326 lines
12 KiB
Python
326 lines
12 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
from pandas.arrays import BooleanArray
|
||
|
from pandas.core.arrays.boolean import coerce_to_array
|
||
|
|
||
|
|
||
|
def test_boolean_array_constructor():
|
||
|
values = np.array([True, False, True, False], dtype="bool")
|
||
|
mask = np.array([False, False, False, True], dtype="bool")
|
||
|
|
||
|
result = BooleanArray(values, mask)
|
||
|
expected = pd.array([True, False, True, None], dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
with pytest.raises(TypeError, match="values should be boolean numpy array"):
|
||
|
BooleanArray(values.tolist(), mask)
|
||
|
|
||
|
with pytest.raises(TypeError, match="mask should be boolean numpy array"):
|
||
|
BooleanArray(values, mask.tolist())
|
||
|
|
||
|
with pytest.raises(TypeError, match="values should be boolean numpy array"):
|
||
|
BooleanArray(values.astype(int), mask)
|
||
|
|
||
|
with pytest.raises(TypeError, match="mask should be boolean numpy array"):
|
||
|
BooleanArray(values, None)
|
||
|
|
||
|
with pytest.raises(ValueError, match="values.shape must match mask.shape"):
|
||
|
BooleanArray(values.reshape(1, -1), mask)
|
||
|
|
||
|
with pytest.raises(ValueError, match="values.shape must match mask.shape"):
|
||
|
BooleanArray(values, mask.reshape(1, -1))
|
||
|
|
||
|
|
||
|
def test_boolean_array_constructor_copy():
|
||
|
values = np.array([True, False, True, False], dtype="bool")
|
||
|
mask = np.array([False, False, False, True], dtype="bool")
|
||
|
|
||
|
result = BooleanArray(values, mask)
|
||
|
assert result._data is values
|
||
|
assert result._mask is mask
|
||
|
|
||
|
result = BooleanArray(values, mask, copy=True)
|
||
|
assert result._data is not values
|
||
|
assert result._mask is not mask
|
||
|
|
||
|
|
||
|
def test_to_boolean_array():
|
||
|
expected = BooleanArray(
|
||
|
np.array([True, False, True]), np.array([False, False, False])
|
||
|
)
|
||
|
|
||
|
result = pd.array([True, False, True], dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
result = pd.array(np.array([True, False, True]), dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
result = pd.array(np.array([True, False, True], dtype=object), dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
# with missing values
|
||
|
expected = BooleanArray(
|
||
|
np.array([True, False, True]), np.array([False, False, True])
|
||
|
)
|
||
|
|
||
|
result = pd.array([True, False, None], dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
result = pd.array(np.array([True, False, None], dtype=object), dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_to_boolean_array_all_none():
|
||
|
expected = BooleanArray(np.array([True, True, True]), np.array([True, True, True]))
|
||
|
|
||
|
result = pd.array([None, None, None], dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
result = pd.array(np.array([None, None, None], dtype=object), dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"a, b",
|
||
|
[
|
||
|
([True, False, None, np.nan, pd.NA], [True, False, None, None, None]),
|
||
|
([True, np.nan], [True, None]),
|
||
|
([True, pd.NA], [True, None]),
|
||
|
([np.nan, np.nan], [None, None]),
|
||
|
(np.array([np.nan, np.nan], dtype=float), [None, None]),
|
||
|
],
|
||
|
)
|
||
|
def test_to_boolean_array_missing_indicators(a, b):
|
||
|
result = pd.array(a, dtype="boolean")
|
||
|
expected = pd.array(b, dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"values",
|
||
|
[
|
||
|
["foo", "bar"],
|
||
|
["1", "2"],
|
||
|
# "foo",
|
||
|
[1, 2],
|
||
|
[1.0, 2.0],
|
||
|
pd.date_range("20130101", periods=2),
|
||
|
np.array(["foo"]),
|
||
|
np.array([1, 2]),
|
||
|
np.array([1.0, 2.0]),
|
||
|
[np.nan, {"a": 1}],
|
||
|
],
|
||
|
)
|
||
|
def test_to_boolean_array_error(values):
|
||
|
# error in converting existing arrays to BooleanArray
|
||
|
msg = "Need to pass bool-like value"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
pd.array(values, dtype="boolean")
|
||
|
|
||
|
|
||
|
def test_to_boolean_array_from_integer_array():
|
||
|
result = pd.array(np.array([1, 0, 1, 0]), dtype="boolean")
|
||
|
expected = pd.array([True, False, True, False], dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
# with missing values
|
||
|
result = pd.array(np.array([1, 0, 1, None]), dtype="boolean")
|
||
|
expected = pd.array([True, False, True, None], dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_to_boolean_array_from_float_array():
|
||
|
result = pd.array(np.array([1.0, 0.0, 1.0, 0.0]), dtype="boolean")
|
||
|
expected = pd.array([True, False, True, False], dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
# with missing values
|
||
|
result = pd.array(np.array([1.0, 0.0, 1.0, np.nan]), dtype="boolean")
|
||
|
expected = pd.array([True, False, True, None], dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_to_boolean_array_integer_like():
|
||
|
# integers of 0's and 1's
|
||
|
result = pd.array([1, 0, 1, 0], dtype="boolean")
|
||
|
expected = pd.array([True, False, True, False], dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
# with missing values
|
||
|
result = pd.array([1, 0, 1, None], dtype="boolean")
|
||
|
expected = pd.array([True, False, True, None], dtype="boolean")
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_coerce_to_array():
|
||
|
# TODO this is currently not public API
|
||
|
values = np.array([True, False, True, False], dtype="bool")
|
||
|
mask = np.array([False, False, False, True], dtype="bool")
|
||
|
result = BooleanArray(*coerce_to_array(values, mask=mask))
|
||
|
expected = BooleanArray(values, mask)
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
assert result._data is values
|
||
|
assert result._mask is mask
|
||
|
result = BooleanArray(*coerce_to_array(values, mask=mask, copy=True))
|
||
|
expected = BooleanArray(values, mask)
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
assert result._data is not values
|
||
|
assert result._mask is not mask
|
||
|
|
||
|
# mixed missing from values and mask
|
||
|
values = [True, False, None, False]
|
||
|
mask = np.array([False, False, False, True], dtype="bool")
|
||
|
result = BooleanArray(*coerce_to_array(values, mask=mask))
|
||
|
expected = BooleanArray(
|
||
|
np.array([True, False, True, True]), np.array([False, False, True, True])
|
||
|
)
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
result = BooleanArray(*coerce_to_array(np.array(values, dtype=object), mask=mask))
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
result = BooleanArray(*coerce_to_array(values, mask=mask.tolist()))
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
# raise errors for wrong dimension
|
||
|
values = np.array([True, False, True, False], dtype="bool")
|
||
|
mask = np.array([False, False, False, True], dtype="bool")
|
||
|
|
||
|
# passing 2D values is OK as long as no mask
|
||
|
coerce_to_array(values.reshape(1, -1))
|
||
|
|
||
|
with pytest.raises(ValueError, match="values.shape and mask.shape must match"):
|
||
|
coerce_to_array(values.reshape(1, -1), mask=mask)
|
||
|
|
||
|
with pytest.raises(ValueError, match="values.shape and mask.shape must match"):
|
||
|
coerce_to_array(values, mask=mask.reshape(1, -1))
|
||
|
|
||
|
|
||
|
def test_coerce_to_array_from_boolean_array():
|
||
|
# passing BooleanArray to coerce_to_array
|
||
|
values = np.array([True, False, True, False], dtype="bool")
|
||
|
mask = np.array([False, False, False, True], dtype="bool")
|
||
|
arr = BooleanArray(values, mask)
|
||
|
result = BooleanArray(*coerce_to_array(arr))
|
||
|
tm.assert_extension_array_equal(result, arr)
|
||
|
# no copy
|
||
|
assert result._data is arr._data
|
||
|
assert result._mask is arr._mask
|
||
|
|
||
|
result = BooleanArray(*coerce_to_array(arr), copy=True)
|
||
|
tm.assert_extension_array_equal(result, arr)
|
||
|
assert result._data is not arr._data
|
||
|
assert result._mask is not arr._mask
|
||
|
|
||
|
with pytest.raises(ValueError, match="cannot pass mask for BooleanArray input"):
|
||
|
coerce_to_array(arr, mask=mask)
|
||
|
|
||
|
|
||
|
def test_coerce_to_numpy_array():
|
||
|
# with missing values -> object dtype
|
||
|
arr = pd.array([True, False, None], dtype="boolean")
|
||
|
result = np.array(arr)
|
||
|
expected = np.array([True, False, pd.NA], dtype="object")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# also with no missing values -> object dtype
|
||
|
arr = pd.array([True, False, True], dtype="boolean")
|
||
|
result = np.array(arr)
|
||
|
expected = np.array([True, False, True], dtype="bool")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# force bool dtype
|
||
|
result = np.array(arr, dtype="bool")
|
||
|
expected = np.array([True, False, True], dtype="bool")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
# with missing values will raise error
|
||
|
arr = pd.array([True, False, None], dtype="boolean")
|
||
|
msg = (
|
||
|
"cannot convert to 'bool'-dtype NumPy array with missing values. "
|
||
|
"Specify an appropriate 'na_value' for this dtype."
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
np.array(arr, dtype="bool")
|
||
|
|
||
|
|
||
|
def test_to_boolean_array_from_strings():
|
||
|
result = BooleanArray._from_sequence_of_strings(
|
||
|
np.array(["True", "False", "1", "1.0", "0", "0.0", np.nan], dtype=object),
|
||
|
dtype="boolean",
|
||
|
)
|
||
|
expected = BooleanArray(
|
||
|
np.array([True, False, True, True, False, False, False]),
|
||
|
np.array([False, False, False, False, False, False, True]),
|
||
|
)
|
||
|
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_to_boolean_array_from_strings_invalid_string():
|
||
|
with pytest.raises(ValueError, match="cannot be cast"):
|
||
|
BooleanArray._from_sequence_of_strings(["donkey"], dtype="boolean")
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
||
|
def test_to_numpy(box):
|
||
|
con = pd.Series if box else pd.array
|
||
|
# default (with or without missing values) -> object dtype
|
||
|
arr = con([True, False, True], dtype="boolean")
|
||
|
result = arr.to_numpy()
|
||
|
expected = np.array([True, False, True], dtype="bool")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
arr = con([True, False, None], dtype="boolean")
|
||
|
result = arr.to_numpy()
|
||
|
expected = np.array([True, False, pd.NA], dtype="object")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
arr = con([True, False, None], dtype="boolean")
|
||
|
result = arr.to_numpy(dtype="str")
|
||
|
expected = np.array([True, False, pd.NA], dtype=f"{tm.ENDIAN}U5")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# no missing values -> can convert to bool, otherwise raises
|
||
|
arr = con([True, False, True], dtype="boolean")
|
||
|
result = arr.to_numpy(dtype="bool")
|
||
|
expected = np.array([True, False, True], dtype="bool")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
arr = con([True, False, None], dtype="boolean")
|
||
|
with pytest.raises(ValueError, match="cannot convert to 'bool'-dtype"):
|
||
|
result = arr.to_numpy(dtype="bool")
|
||
|
|
||
|
# specify dtype and na_value
|
||
|
arr = con([True, False, None], dtype="boolean")
|
||
|
result = arr.to_numpy(dtype=object, na_value=None)
|
||
|
expected = np.array([True, False, None], dtype="object")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = arr.to_numpy(dtype=bool, na_value=False)
|
||
|
expected = np.array([True, False, False], dtype="bool")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = arr.to_numpy(dtype="int64", na_value=-99)
|
||
|
expected = np.array([1, 0, -99], dtype="int64")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = arr.to_numpy(dtype="float64", na_value=np.nan)
|
||
|
expected = np.array([1, 0, np.nan], dtype="float64")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# converting to int or float without specifying na_value raises
|
||
|
with pytest.raises(ValueError, match="cannot convert to 'int64'-dtype"):
|
||
|
arr.to_numpy(dtype="int64")
|
||
|
|
||
|
|
||
|
def test_to_numpy_copy():
|
||
|
# to_numpy can be zero-copy if no missing values
|
||
|
arr = pd.array([True, False, True], dtype="boolean")
|
||
|
result = arr.to_numpy(dtype=bool)
|
||
|
result[0] = False
|
||
|
tm.assert_extension_array_equal(
|
||
|
arr, pd.array([False, False, True], dtype="boolean")
|
||
|
)
|
||
|
|
||
|
arr = pd.array([True, False, True], dtype="boolean")
|
||
|
result = arr.to_numpy(dtype=bool, copy=True)
|
||
|
result[0] = False
|
||
|
tm.assert_extension_array_equal(arr, pd.array([True, False, True], dtype="boolean"))
|