_ea_dtype(blk.dtype):
|
||
|
# TODO(EA2D): special-casing not needed with 2D EAs
|
||
|
values = concat_compat(vals, axis=0, ea_compat_axis=True)
|
||
|
values = ensure_block_shape(values, ndim=2)
|
||
|
else:
|
||
|
values = concat_compat(vals, axis=1)
|
||
|
|
||
|
values = ensure_wrapped_if_datetimelike(values)
|
||
|
|
||
|
fastpath = blk.values.dtype == values.dtype
|
||
|
else:
|
||
|
values = _concatenate_join_units(join_units, copy=copy)
|
||
|
fastpath = False
|
||
|
|
||
|
if fastpath:
|
||
|
b = blk.make_block_same_class(values, placement=placement)
|
||
|
else:
|
||
|
b = new_block_2d(values, placement=placement)
|
||
|
|
||
|
blocks.append(b)
|
||
|
|
||
|
return BlockManager(tuple(blocks), axes)
|
||
|
|
||
|
|
||
|
def _maybe_reindex_columns_na_proxy(
|
||
|
axes: list[Index],
|
||
|
mgrs_indexers: list[tuple[BlockManager, dict[int, np.ndarray]]],
|
||
|
needs_copy: bool,
|
||
|
) -> list[BlockManager]:
|
||
|
"""
|
||
|
Reindex along columns so that all of the BlockManagers being concatenated
|
||
|
have matching columns.
|
||
|
|
||
|
Columns added in this reindexing have dtype=np.void, indicating they
|
||
|
should be ignored when choosing a column's final dtype.
|
||
|
"""
|
||
|
new_mgrs = []
|
||
|
|
||
|
for mgr, indexers in mgrs_indexers:
|
||
|
# For axis=0 (i.e. columns) we use_na_proxy and only_slice, so this
|
||
|
# is a cheap reindexing.
|
||
|
for i, indexer in indexers.items():
|
||
|
mgr = mgr.reindex_indexer(
|
||
|
axes[i],
|
||
|
indexers[i],
|
||
|
axis=i,
|
||
|
copy=False,
|
||
|
only_slice=True, # only relevant for i==0
|
||
|
allow_dups=True,
|
||
|
use_na_proxy=True, # only relevant for i==0
|
||
|
)
|
||
|
if needs_copy and not indexers:
|
||
|
mgr = mgr.copy()
|
||
|
|
||
|
new_mgrs.append(mgr)
|
||
|
return new_mgrs
|
||
|
|
||
|
|
||
|
def _is_homogeneous_mgr(mgr: BlockManager, first_dtype: DtypeObj) -> bool:
|
||
|
"""
|
||
|
Check if this Manager can be treated as a single ndarray.
|
||
|
"""
|
||
|
if mgr.nblocks != 1:
|
||
|
return False
|
||
|
blk = mgr.blocks[0]
|
||
|
if not (blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice.step == 1):
|
||
|
return False
|
||
|
|
||
|
return blk.dtype == first_dtype
|
||
|
|
||
|
|
||
|
def _concat_homogeneous_fastpath(
|
||
|
mgrs_indexers, shape: Shape, first_dtype: np.dtype
|
||
|
) -> Block:
|
||
|
"""
|
||
|
With single-Block managers with homogeneous dtypes (that can already hold nan),
|
||
|
we avoid [...]
|
||
|
"""
|
||
|
# assumes
|
||
|
# all(_is_homogeneous_mgr(mgr, first_dtype) for mgr, _ in in mgrs_indexers)
|
||
|
|
||
|
if all(not indexers for _, indexers in mgrs_indexers):
|
||
|
# https://github.com/pandas-dev/pandas/pull/52685#issuecomment-1523287739
|
||
|
arrs = [mgr.blocks[0].values.T for mgr, _ in mgrs_indexers]
|
||
|
arr = np.concatenate(arrs).T
|
||
|
bp = libinternals.BlockPlacement(slice(shape[0]))
|
||
|
nb = new_block_2d(arr, bp)
|
||
|
return nb
|
||
|
|
||
|
arr = np.empty(shape, dtype=first_dtype)
|
||
|
|
||
|
if first_dtype == np.float64:
|
||
|
take_func = libalgos.take_2d_axis0_float64_float64
|
||
|
else:
|
||
|
take_func = libalgos.take_2d_axis0_float32_float32
|
||
|
|
||
|
start = 0
|
||
|
for mgr, indexers in mgrs_indexers:
|
||
|
mgr_len = mgr.shape[1]
|
||
|
end = start + mgr_len
|
||
|
|
||
|
if 0 in indexers:
|
||
|
take_func(
|
||
|
mgr.blocks[0].values,
|
||
|
indexers[0],
|
||
|
arr[:, start:end],
|
||
|
)
|
||
|
else:
|
||
|
# No reindexing necessary, we can copy values directly
|
||
|
arr[:, start:end] = mgr.blocks[0].values
|
||
|
|
||
|
start += mgr_len
|
||
|
|
||
|
bp = libinternals.BlockPlacement(slice(shape[0]))
|
||
|
nb = new_block_2d(arr, bp)
|
||
|
return nb
|
||
|
|
||
|
|
||
|
def _get_combined_plan(
|
||
|
mgrs: list[BlockManager],
|
||
|
) -> list[tuple[BlockPlacement, list[JoinUnit]]]:
|
||
|
plan = []
|
||
|
|
||
|
max_len = mgrs[0].shape[0]
|
||
|
|
||
|
blknos_list = [mgr.blknos for mgr in mgrs]
|
||
|
pairs = libinternals.get_concat_blkno_indexers(blknos_list)
|
||
|
for ind, (blknos, bp) in enumerate(pairs):
|
||
|
# assert bp.is_slice_like
|
||
|
# assert len(bp) > 0
|
||
|
|
||
|
units_for_bp = []
|
||
|
for k, mgr in enumerate(mgrs):
|
||
|
blkno = blknos[k]
|
||
|
|
||
|
nb = _get_block_for_concat_plan(mgr, bp, blkno, max_len=max_len)
|
||
|
unit = JoinUnit(nb)
|
||
|
units_for_bp.append(unit)
|
||
|
|
||
|
plan.append((bp, units_for_bp))
|
||
|
|
||
|
return plan
|
||
|
|
||
|
|
||
|
def _get_block_for_concat_plan(
|
||
|
mgr: BlockManager, bp: BlockPlacement, blkno: int, *, max_len: int
|
||
|
) -> Block:
|
||
|
blk = mgr.blocks[blkno]
|
||
|
# Assertions disabled for performance:
|
||
|
# assert bp.is_slice_like
|
||
|
# assert blkno != -1
|
||
|
# assert (mgr.blknos[bp] == blkno).all()
|
||
|
|
||
|
if len(bp) == len(blk.mgr_locs) and (
|
||
|
blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice.step == 1
|
||
|
):
|
||
|
nb = blk
|
||
|
else:
|
||
|
ax0_blk_indexer = mgr.blklocs[bp.indexer]
|
||
|
|
||
|
slc = lib.maybe_indices_to_slice(ax0_blk_indexer, max_len)
|
||
|
# TODO: in all extant test cases 2023-04-08 we have a slice here.
|
||
|
# Will this always be the case?
|
||
|
if isinstance(slc, slice):
|
||
|
nb = blk.slice_block_columns(slc)
|
||
|
else:
|
||
|
nb = blk.take_block_columns(slc)
|
||
|
|
||
|
# assert nb.shape == (len(bp), mgr.shape[1])
|
||
|
return nb
|
||
|
|
||
|
|
||
|
class JoinUnit:
|
||
|
def __init__(self, block: Block) -> None:
|
||
|
self.block = block
|
||
|
|
||
|
def __repr__(self) -> str:
|
||
|
return f"{type(self).__name__}({repr(self.block)})"
|
||
|
|
||
|
def _is_valid_na_for(self, dtype: DtypeObj) -> bool:
|
||
|
"""
|
||
|
Check that we are all-NA of a type/dtype that is compatible with this dtype.
|
||
|
Augments `self.is_na` with an additional check of the type of NA values.
|
||
|
"""
|
||
|
if not self.is_na:
|
||
|
return False
|
||
|
|
||
|
blk = self.block
|
||
|
if blk.dtype.kind == "V":
|
||
|
return True
|
||
|
|
||
|
if blk.dtype == object:
|
||
|
values = blk.values
|
||
|
return all(is_valid_na_for_dtype(x, dtype) for x in values.ravel(order="K"))
|
||
|
|
||
|
na_value = blk.fill_value
|
||
|
if na_value is NaT and blk.dtype != dtype:
|
||
|
# e.g. we are dt64 and other is td64
|
||
|
# fill_values match but we should not cast blk.values to dtype
|
||
|
# TODO: this will need updating if we ever have non-nano dt64/td64
|
||
|
return False
|
||
|
|
||
|
if na_value is NA and needs_i8_conversion(dtype):
|
||
|
# FIXME: kludge; test_append_empty_frame_with_timedelta64ns_nat
|
||
|
# e.g. blk.dtype == "Int64" and dtype is td64, we dont want
|
||
|
# to consider these as matching
|
||
|
return False
|
||
|
|
||
|
# TODO: better to use can_hold_element?
|
||
|
return is_valid_na_for_dtype(na_value, dtype)
|
||
|
|
||
|
@cache_readonly
|
||
|
def is_na(self) -> bool:
|
||
|
blk = self.block
|
||
|
if blk.dtype.kind == "V":
|
||
|
return True
|
||
|
|
||
|
if not blk._can_hold_na:
|
||
|
return False
|
||
|
|
||
|
values = blk.values
|
||
|
if values.size == 0:
|
||
|
# GH#39122 this case will return False once deprecation is enforced
|
||
|
return True
|
||
|
|
||
|
if isinstance(values.dtype, SparseDtype):
|
||
|
return False
|
||
|
|
||
|
if values.ndim == 1:
|
||
|
# TODO(EA2D): no need for special case with 2D EAs
|
||
|
val = values[0]
|
||
|
if not is_scalar(val) or not isna(val):
|
||
|
# ideally isna_all would do this short-circuiting
|
||
|
return False
|
||
|
return isna_all(values)
|
||
|
else:
|
||
|
val = values[0][0]
|
||
|
if not is_scalar(val) or not isna(val):
|
||
|
# ideally isna_all would do this short-circuiting
|
||
|
return False
|
||
|
return all(isna_all(row) for row in values)
|
||
|
|
||
|
@cache_readonly
|
||
|
def is_na_after_size_and_isna_all_deprecation(self) -> bool:
|
||
|
"""
|
||
|
Will self.is_na be True after values.size == 0 deprecation and isna_all
|
||
|
deprecation are enforced?
|
||
|
"""
|
||
|
blk = self.block
|
||
|
if blk.dtype.kind == "V":
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
def get_reindexed_values(self, empty_dtype: DtypeObj, upcasted_na) -> ArrayLike:
|
||
|
values: ArrayLike
|
||
|
|
||
|
if upcasted_na is None and self.block.dtype.kind != "V":
|
||
|
# No upcasting is necessary
|
||
|
return self.block.values
|
||
|
else:
|
||
|
fill_value = upcasted_na
|
||
|
|
||
|
if self._is_valid_na_for(empty_dtype):
|
||
|
# note: always holds when self.block.dtype.kind == "V"
|
||
|
blk_dtype = self.block.dtype
|
||
|
|
||
|
if blk_dtype == np.dtype("object"):
|
||
|
# we want to avoid filling with np.nan if we are
|
||
|
# using None; we already know that we are all
|
||
|
# nulls
|
||
|
values = cast(np.ndarray, self.block.values)
|
||
|
if values.size and values[0, 0] is None:
|
||
|
fill_value = None
|
||
|
|
||
|
return make_na_array(empty_dtype, self.block.shape, fill_value)
|
||
|
|
||
|
return self.block.values
|
||
|
|
||
|
|
||
|
def _concatenate_join_units(join_units: list[JoinUnit], copy: bool) -> ArrayLike:
|
||
|
"""
|
||
|
Concatenate values from several join units along axis=1.
|
||
|
"""
|
||
|
empty_dtype, empty_dtype_future = _get_empty_dtype(join_units)
|
||
|
|
||
|
has_none_blocks = any(unit.block.dtype.kind == "V" for unit in join_units)
|
||
|
upcasted_na = _dtype_to_na_value(empty_dtype, has_none_blocks)
|
||
|
|
||
|
to_concat = [
|
||
|
ju.get_reindexed_values(empty_dtype=empty_dtype, upcasted_na=upcasted_na)
|
||
|
for ju in join_units
|
||
|
]
|
||
|
|
||
|
if any(is_1d_only_ea_dtype(t.dtype) for t in to_concat):
|
||
|
# TODO(EA2D): special case not needed if all EAs used HybridBlocks
|
||
|
|
||
|
# error: No overload variant of "__getitem__" of "ExtensionArray" matches
|
||
|
# argument type "Tuple[int, slice]"
|
||
|
to_concat = [
|
||
|
t
|
||
|
if is_1d_only_ea_dtype(t.dtype)
|
||
|
else t[0, :] # type: ignore[call-overload]
|
||
|
for t in to_concat
|
||
|
]
|
||
|
concat_values = concat_compat(to_concat, axis=0, ea_compat_axis=True)
|
||
|
concat_values = ensure_block_shape(concat_values, 2)
|
||
|
|
||
|
else:
|
||
|
concat_values = concat_compat(to_concat, axis=1)
|
||
|
|
||
|
if empty_dtype != empty_dtype_future:
|
||
|
if empty_dtype == concat_values.dtype:
|
||
|
# GH#39122, GH#40893
|
||
|
warnings.warn(
|
||
|
"The behavior of DataFrame concatenation with empty or all-NA "
|
||
|
"entries is deprecated. In a future version, this will no longer "
|
||
|
"exclude empty or all-NA columns when determining the result dtypes. "
|
||
|
"To retain the old behavior, exclude the relevant entries before "
|
||
|
"the concat operation.",
|
||
|
FutureWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
return concat_values
|
||
|
|
||
|
|
||
|
def _dtype_to_na_value(dtype: DtypeObj, has_none_blocks: bool):
|
||
|
"""
|
||
|
Find the NA value to go with this dtype.
|
||
|
"""
|
||
|
if isinstance(dtype, ExtensionDtype):
|
||
|
return dtype.na_value
|
||
|
elif dtype.kind in "mM":
|
||
|
return dtype.type("NaT")
|
||
|
elif dtype.kind in "fc":
|
||
|
return dtype.type("NaN")
|
||
|
elif dtype.kind == "b":
|
||
|
# different from missing.na_value_for_dtype
|
||
|
return None
|
||
|
elif dtype.kind in "iu":
|
||
|
if not has_none_blocks:
|
||
|
# different from missing.na_value_for_dtype
|
||
|
return None
|
||
|
return np.nan
|
||
|
elif dtype.kind == "O":
|
||
|
return np.nan
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
def _get_empty_dtype(join_units: Sequence[JoinUnit]) -> tuple[DtypeObj, DtypeObj]:
|
||
|
"""
|
||
|
Return dtype and N/A values to use when concatenating specified units.
|
||
|
|
||
|
Returned N/A value may be None which means there was no casting involved.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dtype
|
||
|
"""
|
||
|
if lib.dtypes_all_equal([ju.block.dtype for ju in join_units]):
|
||
|
empty_dtype = join_units[0].block.dtype
|
||
|
return empty_dtype, empty_dtype
|
||
|
|
||
|
has_none_blocks = any(unit.block.dtype.kind == "V" for unit in join_units)
|
||
|
|
||
|
dtypes = [unit.block.dtype for unit in join_units if not unit.is_na]
|
||
|
if not len(dtypes):
|
||
|
dtypes = [
|
||
|
unit.block.dtype for unit in join_units if unit.block.dtype.kind != "V"
|
||
|
]
|
||
|
|
||
|
dtype = find_common_type(dtypes)
|
||
|
if has_none_blocks:
|
||
|
dtype = ensure_dtype_can_hold_na(dtype)
|
||
|
|
||
|
dtype_future = dtype
|
||
|
if len(dtypes) != len(join_units):
|
||
|
dtypes_future = [
|
||
|
unit.block.dtype
|
||
|
for unit in join_units
|
||
|
if not unit.is_na_after_size_and_isna_all_deprecation
|
||
|
]
|
||
|
if not len(dtypes_future):
|
||
|
dtypes_future = [
|
||
|
unit.block.dtype for unit in join_units if unit.block.dtype.kind != "V"
|
||
|
]
|
||
|
|
||
|
if len(dtypes) != len(dtypes_future):
|
||
|
dtype_future = find_common_type(dtypes_future)
|
||
|
if has_none_blocks:
|
||
|
dtype_future = ensure_dtype_can_hold_na(dtype_future)
|
||
|
|
||
|
return dtype, dtype_future
|
||
|
|
||
|
|
||
|
def _is_uniform_join_units(join_units: list[JoinUnit]) -> bool:
|
||
|
"""
|
||
|
Check if the join units consist of blocks of uniform type that can
|
||
|
be concatenated using Block.concat_same_type instead of the generic
|
||
|
_concatenate_join_units (which uses `concat_compat`).
|
||
|
|
||
|
"""
|
||
|
first = join_units[0].block
|
||
|
if first.dtype.kind == "V":
|
||
|
return False
|
||
|
return (
|
||
|
# exclude cases where a) ju.block is None or b) we have e.g. Int64+int64
|
||
|
all(type(ju.block) is type(first) for ju in join_units)
|
||
|
and
|
||
|
# e.g. DatetimeLikeBlock can be dt64 or td64, but these are not uniform
|
||
|
all(
|
||
|
ju.block.dtype == first.dtype
|
||
|
# GH#42092 we only want the dtype_equal check for non-numeric blocks
|
||
|
# (for now, may change but that would need a deprecation)
|
||
|
or ju.block.dtype.kind in "iub"
|
||
|
for ju in join_units
|
||
|
)
|
||
|
and
|
||
|
# no blocks that would get missing values (can lead to type upcasts)
|
||
|
# unless we're an extension dtype.
|
||
|
all(not ju.is_na or ju.block.is_extension for ju in join_units)
|
||
|
)
|