111 lines
3.8 KiB
Python
111 lines
3.8 KiB
Python
|
from datetime import (
|
||
|
datetime,
|
||
|
timezone,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas._libs.tslibs.dtypes import NpyDatetimeUnit
|
||
|
from pandas._libs.tslibs.strptime import array_strptime
|
||
|
|
||
|
from pandas import (
|
||
|
NaT,
|
||
|
Timestamp,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
creso_infer = NpyDatetimeUnit.NPY_FR_GENERIC.value
|
||
|
|
||
|
|
||
|
class TestArrayStrptimeResolutionInference:
|
||
|
def test_array_strptime_resolution_all_nat(self):
|
||
|
arr = np.array([NaT, np.nan], dtype=object)
|
||
|
|
||
|
fmt = "%Y-%m-%d %H:%M:%S"
|
||
|
res, _ = array_strptime(arr, fmt=fmt, utc=False, creso=creso_infer)
|
||
|
assert res.dtype == "M8[s]"
|
||
|
|
||
|
res, _ = array_strptime(arr, fmt=fmt, utc=True, creso=creso_infer)
|
||
|
assert res.dtype == "M8[s]"
|
||
|
|
||
|
@pytest.mark.parametrize("tz", [None, timezone.utc])
|
||
|
def test_array_strptime_resolution_inference_homogeneous_strings(self, tz):
|
||
|
dt = datetime(2016, 1, 2, 3, 4, 5, 678900, tzinfo=tz)
|
||
|
|
||
|
fmt = "%Y-%m-%d %H:%M:%S"
|
||
|
dtstr = dt.strftime(fmt)
|
||
|
arr = np.array([dtstr] * 3, dtype=object)
|
||
|
expected = np.array([dt.replace(tzinfo=None)] * 3, dtype="M8[s]")
|
||
|
|
||
|
res, _ = array_strptime(arr, fmt=fmt, utc=False, creso=creso_infer)
|
||
|
tm.assert_numpy_array_equal(res, expected)
|
||
|
|
||
|
fmt = "%Y-%m-%d %H:%M:%S.%f"
|
||
|
dtstr = dt.strftime(fmt)
|
||
|
arr = np.array([dtstr] * 3, dtype=object)
|
||
|
expected = np.array([dt.replace(tzinfo=None)] * 3, dtype="M8[us]")
|
||
|
|
||
|
res, _ = array_strptime(arr, fmt=fmt, utc=False, creso=creso_infer)
|
||
|
tm.assert_numpy_array_equal(res, expected)
|
||
|
|
||
|
fmt = "ISO8601"
|
||
|
res, _ = array_strptime(arr, fmt=fmt, utc=False, creso=creso_infer)
|
||
|
tm.assert_numpy_array_equal(res, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("tz", [None, timezone.utc])
|
||
|
def test_array_strptime_resolution_mixed(self, tz):
|
||
|
dt = datetime(2016, 1, 2, 3, 4, 5, 678900, tzinfo=tz)
|
||
|
|
||
|
ts = Timestamp(dt).as_unit("ns")
|
||
|
|
||
|
arr = np.array([dt, ts], dtype=object)
|
||
|
expected = np.array(
|
||
|
[Timestamp(dt).as_unit("ns").asm8, ts.asm8],
|
||
|
dtype="M8[ns]",
|
||
|
)
|
||
|
|
||
|
fmt = "%Y-%m-%d %H:%M:%S"
|
||
|
res, _ = array_strptime(arr, fmt=fmt, utc=False, creso=creso_infer)
|
||
|
tm.assert_numpy_array_equal(res, expected)
|
||
|
|
||
|
fmt = "ISO8601"
|
||
|
res, _ = array_strptime(arr, fmt=fmt, utc=False, creso=creso_infer)
|
||
|
tm.assert_numpy_array_equal(res, expected)
|
||
|
|
||
|
def test_array_strptime_resolution_todaynow(self):
|
||
|
# specifically case where today/now is the *first* item
|
||
|
vals = np.array(["today", np.datetime64("2017-01-01", "us")], dtype=object)
|
||
|
|
||
|
now = Timestamp("now").asm8
|
||
|
res, _ = array_strptime(vals, fmt="%Y-%m-%d", utc=False, creso=creso_infer)
|
||
|
res2, _ = array_strptime(
|
||
|
vals[::-1], fmt="%Y-%m-%d", utc=False, creso=creso_infer
|
||
|
)
|
||
|
|
||
|
# 1s is an arbitrary cutoff for call overhead; in local testing the
|
||
|
# actual difference is about 250us
|
||
|
tolerance = np.timedelta64(1, "s")
|
||
|
|
||
|
assert res.dtype == "M8[us]"
|
||
|
assert abs(res[0] - now) < tolerance
|
||
|
assert res[1] == vals[1]
|
||
|
|
||
|
assert res2.dtype == "M8[us]"
|
||
|
assert abs(res2[1] - now) < tolerance * 2
|
||
|
assert res2[0] == vals[1]
|
||
|
|
||
|
def test_array_strptime_str_outside_nano_range(self):
|
||
|
vals = np.array(["2401-09-15"], dtype=object)
|
||
|
expected = np.array(["2401-09-15"], dtype="M8[s]")
|
||
|
fmt = "ISO8601"
|
||
|
res, _ = array_strptime(vals, fmt=fmt, creso=creso_infer)
|
||
|
tm.assert_numpy_array_equal(res, expected)
|
||
|
|
||
|
# non-iso -> different path
|
||
|
vals2 = np.array(["Sep 15, 2401"], dtype=object)
|
||
|
expected2 = np.array(["2401-09-15"], dtype="M8[s]")
|
||
|
fmt2 = "%b %d, %Y"
|
||
|
res2, _ = array_strptime(vals2, fmt=fmt2, creso=creso_infer)
|
||
|
tm.assert_numpy_array_equal(res2, expected2)
|