284 lines
8.7 KiB
Python
284 lines
8.7 KiB
Python
|
"""
|
||
|
timedelta support tools
|
||
|
"""
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from typing import (
|
||
|
TYPE_CHECKING,
|
||
|
overload,
|
||
|
)
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas._libs import lib
|
||
|
from pandas._libs.tslibs import (
|
||
|
NaT,
|
||
|
NaTType,
|
||
|
)
|
||
|
from pandas._libs.tslibs.timedeltas import (
|
||
|
Timedelta,
|
||
|
disallow_ambiguous_unit,
|
||
|
parse_timedelta_unit,
|
||
|
)
|
||
|
from pandas.util._exceptions import find_stack_level
|
||
|
|
||
|
from pandas.core.dtypes.common import is_list_like
|
||
|
from pandas.core.dtypes.dtypes import ArrowDtype
|
||
|
from pandas.core.dtypes.generic import (
|
||
|
ABCIndex,
|
||
|
ABCSeries,
|
||
|
)
|
||
|
|
||
|
from pandas.core.arrays.timedeltas import sequence_to_td64ns
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from collections.abc import Hashable
|
||
|
from datetime import timedelta
|
||
|
|
||
|
from pandas._libs.tslibs.timedeltas import UnitChoices
|
||
|
from pandas._typing import (
|
||
|
ArrayLike,
|
||
|
DateTimeErrorChoices,
|
||
|
)
|
||
|
|
||
|
from pandas import (
|
||
|
Index,
|
||
|
Series,
|
||
|
TimedeltaIndex,
|
||
|
)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def to_timedelta(
|
||
|
arg: str | float | timedelta,
|
||
|
unit: UnitChoices | None = ...,
|
||
|
errors: DateTimeErrorChoices = ...,
|
||
|
) -> Timedelta:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def to_timedelta(
|
||
|
arg: Series,
|
||
|
unit: UnitChoices | None = ...,
|
||
|
errors: DateTimeErrorChoices = ...,
|
||
|
) -> Series:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def to_timedelta(
|
||
|
arg: list | tuple | range | ArrayLike | Index,
|
||
|
unit: UnitChoices | None = ...,
|
||
|
errors: DateTimeErrorChoices = ...,
|
||
|
) -> TimedeltaIndex:
|
||
|
...
|
||
|
|
||
|
|
||
|
def to_timedelta(
|
||
|
arg: str
|
||
|
| int
|
||
|
| float
|
||
|
| timedelta
|
||
|
| list
|
||
|
| tuple
|
||
|
| range
|
||
|
| ArrayLike
|
||
|
| Index
|
||
|
| Series,
|
||
|
unit: UnitChoices | None = None,
|
||
|
errors: DateTimeErrorChoices = "raise",
|
||
|
) -> Timedelta | TimedeltaIndex | Series:
|
||
|
"""
|
||
|
Convert argument to timedelta.
|
||
|
|
||
|
Timedeltas are absolute differences in times, expressed in difference
|
||
|
units (e.g. days, hours, minutes, seconds). This method converts
|
||
|
an argument from a recognized timedelta format / value into
|
||
|
a Timedelta type.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arg : str, timedelta, list-like or Series
|
||
|
The data to be converted to timedelta.
|
||
|
|
||
|
.. versionchanged:: 2.0
|
||
|
Strings with units 'M', 'Y' and 'y' do not represent
|
||
|
unambiguous timedelta values and will raise an exception.
|
||
|
|
||
|
unit : str, optional
|
||
|
Denotes the unit of the arg for numeric `arg`. Defaults to ``"ns"``.
|
||
|
|
||
|
Possible values:
|
||
|
|
||
|
* 'W'
|
||
|
* 'D' / 'days' / 'day'
|
||
|
* 'hours' / 'hour' / 'hr' / 'h' / 'H'
|
||
|
* 'm' / 'minute' / 'min' / 'minutes' / 'T'
|
||
|
* 's' / 'seconds' / 'sec' / 'second' / 'S'
|
||
|
* 'ms' / 'milliseconds' / 'millisecond' / 'milli' / 'millis' / 'L'
|
||
|
* 'us' / 'microseconds' / 'microsecond' / 'micro' / 'micros' / 'U'
|
||
|
* 'ns' / 'nanoseconds' / 'nano' / 'nanos' / 'nanosecond' / 'N'
|
||
|
|
||
|
Must not be specified when `arg` contains strings and ``errors="raise"``.
|
||
|
|
||
|
.. deprecated:: 2.2.0
|
||
|
Units 'H', 'T', 'S', 'L', 'U' and 'N' are deprecated and will be removed
|
||
|
in a future version. Please use 'h', 'min', 's', 'ms', 'us', and 'ns'
|
||
|
instead of 'H', 'T', 'S', 'L', 'U' and 'N'.
|
||
|
|
||
|
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
|
||
|
- If 'raise', then invalid parsing will raise an exception.
|
||
|
- If 'coerce', then invalid parsing will be set as NaT.
|
||
|
- If 'ignore', then invalid parsing will return the input.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
timedelta
|
||
|
If parsing succeeded.
|
||
|
Return type depends on input:
|
||
|
|
||
|
- list-like: TimedeltaIndex of timedelta64 dtype
|
||
|
- Series: Series of timedelta64 dtype
|
||
|
- scalar: Timedelta
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.astype : Cast argument to a specified dtype.
|
||
|
to_datetime : Convert argument to datetime.
|
||
|
convert_dtypes : Convert dtypes.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If the precision is higher than nanoseconds, the precision of the duration is
|
||
|
truncated to nanoseconds for string inputs.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Parsing a single string to a Timedelta:
|
||
|
|
||
|
>>> pd.to_timedelta('1 days 06:05:01.00003')
|
||
|
Timedelta('1 days 06:05:01.000030')
|
||
|
>>> pd.to_timedelta('15.5us')
|
||
|
Timedelta('0 days 00:00:00.000015500')
|
||
|
|
||
|
Parsing a list or array of strings:
|
||
|
|
||
|
>>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
|
||
|
TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015500', NaT],
|
||
|
dtype='timedelta64[ns]', freq=None)
|
||
|
|
||
|
Converting numbers by specifying the `unit` keyword argument:
|
||
|
|
||
|
>>> pd.to_timedelta(np.arange(5), unit='s')
|
||
|
TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:01', '0 days 00:00:02',
|
||
|
'0 days 00:00:03', '0 days 00:00:04'],
|
||
|
dtype='timedelta64[ns]', freq=None)
|
||
|
>>> pd.to_timedelta(np.arange(5), unit='d')
|
||
|
TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
|
||
|
dtype='timedelta64[ns]', freq=None)
|
||
|
"""
|
||
|
if unit is not None:
|
||
|
unit = parse_timedelta_unit(unit)
|
||
|
disallow_ambiguous_unit(unit)
|
||
|
|
||
|
if errors not in ("ignore", "raise", "coerce"):
|
||
|
raise ValueError("errors must be one of 'ignore', 'raise', or 'coerce'.")
|
||
|
if errors == "ignore":
|
||
|
# GH#54467
|
||
|
warnings.warn(
|
||
|
"errors='ignore' is deprecated and will raise in a future version. "
|
||
|
"Use to_timedelta without passing `errors` and catch exceptions "
|
||
|
"explicitly instead",
|
||
|
FutureWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
|
||
|
if arg is None:
|
||
|
return arg
|
||
|
elif isinstance(arg, ABCSeries):
|
||
|
values = _convert_listlike(arg._values, unit=unit, errors=errors)
|
||
|
return arg._constructor(values, index=arg.index, name=arg.name)
|
||
|
elif isinstance(arg, ABCIndex):
|
||
|
return _convert_listlike(arg, unit=unit, errors=errors, name=arg.name)
|
||
|
elif isinstance(arg, np.ndarray) and arg.ndim == 0:
|
||
|
# extract array scalar and process below
|
||
|
# error: Incompatible types in assignment (expression has type "object",
|
||
|
# variable has type "Union[str, int, float, timedelta, List[Any],
|
||
|
# Tuple[Any, ...], Union[Union[ExtensionArray, ndarray[Any, Any]], Index,
|
||
|
# Series]]") [assignment]
|
||
|
arg = lib.item_from_zerodim(arg) # type: ignore[assignment]
|
||
|
elif is_list_like(arg) and getattr(arg, "ndim", 1) == 1:
|
||
|
return _convert_listlike(arg, unit=unit, errors=errors)
|
||
|
elif getattr(arg, "ndim", 1) > 1:
|
||
|
raise TypeError(
|
||
|
"arg must be a string, timedelta, list, tuple, 1-d array, or Series"
|
||
|
)
|
||
|
|
||
|
if isinstance(arg, str) and unit is not None:
|
||
|
raise ValueError("unit must not be specified if the input is/contains a str")
|
||
|
|
||
|
# ...so it must be a scalar value. Return scalar.
|
||
|
return _coerce_scalar_to_timedelta_type(arg, unit=unit, errors=errors)
|
||
|
|
||
|
|
||
|
def _coerce_scalar_to_timedelta_type(
|
||
|
r, unit: UnitChoices | None = "ns", errors: DateTimeErrorChoices = "raise"
|
||
|
):
|
||
|
"""Convert string 'r' to a timedelta object."""
|
||
|
result: Timedelta | NaTType
|
||
|
|
||
|
try:
|
||
|
result = Timedelta(r, unit)
|
||
|
except ValueError:
|
||
|
if errors == "raise":
|
||
|
raise
|
||
|
if errors == "ignore":
|
||
|
return r
|
||
|
|
||
|
# coerce
|
||
|
result = NaT
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _convert_listlike(
|
||
|
arg,
|
||
|
unit: UnitChoices | None = None,
|
||
|
errors: DateTimeErrorChoices = "raise",
|
||
|
name: Hashable | None = None,
|
||
|
):
|
||
|
"""Convert a list of objects to a timedelta index object."""
|
||
|
arg_dtype = getattr(arg, "dtype", None)
|
||
|
if isinstance(arg, (list, tuple)) or arg_dtype is None:
|
||
|
# This is needed only to ensure that in the case where we end up
|
||
|
# returning arg (errors == "ignore"), and where the input is a
|
||
|
# generator, we return a useful list-like instead of a
|
||
|
# used-up generator
|
||
|
if not hasattr(arg, "__array__"):
|
||
|
arg = list(arg)
|
||
|
arg = np.array(arg, dtype=object)
|
||
|
elif isinstance(arg_dtype, ArrowDtype) and arg_dtype.kind == "m":
|
||
|
return arg
|
||
|
|
||
|
try:
|
||
|
td64arr = sequence_to_td64ns(arg, unit=unit, errors=errors, copy=False)[0]
|
||
|
except ValueError:
|
||
|
if errors == "ignore":
|
||
|
return arg
|
||
|
else:
|
||
|
# This else-block accounts for the cases when errors='raise'
|
||
|
# and errors='coerce'. If errors == 'raise', these errors
|
||
|
# should be raised. If errors == 'coerce', we shouldn't
|
||
|
# expect any errors to be raised, since all parsing errors
|
||
|
# cause coercion to pd.NaT. However, if an error / bug is
|
||
|
# introduced that causes an Exception to be raised, we would
|
||
|
# like to surface it.
|
||
|
raise
|
||
|
|
||
|
from pandas import TimedeltaIndex
|
||
|
|
||
|
value = TimedeltaIndex(td64arr, name=name)
|
||
|
return value
|