3RNN/Lib/site-packages/pandas/tests/strings/test_find_replace.py

973 lines
34 KiB
Python
Raw Normal View History

2024-05-26 19:49:15 +02:00
from datetime import datetime
import re
import numpy as np
import pytest
from pandas.errors import PerformanceWarning
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Series,
_testing as tm,
)
from pandas.tests.strings import (
_convert_na_value,
object_pyarrow_numpy,
)
# --------------------------------------------------------------------------------------
# str.contains
# --------------------------------------------------------------------------------------
def using_pyarrow(dtype):
return dtype in ("string[pyarrow]", "string[pyarrow_numpy]")
def test_contains(any_string_dtype):
values = np.array(
["foo", np.nan, "fooommm__foo", "mmm_", "foommm[_]+bar"], dtype=np.object_
)
values = Series(values, dtype=any_string_dtype)
pat = "mmm[_]+"
result = values.str.contains(pat)
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series(
np.array([False, np.nan, True, True, False], dtype=np.object_),
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
result = values.str.contains(pat, regex=False)
expected = Series(
np.array([False, np.nan, False, False, True], dtype=np.object_),
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
values = Series(
np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=object),
dtype=any_string_dtype,
)
result = values.str.contains(pat)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
tm.assert_series_equal(result, expected)
# case insensitive using regex
values = Series(
np.array(["Foo", "xYz", "fOOomMm__fOo", "MMM_"], dtype=object),
dtype=any_string_dtype,
)
result = values.str.contains("FOO|mmm", case=False)
expected = Series(np.array([True, False, True, True]), dtype=expected_dtype)
tm.assert_series_equal(result, expected)
# case insensitive without regex
result = values.str.contains("foo", regex=False, case=False)
expected = Series(np.array([True, False, True, False]), dtype=expected_dtype)
tm.assert_series_equal(result, expected)
# unicode
values = Series(
np.array(["foo", np.nan, "fooommm__foo", "mmm_"], dtype=np.object_),
dtype=any_string_dtype,
)
pat = "mmm[_]+"
result = values.str.contains(pat)
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series(
np.array([False, np.nan, True, True], dtype=np.object_), dtype=expected_dtype
)
tm.assert_series_equal(result, expected)
result = values.str.contains(pat, na=False)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
tm.assert_series_equal(result, expected)
values = Series(
np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=np.object_),
dtype=any_string_dtype,
)
result = values.str.contains(pat)
expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_contains_object_mixed():
mixed = Series(
np.array(
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
dtype=object,
)
)
result = mixed.str.contains("o")
expected = Series(
np.array(
[False, np.nan, False, np.nan, np.nan, True, None, np.nan, np.nan],
dtype=np.object_,
)
)
tm.assert_series_equal(result, expected)
def test_contains_na_kwarg_for_object_category():
# gh 22158
# na for category
values = Series(["a", "b", "c", "a", np.nan], dtype="category")
result = values.str.contains("a", na=True)
expected = Series([True, False, False, True, True])
tm.assert_series_equal(result, expected)
result = values.str.contains("a", na=False)
expected = Series([True, False, False, True, False])
tm.assert_series_equal(result, expected)
# na for objects
values = Series(["a", "b", "c", "a", np.nan])
result = values.str.contains("a", na=True)
expected = Series([True, False, False, True, True])
tm.assert_series_equal(result, expected)
result = values.str.contains("a", na=False)
expected = Series([True, False, False, True, False])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"na, expected",
[
(None, pd.NA),
(True, True),
(False, False),
(0, False),
(3, True),
(np.nan, pd.NA),
],
)
@pytest.mark.parametrize("regex", [True, False])
def test_contains_na_kwarg_for_nullable_string_dtype(
nullable_string_dtype, na, expected, regex
):
# https://github.com/pandas-dev/pandas/pull/41025#issuecomment-824062416
values = Series(["a", "b", "c", "a", np.nan], dtype=nullable_string_dtype)
result = values.str.contains("a", na=na, regex=regex)
expected = Series([True, False, False, True, expected], dtype="boolean")
tm.assert_series_equal(result, expected)
def test_contains_moar(any_string_dtype):
# PR #1179
s = Series(
["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
dtype=any_string_dtype,
)
result = s.str.contains("a")
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series(
[False, False, False, True, True, False, np.nan, False, False, True],
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
result = s.str.contains("a", case=False)
expected = Series(
[True, False, False, True, True, False, np.nan, True, False, True],
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
result = s.str.contains("Aa")
expected = Series(
[False, False, False, True, False, False, np.nan, False, False, False],
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
result = s.str.contains("ba")
expected = Series(
[False, False, False, True, False, False, np.nan, False, False, False],
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
result = s.str.contains("ba", case=False)
expected = Series(
[False, False, False, True, True, False, np.nan, True, False, False],
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
def test_contains_nan(any_string_dtype):
# PR #14171
s = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype)
result = s.str.contains("foo", na=False)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([False, False, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = s.str.contains("foo", na=True)
expected = Series([True, True, True], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = s.str.contains("foo", na="foo")
if any_string_dtype == "object":
expected = Series(["foo", "foo", "foo"], dtype=np.object_)
elif any_string_dtype == "string[pyarrow_numpy]":
expected = Series([True, True, True], dtype=np.bool_)
else:
expected = Series([True, True, True], dtype="boolean")
tm.assert_series_equal(result, expected)
result = s.str.contains("foo")
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([np.nan, np.nan, np.nan], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
# str.startswith
# --------------------------------------------------------------------------------------
@pytest.mark.parametrize("pat", ["foo", ("foo", "baz")])
@pytest.mark.parametrize("dtype", ["object", "category"])
@pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
@pytest.mark.parametrize("na", [True, False])
def test_startswith(pat, dtype, null_value, na):
# add category dtype parametrizations for GH-36241
values = Series(
["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
dtype=dtype,
)
result = values.str.startswith(pat)
exp = Series([False, np.nan, True, False, False, np.nan, True])
if dtype == "object" and null_value is pd.NA:
# GH#18463
exp = exp.fillna(null_value)
elif dtype == "object" and null_value is None:
exp[exp.isna()] = None
tm.assert_series_equal(result, exp)
result = values.str.startswith(pat, na=na)
exp = Series([False, na, True, False, False, na, True])
tm.assert_series_equal(result, exp)
# mixed
mixed = np.array(
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
dtype=np.object_,
)
rs = Series(mixed).str.startswith("f")
xp = Series([False, np.nan, False, np.nan, np.nan, True, None, np.nan, np.nan])
tm.assert_series_equal(rs, xp)
@pytest.mark.parametrize("na", [None, True, False])
def test_startswith_nullable_string_dtype(nullable_string_dtype, na):
values = Series(
["om", None, "foo_nom", "nom", "bar_foo", None, "foo", "regex", "rege."],
dtype=nullable_string_dtype,
)
result = values.str.startswith("foo", na=na)
exp = Series(
[False, na, True, False, False, na, True, False, False], dtype="boolean"
)
tm.assert_series_equal(result, exp)
result = values.str.startswith("rege.", na=na)
exp = Series(
[False, na, False, False, False, na, False, False, True], dtype="boolean"
)
tm.assert_series_equal(result, exp)
# --------------------------------------------------------------------------------------
# str.endswith
# --------------------------------------------------------------------------------------
@pytest.mark.parametrize("pat", ["foo", ("foo", "baz")])
@pytest.mark.parametrize("dtype", ["object", "category"])
@pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
@pytest.mark.parametrize("na", [True, False])
def test_endswith(pat, dtype, null_value, na):
# add category dtype parametrizations for GH-36241
values = Series(
["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
dtype=dtype,
)
result = values.str.endswith(pat)
exp = Series([False, np.nan, False, False, True, np.nan, True])
if dtype == "object" and null_value is pd.NA:
# GH#18463
exp = exp.fillna(null_value)
elif dtype == "object" and null_value is None:
exp[exp.isna()] = None
tm.assert_series_equal(result, exp)
result = values.str.endswith(pat, na=na)
exp = Series([False, na, False, False, True, na, True])
tm.assert_series_equal(result, exp)
# mixed
mixed = np.array(
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
dtype=object,
)
rs = Series(mixed).str.endswith("f")
xp = Series([False, np.nan, False, np.nan, np.nan, False, None, np.nan, np.nan])
tm.assert_series_equal(rs, xp)
@pytest.mark.parametrize("na", [None, True, False])
def test_endswith_nullable_string_dtype(nullable_string_dtype, na):
values = Series(
["om", None, "foo_nom", "nom", "bar_foo", None, "foo", "regex", "rege."],
dtype=nullable_string_dtype,
)
result = values.str.endswith("foo", na=na)
exp = Series(
[False, na, False, False, True, na, True, False, False], dtype="boolean"
)
tm.assert_series_equal(result, exp)
result = values.str.endswith("rege.", na=na)
exp = Series(
[False, na, False, False, False, na, False, False, True], dtype="boolean"
)
tm.assert_series_equal(result, exp)
# --------------------------------------------------------------------------------------
# str.replace
# --------------------------------------------------------------------------------------
def test_replace(any_string_dtype):
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
result = ser.str.replace("BAD[_]*", "", regex=True)
expected = Series(["foobar", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_replace_max_replacements(any_string_dtype):
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
expected = Series(["foobarBAD", np.nan], dtype=any_string_dtype)
result = ser.str.replace("BAD[_]*", "", n=1, regex=True)
tm.assert_series_equal(result, expected)
expected = Series(["foo__barBAD", np.nan], dtype=any_string_dtype)
result = ser.str.replace("BAD", "", n=1, regex=False)
tm.assert_series_equal(result, expected)
def test_replace_mixed_object():
ser = Series(
["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
)
result = Series(ser).str.replace("BAD[_]*", "", regex=True)
expected = Series(
["a", np.nan, "b", np.nan, np.nan, "foo", None, np.nan, np.nan], dtype=object
)
tm.assert_series_equal(result, expected)
def test_replace_unicode(any_string_dtype):
ser = Series([b"abcd,\xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
expected = Series([b"abcd, \xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE, regex=True)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("repl", [None, 3, {"a": "b"}])
@pytest.mark.parametrize("data", [["a", "b", None], ["a", "b", "c", "ad"]])
def test_replace_wrong_repl_type_raises(any_string_dtype, index_or_series, repl, data):
# https://github.com/pandas-dev/pandas/issues/13438
msg = "repl must be a string or callable"
obj = index_or_series(data, dtype=any_string_dtype)
with pytest.raises(TypeError, match=msg):
obj.str.replace("a", repl)
def test_replace_callable(any_string_dtype):
# GH 15055
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
# test with callable
repl = lambda m: m.group(0).swapcase()
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace("[a-z][A-Z]{2}", repl, n=2, regex=True)
expected = Series(["foObaD__baRbaD", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"repl", [lambda: None, lambda m, x: None, lambda m, x, y=None: None]
)
def test_replace_callable_raises(any_string_dtype, repl):
# GH 15055
values = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
# test with wrong number of arguments, raising an error
msg = (
r"((takes)|(missing)) (?(2)from \d+ to )?\d+ "
r"(?(3)required )positional arguments?"
)
with pytest.raises(TypeError, match=msg):
with tm.maybe_produces_warning(
PerformanceWarning, using_pyarrow(any_string_dtype)
):
values.str.replace("a", repl, regex=True)
def test_replace_callable_named_groups(any_string_dtype):
# test regex named groups
ser = Series(["Foo Bar Baz", np.nan], dtype=any_string_dtype)
pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)"
repl = lambda m: m.group("middle").swapcase()
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace(pat, repl, regex=True)
expected = Series(["bAR", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_replace_compiled_regex(any_string_dtype):
# GH 15446
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
# test with compiled regex
pat = re.compile(r"BAD_*")
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace(pat, "", regex=True)
expected = Series(["foobar", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace(pat, "", n=1, regex=True)
expected = Series(["foobarBAD", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_replace_compiled_regex_mixed_object():
pat = re.compile(r"BAD_*")
ser = Series(
["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
)
result = Series(ser).str.replace(pat, "", regex=True)
expected = Series(
["a", np.nan, "b", np.nan, np.nan, "foo", None, np.nan, np.nan], dtype=object
)
tm.assert_series_equal(result, expected)
def test_replace_compiled_regex_unicode(any_string_dtype):
ser = Series([b"abcd,\xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
expected = Series([b"abcd, \xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace(pat, ", ", regex=True)
tm.assert_series_equal(result, expected)
def test_replace_compiled_regex_raises(any_string_dtype):
# case and flags provided to str.replace will have no effect
# and will produce warnings
ser = Series(["fooBAD__barBAD__bad", np.nan], dtype=any_string_dtype)
pat = re.compile(r"BAD_*")
msg = "case and flags cannot be set when pat is a compiled regex"
with pytest.raises(ValueError, match=msg):
ser.str.replace(pat, "", flags=re.IGNORECASE, regex=True)
with pytest.raises(ValueError, match=msg):
ser.str.replace(pat, "", case=False, regex=True)
with pytest.raises(ValueError, match=msg):
ser.str.replace(pat, "", case=True, regex=True)
def test_replace_compiled_regex_callable(any_string_dtype):
# test with callable
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
repl = lambda m: m.group(0).swapcase()
pat = re.compile("[a-z][A-Z]{2}")
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace(pat, repl, n=2, regex=True)
expected = Series(["foObaD__baRbaD", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"regex,expected", [(True, ["bao", "bao", np.nan]), (False, ["bao", "foo", np.nan])]
)
def test_replace_literal(regex, expected, any_string_dtype):
# GH16808 literal replace (regex=False vs regex=True)
ser = Series(["f.o", "foo", np.nan], dtype=any_string_dtype)
expected = Series(expected, dtype=any_string_dtype)
result = ser.str.replace("f.", "ba", regex=regex)
tm.assert_series_equal(result, expected)
def test_replace_literal_callable_raises(any_string_dtype):
ser = Series([], dtype=any_string_dtype)
repl = lambda m: m.group(0).swapcase()
msg = "Cannot use a callable replacement when regex=False"
with pytest.raises(ValueError, match=msg):
ser.str.replace("abc", repl, regex=False)
def test_replace_literal_compiled_raises(any_string_dtype):
ser = Series([], dtype=any_string_dtype)
pat = re.compile("[a-z][A-Z]{2}")
msg = "Cannot use a compiled regex as replacement pattern with regex=False"
with pytest.raises(ValueError, match=msg):
ser.str.replace(pat, "", regex=False)
def test_replace_moar(any_string_dtype):
# PR #1179
ser = Series(
["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
dtype=any_string_dtype,
)
result = ser.str.replace("A", "YYY")
expected = Series(
["YYY", "B", "C", "YYYaba", "Baca", "", np.nan, "CYYYBYYY", "dog", "cat"],
dtype=any_string_dtype,
)
tm.assert_series_equal(result, expected)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace("A", "YYY", case=False)
expected = Series(
[
"YYY",
"B",
"C",
"YYYYYYbYYY",
"BYYYcYYY",
"",
np.nan,
"CYYYBYYY",
"dog",
"cYYYt",
],
dtype=any_string_dtype,
)
tm.assert_series_equal(result, expected)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace("^.a|dog", "XX-XX ", case=False, regex=True)
expected = Series(
[
"A",
"B",
"C",
"XX-XX ba",
"XX-XX ca",
"",
np.nan,
"XX-XX BA",
"XX-XX ",
"XX-XX t",
],
dtype=any_string_dtype,
)
tm.assert_series_equal(result, expected)
def test_replace_not_case_sensitive_not_regex(any_string_dtype):
# https://github.com/pandas-dev/pandas/issues/41602
ser = Series(["A.", "a.", "Ab", "ab", np.nan], dtype=any_string_dtype)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace("a", "c", case=False, regex=False)
expected = Series(["c.", "c.", "cb", "cb", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace("a.", "c.", case=False, regex=False)
expected = Series(["c.", "c.", "Ab", "ab", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_replace_regex(any_string_dtype):
# https://github.com/pandas-dev/pandas/pull/24809
s = Series(["a", "b", "ac", np.nan, ""], dtype=any_string_dtype)
result = s.str.replace("^.$", "a", regex=True)
expected = Series(["a", "a", "ac", np.nan, ""], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("regex", [True, False])
def test_replace_regex_single_character(regex, any_string_dtype):
# https://github.com/pandas-dev/pandas/pull/24809, enforced in 2.0
# GH 24804
s = Series(["a.b", ".", "b", np.nan, ""], dtype=any_string_dtype)
result = s.str.replace(".", "a", regex=regex)
if regex:
expected = Series(["aaa", "a", "a", np.nan, ""], dtype=any_string_dtype)
else:
expected = Series(["aab", "a", "b", np.nan, ""], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
# str.match
# --------------------------------------------------------------------------------------
def test_match(any_string_dtype):
# New match behavior introduced in 0.13
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
result = values.str.match(".*(BAD[_]+).*(BAD)")
expected = Series([True, np.nan, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
values = Series(
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
)
result = values.str.match(".*BAD[_]+.*BAD")
expected = Series([True, True, np.nan, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = values.str.match("BAD[_]+.*BAD")
expected = Series([False, True, np.nan, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
values = Series(
["fooBAD__barBAD", "^BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
)
result = values.str.match("^BAD[_]+.*BAD")
expected = Series([False, False, np.nan, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = values.str.match("\\^BAD[_]+.*BAD")
expected = Series([False, True, np.nan, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_match_mixed_object():
mixed = Series(
[
"aBAD_BAD",
np.nan,
"BAD_b_BAD",
True,
datetime.today(),
"foo",
None,
1,
2.0,
]
)
result = Series(mixed).str.match(".*(BAD[_]+).*(BAD)")
expected = Series([True, np.nan, True, np.nan, np.nan, False, None, np.nan, np.nan])
assert isinstance(result, Series)
tm.assert_series_equal(result, expected)
def test_match_na_kwarg(any_string_dtype):
# GH #6609
s = Series(["a", "b", np.nan], dtype=any_string_dtype)
result = s.str.match("a", na=False)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([True, False, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = s.str.match("a")
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([True, False, np.nan], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_match_case_kwarg(any_string_dtype):
values = Series(["ab", "AB", "abc", "ABC"], dtype=any_string_dtype)
result = values.str.match("ab", case=False)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([True, True, True, True], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
# str.fullmatch
# --------------------------------------------------------------------------------------
def test_fullmatch(any_string_dtype):
# GH 32806
ser = Series(
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
)
result = ser.str.fullmatch(".*BAD[_]+.*BAD")
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([True, False, np.nan, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_fullmatch_dollar_literal(any_string_dtype):
# GH 56652
ser = Series(["foo", "foo$foo", np.nan, "foo$"], dtype=any_string_dtype)
result = ser.str.fullmatch("foo\\$")
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([False, False, np.nan, True], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_fullmatch_na_kwarg(any_string_dtype):
ser = Series(
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
)
result = ser.str.fullmatch(".*BAD[_]+.*BAD", na=False)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([True, False, False, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_fullmatch_case_kwarg(any_string_dtype):
ser = Series(["ab", "AB", "abc", "ABC"], dtype=any_string_dtype)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([True, False, False, False], dtype=expected_dtype)
result = ser.str.fullmatch("ab", case=True)
tm.assert_series_equal(result, expected)
expected = Series([True, True, False, False], dtype=expected_dtype)
result = ser.str.fullmatch("ab", case=False)
tm.assert_series_equal(result, expected)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.fullmatch("ab", flags=re.IGNORECASE)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
# str.findall
# --------------------------------------------------------------------------------------
def test_findall(any_string_dtype):
ser = Series(["fooBAD__barBAD", np.nan, "foo", "BAD"], dtype=any_string_dtype)
result = ser.str.findall("BAD[_]*")
expected = Series([["BAD__", "BAD"], np.nan, [], ["BAD"]])
expected = _convert_na_value(ser, expected)
tm.assert_series_equal(result, expected)
def test_findall_mixed_object():
ser = Series(
[
"fooBAD__barBAD",
np.nan,
"foo",
True,
datetime.today(),
"BAD",
None,
1,
2.0,
]
)
result = ser.str.findall("BAD[_]*")
expected = Series(
[
["BAD__", "BAD"],
np.nan,
[],
np.nan,
np.nan,
["BAD"],
None,
np.nan,
np.nan,
]
)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
# str.find
# --------------------------------------------------------------------------------------
def test_find(any_string_dtype):
ser = Series(
["ABCDEFG", "BCDEFEF", "DEFGHIJEF", "EFGHEF", "XXXX"], dtype=any_string_dtype
)
expected_dtype = np.int64 if any_string_dtype in object_pyarrow_numpy else "Int64"
result = ser.str.find("EF")
expected = Series([4, 3, 1, 0, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
expected = np.array([v.find("EF") for v in np.array(ser)], dtype=np.int64)
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
result = ser.str.rfind("EF")
expected = Series([4, 5, 7, 4, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
expected = np.array([v.rfind("EF") for v in np.array(ser)], dtype=np.int64)
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
result = ser.str.find("EF", 3)
expected = Series([4, 3, 7, 4, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
expected = np.array([v.find("EF", 3) for v in np.array(ser)], dtype=np.int64)
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
result = ser.str.rfind("EF", 3)
expected = Series([4, 5, 7, 4, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
expected = np.array([v.rfind("EF", 3) for v in np.array(ser)], dtype=np.int64)
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
result = ser.str.find("EF", 3, 6)
expected = Series([4, 3, -1, 4, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
expected = np.array([v.find("EF", 3, 6) for v in np.array(ser)], dtype=np.int64)
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
result = ser.str.rfind("EF", 3, 6)
expected = Series([4, 3, -1, 4, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
expected = np.array([v.rfind("EF", 3, 6) for v in np.array(ser)], dtype=np.int64)
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
def test_find_bad_arg_raises(any_string_dtype):
ser = Series([], dtype=any_string_dtype)
with pytest.raises(TypeError, match="expected a string object, not int"):
ser.str.find(0)
with pytest.raises(TypeError, match="expected a string object, not int"):
ser.str.rfind(0)
def test_find_nan(any_string_dtype):
ser = Series(
["ABCDEFG", np.nan, "DEFGHIJEF", np.nan, "XXXX"], dtype=any_string_dtype
)
expected_dtype = np.float64 if any_string_dtype in object_pyarrow_numpy else "Int64"
result = ser.str.find("EF")
expected = Series([4, np.nan, 1, np.nan, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = ser.str.rfind("EF")
expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = ser.str.find("EF", 3)
expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = ser.str.rfind("EF", 3)
expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = ser.str.find("EF", 3, 6)
expected = Series([4, np.nan, -1, np.nan, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = ser.str.rfind("EF", 3, 6)
expected = Series([4, np.nan, -1, np.nan, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
# str.translate
# --------------------------------------------------------------------------------------
@pytest.mark.parametrize(
"infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))]
)
def test_translate(index_or_series, any_string_dtype, infer_string):
obj = index_or_series(
["abcdefg", "abcc", "cdddfg", "cdefggg"], dtype=any_string_dtype
)
table = str.maketrans("abc", "cde")
result = obj.str.translate(table)
expected = index_or_series(
["cdedefg", "cdee", "edddfg", "edefggg"], dtype=any_string_dtype
)
tm.assert_equal(result, expected)
def test_translate_mixed_object():
# Series with non-string values
s = Series(["a", "b", "c", 1.2])
table = str.maketrans("abc", "cde")
expected = Series(["c", "d", "e", np.nan], dtype=object)
result = s.str.translate(table)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
def test_flags_kwarg(any_string_dtype):
data = {
"Dave": "dave@google.com",
"Steve": "steve@gmail.com",
"Rob": "rob@gmail.com",
"Wes": np.nan,
}
data = Series(data, dtype=any_string_dtype)
pat = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"
use_pyarrow = using_pyarrow(any_string_dtype)
result = data.str.extract(pat, flags=re.IGNORECASE, expand=True)
assert result.iloc[0].tolist() == ["dave", "google", "com"]
with tm.maybe_produces_warning(PerformanceWarning, use_pyarrow):
result = data.str.match(pat, flags=re.IGNORECASE)
assert result.iloc[0]
with tm.maybe_produces_warning(PerformanceWarning, use_pyarrow):
result = data.str.fullmatch(pat, flags=re.IGNORECASE)
assert result.iloc[0]
result = data.str.findall(pat, flags=re.IGNORECASE)
assert result.iloc[0][0] == ("dave", "google", "com")
result = data.str.count(pat, flags=re.IGNORECASE)
assert result.iloc[0] == 1
msg = "has match groups"
with tm.assert_produces_warning(
UserWarning, match=msg, raise_on_extra_warnings=not use_pyarrow
):
result = data.str.contains(pat, flags=re.IGNORECASE)
assert result.iloc[0]