3RNN/Lib/site-packages/scipy/signal/_short_time_fft.py

1677 lines
72 KiB
Python
Raw Normal View History

2024-05-26 19:49:15 +02:00
"""Implementation of an FFT-based Short-time Fourier Transform. """
# Implementation Notes for this file (as of 2023-07)
# --------------------------------------------------
# * MyPy version 1.1.1 does not seem to support decorated property methods
# properly. Hence, applying ``@property`` to methods decorated with `@cache``
# (as tried with the ``lower_border_end`` method) causes a mypy error when
# accessing it as an index (e.g., ``SFT.lower_border_end[0]``).
# * Since the method `stft` and `istft` have identical names as the legacy
# functions in the signal module, referencing them as HTML link in the
# docstrings has to be done by an explicit `~ShortTimeFFT.stft` instead of an
# ambiguous `stft` (The ``~`` hides the class / module name).
# * The HTML documentation currently renders each method/property on a separate
# page without reference to the parent class. Thus, a link to `ShortTimeFFT`
# was added to the "See Also" section of each method/property. These links
# can be removed, when SciPy updates ``pydata-sphinx-theme`` to >= 0.13.3
# (currently 0.9). Consult Issue 18512 and PR 16660 for further details.
#
# Provides typing union operator ``|`` in Python 3.9:
from __future__ import annotations
# Linter does not allow to import ``Generator`` from ``typing`` module:
from collections.abc import Generator
from functools import cache, lru_cache, partial
from typing import Callable, get_args, Literal
import numpy as np
import scipy.fft as fft_lib
from scipy.signal import detrend
from scipy.signal.windows import get_window
__all__ = ['ShortTimeFFT']
#: Allowed values for parameter `padding` of method `ShortTimeFFT.stft()`:
PAD_TYPE = Literal['zeros', 'edge', 'even', 'odd']
#: Allowed values for property `ShortTimeFFT.fft_mode`:
FFT_MODE_TYPE = Literal['twosided', 'centered', 'onesided', 'onesided2X']
def _calc_dual_canonical_window(win: np.ndarray, hop: int) -> np.ndarray:
"""Calculate canonical dual window for 1d window `win` and a time step
of `hop` samples.
A ``ValueError`` is raised, if the inversion fails.
This is a separate function not a method, since it is also used in the
class method ``ShortTimeFFT.from_dual()``.
"""
if hop > len(win):
raise ValueError(f"{hop=} is larger than window length of {len(win)}" +
" => STFT not invertible!")
if issubclass(win.dtype.type, np.integer):
raise ValueError("Parameter 'win' cannot be of integer type, but " +
f"{win.dtype=} => STFT not invertible!")
# The calculation of `relative_resolution` does not work for ints.
# Furthermore, `win / DD` casts the integers away, thus an implicit
# cast is avoided, which can always cause confusion when using 32-Bit
# floats.
w2 = win.real**2 + win.imag**2 # win*win.conj() does not ensure w2 is real
DD = w2.copy()
for k_ in range(hop, len(win), hop):
DD[k_:] += w2[:-k_]
DD[:-k_] += w2[k_:]
# check DD > 0:
relative_resolution = np.finfo(win.dtype).resolution * max(DD)
if not np.all(DD >= relative_resolution):
raise ValueError("Short-time Fourier Transform not invertible!")
return win / DD
# noinspection PyShadowingNames
class ShortTimeFFT:
r"""Provide a parametrized discrete Short-time Fourier transform (stft)
and its inverse (istft).
.. currentmodule:: scipy.signal.ShortTimeFFT
The `~ShortTimeFFT.stft` calculates sequential FFTs by sliding a
window (`win`) over an input signal by `hop` increments. It can be used to
quantify the change of the spectrum over time.
The `~ShortTimeFFT.stft` is represented by a complex-valued matrix S[q,p]
where the p-th column represents an FFT with the window centered at the
time t[p] = p * `delta_t` = p * `hop` * `T` where `T` is the sampling
interval of the input signal. The q-th row represents the values at the
frequency f[q] = q * `delta_f` with `delta_f` = 1 / (`mfft` * `T`) being
the bin width of the FFT.
The inverse STFT `~ShortTimeFFT.istft` is calculated by reversing the steps
of the STFT: Take the IFFT of the p-th slice of S[q,p] and multiply the
result with the so-called dual window (see `dual_win`). Shift the result by
p * `delta_t` and add the result to previous shifted results to reconstruct
the signal. If only the dual window is known and the STFT is invertible,
`from_dual` can be used to instantiate this class.
Due to the convention of time t = 0 being at the first sample of the input
signal, the STFT values typically have negative time slots. Hence,
negative indexes like `p_min` or `k_min` do not indicate counting
backwards from an array's end like in standard Python indexing but being
left of t = 0.
More detailed information can be found in the :ref:`tutorial_stft` section
of the :ref:`user_guide`.
Note that all parameters of the initializer, except `scale_to` (which uses
`scaling`) have identical named attributes.
Parameters
----------
win : np.ndarray
The window must be a real- or complex-valued 1d array.
hop : int
The increment in samples, by which the window is shifted in each step.
fs : float
Sampling frequency of input signal and window. Its relation to the
sampling interval `T` is ``T = 1 / fs``.
fft_mode : 'twosided', 'centered', 'onesided', 'onesided2X'
Mode of FFT to be used (default 'onesided').
See property `fft_mode` for details.
mfft: int | None
Length of the FFT used, if a zero padded FFT is desired.
If ``None`` (default), the length of the window `win` is used.
dual_win : np.ndarray | None
The dual window of `win`. If set to ``None``, it is calculated if
needed.
scale_to : 'magnitude', 'psd' | None
If not ``None`` (default) the window function is scaled, so each STFT
column represents either a 'magnitude' or a power spectral density
('psd') spectrum. This parameter sets the property `scaling` to the
same value. See method `scale_to` for details.
phase_shift : int | None
If set, add a linear phase `phase_shift` / `mfft` * `f` to each
frequency `f`. The default value 0 ensures that there is no phase shift
on the zeroth slice (in which t=0 is centered). See property
`phase_shift` for more details.
Examples
--------
The following example shows the magnitude of the STFT of a sine with
varying frequency :math:`f_i(t)` (marked by a red dashed line in the plot):
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import ShortTimeFFT
>>> from scipy.signal.windows import gaussian
...
>>> T_x, N = 1 / 20, 1000 # 20 Hz sampling rate for 50 s signal
>>> t_x = np.arange(N) * T_x # time indexes for signal
>>> f_i = 1 * np.arctan((t_x - t_x[N // 2]) / 2) + 5 # varying frequency
>>> x = np.sin(2*np.pi*np.cumsum(f_i)*T_x) # the signal
The utilized Gaussian window is 50 samples or 2.5 s long. The parameter
``mfft=200`` in `ShortTimeFFT` causes the spectrum to be oversampled
by a factor of 4:
>>> g_std = 8 # standard deviation for Gaussian window in samples
>>> w = gaussian(50, std=g_std, sym=True) # symmetric Gaussian window
>>> SFT = ShortTimeFFT(w, hop=10, fs=1/T_x, mfft=200, scale_to='magnitude')
>>> Sx = SFT.stft(x) # perform the STFT
In the plot, the time extent of the signal `x` is marked by vertical dashed
lines. Note that the SFT produces values outside the time range of `x`. The
shaded areas on the left and the right indicate border effects caused
by the window slices in that area not fully being inside time range of
`x`:
>>> fig1, ax1 = plt.subplots(figsize=(6., 4.)) # enlarge plot a bit
>>> t_lo, t_hi = SFT.extent(N)[:2] # time range of plot
>>> ax1.set_title(rf"STFT ({SFT.m_num*SFT.T:g}$\,s$ Gaussian window, " +
... rf"$\sigma_t={g_std*SFT.T}\,$s)")
>>> ax1.set(xlabel=f"Time $t$ in seconds ({SFT.p_num(N)} slices, " +
... rf"$\Delta t = {SFT.delta_t:g}\,$s)",
... ylabel=f"Freq. $f$ in Hz ({SFT.f_pts} bins, " +
... rf"$\Delta f = {SFT.delta_f:g}\,$Hz)",
... xlim=(t_lo, t_hi))
...
>>> im1 = ax1.imshow(abs(Sx), origin='lower', aspect='auto',
... extent=SFT.extent(N), cmap='viridis')
>>> ax1.plot(t_x, f_i, 'r--', alpha=.5, label='$f_i(t)$')
>>> fig1.colorbar(im1, label="Magnitude $|S_x(t, f)|$")
...
>>> # Shade areas where window slices stick out to the side:
>>> for t0_, t1_ in [(t_lo, SFT.lower_border_end[0] * SFT.T),
... (SFT.upper_border_begin(N)[0] * SFT.T, t_hi)]:
... ax1.axvspan(t0_, t1_, color='w', linewidth=0, alpha=.2)
>>> for t_ in [0, N * SFT.T]: # mark signal borders with vertical line:
... ax1.axvline(t_, color='y', linestyle='--', alpha=0.5)
>>> ax1.legend()
>>> fig1.tight_layout()
>>> plt.show()
Reconstructing the signal with the `~ShortTimeFFT.istft` is
straightforward, but note that the length of `x1` should be specified,
since the SFT length increases in `hop` steps:
>>> SFT.invertible # check if invertible
True
>>> x1 = SFT.istft(Sx, k1=N)
>>> np.allclose(x, x1)
True
It is possible to calculate the SFT of signal parts:
>>> p_q = SFT.nearest_k_p(N // 2)
>>> Sx0 = SFT.stft(x[:p_q])
>>> Sx1 = SFT.stft(x[p_q:])
When assembling sequential STFT parts together, the overlap needs to be
considered:
>>> p0_ub = SFT.upper_border_begin(p_q)[1] - SFT.p_min
>>> p1_le = SFT.lower_border_end[1] - SFT.p_min
>>> Sx01 = np.hstack((Sx0[:, :p0_ub],
... Sx0[:, p0_ub:] + Sx1[:, :p1_le],
... Sx1[:, p1_le:]))
>>> np.allclose(Sx01, Sx) # Compare with SFT of complete signal
True
It is also possible to calculate the `itsft` for signal parts:
>>> y_p = SFT.istft(Sx, N//3, N//2)
>>> np.allclose(y_p, x[N//3:N//2])
True
"""
# immutable attributes (only have getters but no setters):
_win: np.ndarray # window
_dual_win: np.ndarray | None = None # canonical dual window
_hop: int # Step of STFT in number of samples
# mutable attributes:
_fs: float # sampling frequency of input signal and window
_fft_mode: FFT_MODE_TYPE = 'onesided' # Mode of FFT to use
_mfft: int # length of FFT used - defaults to len(win)
_scaling: Literal['magnitude', 'psd'] | None = None # Scaling of _win
_phase_shift: int | None # amount to shift phase of FFT in samples
# attributes for caching calculated values:
_fac_mag: float | None = None
_fac_psd: float | None = None
_lower_border_end: tuple[int, int] | None = None
def __init__(self, win: np.ndarray, hop: int, fs: float, *,
fft_mode: FFT_MODE_TYPE = 'onesided',
mfft: int | None = None,
dual_win: np.ndarray | None = None,
scale_to: Literal['magnitude', 'psd'] | None = None,
phase_shift: int | None = 0):
if not (win.ndim == 1 and win.size > 0):
raise ValueError(f"Parameter win must be 1d, but {win.shape=}!")
if not all(np.isfinite(win)):
raise ValueError("Parameter win must have finite entries!")
if not (hop >= 1 and isinstance(hop, int)):
raise ValueError(f"Parameter {hop=} is not an integer >= 1!")
self._win, self._hop, self.fs = win, hop, fs
self.mfft = len(win) if mfft is None else mfft
if dual_win is not None:
if dual_win.shape != win.shape:
raise ValueError(f"{dual_win.shape=} must equal {win.shape=}!")
if not all(np.isfinite(dual_win)):
raise ValueError("Parameter dual_win must be a finite array!")
self._dual_win = dual_win # needs to be set before scaling
if scale_to is not None: # needs to be set before fft_mode
self.scale_to(scale_to)
self.fft_mode, self.phase_shift = fft_mode, phase_shift
@classmethod
def from_dual(cls, dual_win: np.ndarray, hop: int, fs: float, *,
fft_mode: FFT_MODE_TYPE = 'onesided',
mfft: int | None = None,
scale_to: Literal['magnitude', 'psd'] | None = None,
phase_shift: int | None = 0):
r"""Instantiate a `ShortTimeFFT` by only providing a dual window.
If an STFT is invertible, it is possible to calculate the window `win`
from a given dual window `dual_win`. All other parameters have the
same meaning as in the initializer of `ShortTimeFFT`.
As explained in the :ref:`tutorial_stft` section of the
:ref:`user_guide`, an invertible STFT can be interpreted as series
expansion of time-shifted and frequency modulated dual windows. E.g.,
the series coefficient S[q,p] belongs to the term, which shifted
`dual_win` by p * `delta_t` and multiplied it by
exp( 2 * j * pi * t * q * `delta_f`).
Examples
--------
The following example discusses decomposing a signal into time- and
frequency-shifted Gaussians. A Gaussian with standard deviation of
one made up of 51 samples will be used:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import ShortTimeFFT
>>> from scipy.signal.windows import gaussian
...
>>> T, N = 0.1, 51
>>> d_win = gaussian(N, std=1/T, sym=True) # symmetric Gaussian window
>>> t = T * (np.arange(N) - N//2)
...
>>> fg1, ax1 = plt.subplots()
>>> ax1.set_title(r"Dual Window: Gaussian with $\sigma_t=1$")
>>> ax1.set(xlabel=f"Time $t$ in seconds ({N} samples, $T={T}$ s)",
... xlim=(t[0], t[-1]), ylim=(0, 1.1*max(d_win)))
>>> ax1.plot(t, d_win, 'C0-')
The following plot with the overlap of 41, 11 and 2 samples show how
the `hop` interval affects the shape of the window `win`:
>>> fig2, axx = plt.subplots(3, 1, sharex='all')
...
>>> axx[0].set_title(r"Windows for hop$\in\{10, 40, 49\}$")
>>> for c_, h_ in enumerate([10, 40, 49]):
... SFT = ShortTimeFFT.from_dual(d_win, h_, 1/T)
... axx[c_].plot(t + h_ * T, SFT.win, 'k--', alpha=.3, label=None)
... axx[c_].plot(t - h_ * T, SFT.win, 'k:', alpha=.3, label=None)
... axx[c_].plot(t, SFT.win, f'C{c_+1}',
... label=r"$\Delta t=%0.1f\,$s" % SFT.delta_t)
... axx[c_].set_ylim(0, 1.1*max(SFT.win))
... axx[c_].legend(loc='center')
>>> axx[-1].set(xlabel=f"Time $t$ in seconds ({N} samples, $T={T}$ s)",
... xlim=(t[0], t[-1]))
>>> plt.show()
Beside the window `win` centered at t = 0 the previous (t = -`delta_t`)
and following window (t = `delta_t`) are depicted. It can be seen that
for small `hop` intervals, the window is compact and smooth, having a
good time-frequency concentration in the STFT. For the large `hop`
interval of 4.9 s, the window has small values around t = 0, which are
not covered by the overlap of the adjacent windows, which could lead to
numeric inaccuracies. Furthermore, the peaky shape at the beginning and
the end of the window points to a higher bandwidth, resulting in a
poorer time-frequency resolution of the STFT.
Hence, the choice of the `hop` interval will be a compromise between
a time-frequency resolution and memory requirements demanded by small
`hop` sizes.
See Also
--------
from_window: Create instance by wrapping `get_window`.
ShortTimeFFT: Create instance using standard initializer.
"""
win = _calc_dual_canonical_window(dual_win, hop)
return cls(win=win, hop=hop, fs=fs, fft_mode=fft_mode, mfft=mfft,
dual_win=dual_win, scale_to=scale_to,
phase_shift=phase_shift)
@classmethod
def from_window(cls, win_param: str | tuple | float,
fs: float, nperseg: int, noverlap: int, *,
symmetric_win: bool = False,
fft_mode: FFT_MODE_TYPE = 'onesided',
mfft: int | None = None,
scale_to: Literal['magnitude', 'psd'] | None = None,
phase_shift: int | None = 0):
"""Instantiate `ShortTimeFFT` by using `get_window`.
The method `get_window` is used to create a window of length
`nperseg`. The parameter names `noverlap`, and `nperseg` are used here,
since they more inline with other classical STFT libraries.
Parameters
----------
win_param: Union[str, tuple, float],
Parameters passed to `get_window`. For windows with no parameters,
it may be a string (e.g., ``'hann'``), for parametrized windows a
tuple, (e.g., ``('gaussian', 2.)``) or a single float specifying
the shape parameter of a kaiser window (i.e. ``4.`` and
``('kaiser', 4.)`` are equal. See `get_window` for more details.
fs : float
Sampling frequency of input signal. Its relation to the
sampling interval `T` is ``T = 1 / fs``.
nperseg: int
Window length in samples, which corresponds to the `m_num`.
noverlap: int
Window overlap in samples. It relates to the `hop` increment by
``hop = npsereg - noverlap``.
symmetric_win: bool
If ``True`` then a symmetric window is generated, else a periodic
window is generated (default). Though symmetric windows seem for
most applications to be more sensible, the default of a periodic
windows was chosen to correspond to the default of `get_window`.
fft_mode : 'twosided', 'centered', 'onesided', 'onesided2X'
Mode of FFT to be used (default 'onesided').
See property `fft_mode` for details.
mfft: int | None
Length of the FFT used, if a zero padded FFT is desired.
If ``None`` (default), the length of the window `win` is used.
scale_to : 'magnitude', 'psd' | None
If not ``None`` (default) the window function is scaled, so each
STFT column represents either a 'magnitude' or a power spectral
density ('psd') spectrum. This parameter sets the property
`scaling` to the same value. See method `scale_to` for details.
phase_shift : int | None
If set, add a linear phase `phase_shift` / `mfft` * `f` to each
frequency `f`. The default value 0 ensures that there is no phase
shift on the zeroth slice (in which t=0 is centered). See property
`phase_shift` for more details.
Examples
--------
The following instances ``SFT0`` and ``SFT1`` are equivalent:
>>> from scipy.signal import ShortTimeFFT, get_window
>>> nperseg = 9 # window length
>>> w = get_window(('gaussian', 2.), nperseg)
>>> fs = 128 # sampling frequency
>>> hop = 3 # increment of STFT time slice
>>> SFT0 = ShortTimeFFT(w, hop, fs=fs)
>>> SFT1 = ShortTimeFFT.from_window(('gaussian', 2.), fs, nperseg,
... noverlap=nperseg-hop)
See Also
--------
scipy.signal.get_window: Return a window of a given length and type.
from_dual: Create instance using dual window.
ShortTimeFFT: Create instance using standard initializer.
"""
win = get_window(win_param, nperseg, fftbins=not symmetric_win)
return cls(win, hop=nperseg-noverlap, fs=fs, fft_mode=fft_mode,
mfft=mfft, scale_to=scale_to, phase_shift=phase_shift)
@property
def win(self) -> np.ndarray:
"""Window function as real- or complex-valued 1d array.
This attribute is read only, since `dual_win` depends on it.
See Also
--------
dual_win: Canonical dual window.
m_num: Number of samples in window `win`.
m_num_mid: Center index of window `win`.
mfft: Length of input for the FFT used - may be larger than `m_num`.
hop: ime increment in signal samples for sliding window.
win: Window function as real- or complex-valued 1d array.
ShortTimeFFT: Class this property belongs to.
"""
return self._win
@property
def hop(self) -> int:
"""Time increment in signal samples for sliding window.
This attribute is read only, since `dual_win` depends on it.
See Also
--------
delta_t: Time increment of STFT (``hop*T``)
m_num: Number of samples in window `win`.
m_num_mid: Center index of window `win`.
mfft: Length of input for the FFT used - may be larger than `m_num`.
T: Sampling interval of input signal and of the window.
win: Window function as real- or complex-valued 1d array.
ShortTimeFFT: Class this property belongs to.
"""
return self._hop
@property
def T(self) -> float:
"""Sampling interval of input signal and of the window.
A ``ValueError`` is raised if it is set to a non-positive value.
See Also
--------
delta_t: Time increment of STFT (``hop*T``)
hop: Time increment in signal samples for sliding window.
fs: Sampling frequency (being ``1/T``)
t: Times of STFT for an input signal with `n` samples.
ShortTimeFFT: Class this property belongs to.
"""
return 1 / self._fs
@T.setter
def T(self, v: float):
"""Sampling interval of input signal and of the window.
A ``ValueError`` is raised if it is set to a non-positive value.
"""
if not (v > 0):
raise ValueError(f"Sampling interval T={v} must be positive!")
self._fs = 1 / v
@property
def fs(self) -> float:
"""Sampling frequency of input signal and of the window.
The sampling frequency is the inverse of the sampling interval `T`.
A ``ValueError`` is raised if it is set to a non-positive value.
See Also
--------
delta_t: Time increment of STFT (``hop*T``)
hop: Time increment in signal samples for sliding window.
T: Sampling interval of input signal and of the window (``1/fs``).
ShortTimeFFT: Class this property belongs to.
"""
return self._fs
@fs.setter
def fs(self, v: float):
"""Sampling frequency of input signal and of the window.
The sampling frequency is the inverse of the sampling interval `T`.
A ``ValueError`` is raised if it is set to a non-positive value.
"""
if not (v > 0):
raise ValueError(f"Sampling frequency fs={v} must be positive!")
self._fs = v
@property
def fft_mode(self) -> FFT_MODE_TYPE:
"""Mode of utilized FFT ('twosided', 'centered', 'onesided' or
'onesided2X').
It can have the following values:
'twosided':
Two-sided FFT, where values for the negative frequencies are in
upper half of the array. Corresponds to :func:`~scipy.fft.fft()`.
'centered':
Two-sided FFT with the values being ordered along monotonically
increasing frequencies. Corresponds to applying
:func:`~scipy.fft.fftshift()` to :func:`~scipy.fft.fft()`.
'onesided':
Calculates only values for non-negative frequency values.
Corresponds to :func:`~scipy.fft.rfft()`.
'onesided2X':
Like `onesided`, but the non-zero frequencies are doubled if
`scaling` is set to 'magnitude' or multiplied by ``sqrt(2)`` if
set to 'psd'. If `scaling` is ``None``, setting `fft_mode` to
`onesided2X` is not allowed.
If the FFT length `mfft` is even, the last FFT value is not paired,
and thus it is not scaled.
Note that `onesided` and `onesided2X` do not work for complex-valued signals or
complex-valued windows. Furthermore, the frequency values can be obtained by
reading the `f` property, and the number of samples by accessing the `f_pts`
property.
See Also
--------
delta_f: Width of the frequency bins of the STFT.
f: Frequencies values of the STFT.
f_pts: Width of the frequency bins of the STFT.
onesided_fft: True if a one-sided FFT is used.
scaling: Normalization applied to the window function
ShortTimeFFT: Class this property belongs to.
"""
return self._fft_mode
@fft_mode.setter
def fft_mode(self, t: FFT_MODE_TYPE):
"""Set mode of FFT.
Allowed values are 'twosided', 'centered', 'onesided', 'onesided2X'.
See the property `fft_mode` for more details.
"""
if t not in (fft_mode_types := get_args(FFT_MODE_TYPE)):
raise ValueError(f"fft_mode='{t}' not in {fft_mode_types}!")
if t in {'onesided', 'onesided2X'} and np.iscomplexobj(self.win):
raise ValueError(f"One-sided spectra, i.e., fft_mode='{t}', " +
"are not allowed for complex-valued windows!")
if t == 'onesided2X' and self.scaling is None:
raise ValueError(f"For scaling is None, fft_mode='{t}' is invalid!"
"Do scale_to('psd') or scale_to('magnitude')!")
self._fft_mode = t
@property
def mfft(self) -> int:
"""Length of input for the FFT used - may be larger than window
length `m_num`.
If not set, `mfft` defaults to the window length `m_num`.
See Also
--------
f_pts: Number of points along the frequency axis.
f: Frequencies values of the STFT.
m_num: Number of samples in window `win`.
ShortTimeFFT: Class this property belongs to.
"""
return self._mfft
@mfft.setter
def mfft(self, n_: int):
"""Setter for the length of FFT utilized.
See the property `mfft` for further details.
"""
if not (n_ >= self.m_num):
raise ValueError(f"Attribute mfft={n_} needs to be at least the " +
f"window length m_num={self.m_num}!")
self._mfft = n_
@property
def scaling(self) -> Literal['magnitude', 'psd'] | None:
"""Normalization applied to the window function
('magnitude', 'psd' or ``None``).
If not ``None``, the FFTs can be either interpreted as a magnitude or
a power spectral density spectrum.
The window function can be scaled by calling the `scale_to` method,
or it is set by the initializer parameter ``scale_to``.
See Also
--------
fac_magnitude: Scaling factor for to a magnitude spectrum.
fac_psd: Scaling factor for to a power spectral density spectrum.
fft_mode: Mode of utilized FFT
scale_to: Scale window to obtain 'magnitude' or 'psd' scaling.
ShortTimeFFT: Class this property belongs to.
"""
return self._scaling
def scale_to(self, scaling: Literal['magnitude', 'psd']):
"""Scale window to obtain 'magnitude' or 'psd' scaling for the STFT.
The window of a 'magnitude' spectrum has an integral of one, i.e., unit
area for non-negative windows. This ensures that absolute the values of
spectrum does not change if the length of the window changes (given
the input signal is stationary).
To represent the power spectral density ('psd') for varying length
windows the area of the absolute square of the window needs to be
unity.
The `scaling` property shows the current scaling. The properties
`fac_magnitude` and `fac_psd` show the scaling factors required to
scale the STFT values to a magnitude or a psd spectrum.
This method is called, if the initializer parameter `scale_to` is set.
See Also
--------
fac_magnitude: Scaling factor for to a magnitude spectrum.
fac_psd: Scaling factor for to a power spectral density spectrum.
fft_mode: Mode of utilized FFT
scaling: Normalization applied to the window function.
ShortTimeFFT: Class this method belongs to.
"""
if scaling not in (scaling_values := {'magnitude', 'psd'}):
raise ValueError(f"{scaling=} not in {scaling_values}!")
if self._scaling == scaling: # do nothing
return
s_fac = self.fac_psd if scaling == 'psd' else self.fac_magnitude
self._win = self._win * s_fac
if self._dual_win is not None:
self._dual_win = self._dual_win / s_fac
self._fac_mag, self._fac_psd = None, None # reset scaling factors
self._scaling = scaling
@property
def phase_shift(self) -> int | None:
"""If set, add linear phase `phase_shift` / `mfft` * `f` to each FFT
slice of frequency `f`.
Shifting (more precisely `rolling`) an `mfft`-point FFT input by
`phase_shift` samples results in a multiplication of the output by
``np.exp(2j*np.pi*q*phase_shift/mfft)`` at the frequency q * `delta_f`.
The default value 0 ensures that there is no phase shift on the
zeroth slice (in which t=0 is centered).
No phase shift (``phase_shift is None``) is equivalent to
``phase_shift = -mfft//2``. In this case slices are not shifted
before calculating the FFT.
The absolute value of `phase_shift` is limited to be less than `mfft`.
See Also
--------
delta_f: Width of the frequency bins of the STFT.
f: Frequencies values of the STFT.
mfft: Length of input for the FFT used
ShortTimeFFT: Class this property belongs to.
"""
return self._phase_shift
@phase_shift.setter
def phase_shift(self, v: int | None):
"""The absolute value of the phase shift needs to be less than mfft
samples.
See the `phase_shift` getter method for more details.
"""
if v is None:
self._phase_shift = v
return
if not isinstance(v, int):
raise ValueError(f"phase_shift={v} has the unit samples. Hence " +
"it needs to be an int or it may be None!")
if not (-self.mfft < v < self.mfft):
raise ValueError("-mfft < phase_shift < mfft does not hold " +
f"for mfft={self.mfft}, phase_shift={v}!")
self._phase_shift = v
def _x_slices(self, x: np.ndarray, k_off: int, p0: int, p1: int,
padding: PAD_TYPE) -> Generator[np.ndarray, None, None]:
"""Generate signal slices along last axis of `x`.
This method is only used by `stft_detrend`. The parameters are
described in `~ShortTimeFFT.stft`.
"""
if padding not in (padding_types := get_args(PAD_TYPE)):
raise ValueError(f"Parameter {padding=} not in {padding_types}!")
pad_kws: dict[str, dict] = { # possible keywords to pass to np.pad:
'zeros': dict(mode='constant', constant_values=(0, 0)),
'edge': dict(mode='edge'),
'even': dict(mode='reflect', reflect_type='even'),
'odd': dict(mode='reflect', reflect_type='odd'),
} # typing of pad_kws is needed to make mypy happy
n, n1 = x.shape[-1], (p1 - p0) * self.hop
k0 = p0 * self.hop - self.m_num_mid + k_off # start sample
k1 = k0 + n1 + self.m_num # end sample
i0, i1 = max(k0, 0), min(k1, n) # indexes to shorten x
# dimensions for padding x:
pad_width = [(0, 0)] * (x.ndim-1) + [(-min(k0, 0), max(k1 - n, 0))]
x1 = np.pad(x[..., i0:i1], pad_width, **pad_kws[padding])
for k_ in range(0, n1, self.hop):
yield x1[..., k_:k_ + self.m_num]
def stft(self, x: np.ndarray, p0: int | None = None,
p1: int | None = None, *, k_offset: int = 0,
padding: PAD_TYPE = 'zeros', axis: int = -1) \
-> np.ndarray:
"""Perform the short-time Fourier transform.
A two-dimensional matrix with ``p1-p0`` columns is calculated.
The `f_pts` rows represent value at the frequencies `f`. The q-th
column of the windowed FFT with the window `win` is centered at t[q].
The columns represent the values at the frequencies `f`.
Parameters
----------
x
The input signal as real or complex valued array. For complex values, the
property `fft_mode` must be set to 'twosided' or 'centered'.
p0
The first element of the range of slices to calculate. If ``None``
then it is set to :attr:`p_min`, which is the smallest possible
slice.
p1
The end of the array. If ``None`` then `p_max(n)` is used.
k_offset
Index of first sample (t = 0) in `x`.
padding
Kind of values which are added, when the sliding window sticks out
on either the lower or upper end of the input `x`. Zeros are added
if the default 'zeros' is set. For 'edge' either the first or the
last value of `x` is used. 'even' pads by reflecting the
signal on the first or last sample and 'odd' additionally
multiplies it with -1.
axis
The axis of `x` over which to compute the STFT.
If not given, the last axis is used.
Returns
-------
S
A complex array is returned with the dimension always being larger
by one than of `x`. The last axis always represent the time slices
of the STFT. `axis` defines the frequency axis (default second to
last). E.g., for a one-dimensional `x`, a complex 2d array is
returned, with axis 0 representing frequency and axis 1 the time
slices.
See Also
--------
delta_f: Width of the frequency bins of the STFT.
delta_t: Time increment of STFT
f: Frequencies values of the STFT.
invertible: Check if STFT is invertible.
:meth:`~ShortTimeFFT.istft`: Inverse short-time Fourier transform.
p_range: Determine and validate slice index range.
stft_detrend: STFT with detrended segments.
t: Times of STFT for an input signal with `n` samples.
:class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
"""
return self.stft_detrend(x, None, p0, p1, k_offset=k_offset,
padding=padding, axis=axis)
def stft_detrend(self, x: np.ndarray,
detr: Callable[[np.ndarray], np.ndarray] | Literal['linear', 'constant'] | None, # noqa: E501
p0: int | None = None, p1: int | None = None, *,
k_offset: int = 0, padding: PAD_TYPE = 'zeros',
axis: int = -1) \
-> np.ndarray:
"""Short-time Fourier transform with a trend being subtracted from each
segment beforehand.
If `detr` is set to 'constant', the mean is subtracted, if set to
"linear", the linear trend is removed. This is achieved by calling
:func:`scipy.signal.detrend`. If `detr` is a function, `detr` is
applied to each segment.
All other parameters have the same meaning as in `~ShortTimeFFT.stft`.
Note that due to the detrending, the original signal cannot be
reconstructed by the `~ShortTimeFFT.istft`.
See Also
--------
invertible: Check if STFT is invertible.
:meth:`~ShortTimeFFT.istft`: Inverse short-time Fourier transform.
:meth:`~ShortTimeFFT.stft`: Short-time Fourier transform
(without detrending).
:class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
"""
if self.onesided_fft and np.iscomplexobj(x):
raise ValueError(f"Complex-valued `x` not allowed for {self.fft_mode=}'! "
"Set property `fft_mode` to 'twosided' or 'centered'.")
if isinstance(detr, str):
detr = partial(detrend, type=detr)
elif not (detr is None or callable(detr)):
raise ValueError(f"Parameter {detr=} is not a str, function or " +
"None!")
n = x.shape[axis]
if not (n >= (m2p := self.m_num-self.m_num_mid)):
e_str = f'{len(x)=}' if x.ndim == 1 else f'of {axis=} of {x.shape}'
raise ValueError(f"{e_str} must be >= ceil(m_num/2) = {m2p}!")
if x.ndim > 1: # motivated by the NumPy broadcasting mechanisms:
x = np.moveaxis(x, axis, -1)
# determine slice index range:
p0, p1 = self.p_range(n, p0, p1)
S_shape_1d = (self.f_pts, p1 - p0)
S_shape = x.shape[:-1] + S_shape_1d if x.ndim > 1 else S_shape_1d
S = np.zeros(S_shape, dtype=complex)
for p_, x_ in enumerate(self._x_slices(x, k_offset, p0, p1, padding)):
if detr is not None:
x_ = detr(x_)
S[..., :, p_] = self._fft_func(x_ * self.win.conj())
if x.ndim > 1:
return np.moveaxis(S, -2, axis if axis >= 0 else axis-1)
return S
def spectrogram(self, x: np.ndarray, y: np.ndarray | None = None,
detr: Callable[[np.ndarray], np.ndarray] | Literal['linear', 'constant'] | None = None, # noqa: E501
*,
p0: int | None = None, p1: int | None = None,
k_offset: int = 0, padding: PAD_TYPE = 'zeros',
axis: int = -1) \
-> np.ndarray:
r"""Calculate spectrogram or cross-spectrogram.
The spectrogram is the absolute square of the STFT, i.e, it is
``abs(S[q,p])**2`` for given ``S[q,p]`` and thus is always
non-negative.
For two STFTs ``Sx[q,p], Sy[q,p]``, the cross-spectrogram is defined
as ``Sx[q,p] * np.conj(Sx[q,p])`` and is complex-valued.
This is a convenience function for calling `~ShortTimeFFT.stft` /
`stft_detrend`, hence all parameters are discussed there. If `y` is not
``None`` it needs to have the same shape as `x`.
Examples
--------
The following example shows the spectrogram of a square wave with
varying frequency :math:`f_i(t)` (marked by a green dashed line in the
plot) sampled with 20 Hz:
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from scipy.signal import square, ShortTimeFFT
>>> from scipy.signal.windows import gaussian
...
>>> T_x, N = 1 / 20, 1000 # 20 Hz sampling rate for 50 s signal
>>> t_x = np.arange(N) * T_x # time indexes for signal
>>> f_i = 5e-3*(t_x - t_x[N // 3])**2 + 1 # varying frequency
>>> x = square(2*np.pi*np.cumsum(f_i)*T_x) # the signal
The utitlized Gaussian window is 50 samples or 2.5 s long. The
parameter ``mfft=800`` (oversampling factor 16) and the `hop` interval
of 2 in `ShortTimeFFT` was chosen to produce a sufficient number of
points:
>>> g_std = 12 # standard deviation for Gaussian window in samples
>>> win = gaussian(50, std=g_std, sym=True) # symmetric Gaussian wind.
>>> SFT = ShortTimeFFT(win, hop=2, fs=1/T_x, mfft=800, scale_to='psd')
>>> Sx2 = SFT.spectrogram(x) # calculate absolute square of STFT
The plot's colormap is logarithmically scaled as the power spectral
density is in dB. The time extent of the signal `x` is marked by
vertical dashed lines and the shaded areas mark the presence of border
effects:
>>> fig1, ax1 = plt.subplots(figsize=(6., 4.)) # enlarge plot a bit
>>> t_lo, t_hi = SFT.extent(N)[:2] # time range of plot
>>> ax1.set_title(rf"Spectrogram ({SFT.m_num*SFT.T:g}$\,s$ Gaussian " +
... rf"window, $\sigma_t={g_std*SFT.T:g}\,$s)")
>>> ax1.set(xlabel=f"Time $t$ in seconds ({SFT.p_num(N)} slices, " +
... rf"$\Delta t = {SFT.delta_t:g}\,$s)",
... ylabel=f"Freq. $f$ in Hz ({SFT.f_pts} bins, " +
... rf"$\Delta f = {SFT.delta_f:g}\,$Hz)",
... xlim=(t_lo, t_hi))
>>> Sx_dB = 10 * np.log10(np.fmax(Sx2, 1e-4)) # limit range to -40 dB
>>> im1 = ax1.imshow(Sx_dB, origin='lower', aspect='auto',
... extent=SFT.extent(N), cmap='magma')
>>> ax1.plot(t_x, f_i, 'g--', alpha=.5, label='$f_i(t)$')
>>> fig1.colorbar(im1, label='Power Spectral Density ' +
... r"$20\,\log_{10}|S_x(t, f)|$ in dB")
...
>>> # Shade areas where window slices stick out to the side:
>>> for t0_, t1_ in [(t_lo, SFT.lower_border_end[0] * SFT.T),
... (SFT.upper_border_begin(N)[0] * SFT.T, t_hi)]:
... ax1.axvspan(t0_, t1_, color='w', linewidth=0, alpha=.3)
>>> for t_ in [0, N * SFT.T]: # mark signal borders with vertical line
... ax1.axvline(t_, color='c', linestyle='--', alpha=0.5)
>>> ax1.legend()
>>> fig1.tight_layout()
>>> plt.show()
The logarithmic scaling reveals the odd harmonics of the square wave,
which are reflected at the Nyquist frequency of 10 Hz. This aliasing
is also the main source of the noise artifacts in the plot.
See Also
--------
:meth:`~ShortTimeFFT.stft`: Perform the short-time Fourier transform.
stft_detrend: STFT with a trend subtracted from each segment.
:class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
"""
Sx = self.stft_detrend(x, detr, p0, p1, k_offset=k_offset,
padding=padding, axis=axis)
if y is None or y is x: # do spectrogram:
return Sx.real**2 + Sx.imag**2
# Cross-spectrogram:
Sy = self.stft_detrend(y, detr, p0, p1, k_offset=k_offset,
padding=padding, axis=axis)
return Sx * Sy.conj()
@property
def dual_win(self) -> np.ndarray:
"""Canonical dual window.
A STFT can be interpreted as the input signal being expressed as a
weighted sum of modulated and time-shifted dual windows. Note that for
a given window there exist many dual windows. The canonical window is
the one with the minimal energy (i.e., :math:`L_2` norm).
`dual_win` has same length as `win`, namely `m_num` samples.
If the dual window cannot be calculated a ``ValueError`` is raised.
This attribute is read only and calculated lazily.
See Also
--------
dual_win: Canonical dual window.
m_num: Number of samples in window `win`.
win: Window function as real- or complex-valued 1d array.
ShortTimeFFT: Class this property belongs to.
"""
if self._dual_win is None:
self._dual_win = _calc_dual_canonical_window(self.win, self.hop)
return self._dual_win
@property
def invertible(self) -> bool:
"""Check if STFT is invertible.
This is achieved by trying to calculate the canonical dual window.
See Also
--------
:meth:`~ShortTimeFFT.istft`: Inverse short-time Fourier transform.
m_num: Number of samples in window `win` and `dual_win`.
dual_win: Canonical dual window.
win: Window for STFT.
ShortTimeFFT: Class this property belongs to.
"""
try:
return len(self.dual_win) > 0 # call self.dual_win()
except ValueError:
return False
def istft(self, S: np.ndarray, k0: int = 0, k1: int | None = None, *,
f_axis: int = -2, t_axis: int = -1) \
-> np.ndarray:
"""Inverse short-time Fourier transform.
It returns an array of dimension ``S.ndim - 1`` which is real
if `onesided_fft` is set, else complex. If the STFT is not
`invertible`, or the parameters are out of bounds a ``ValueError`` is
raised.
Parameters
----------
S
A complex valued array where `f_axis` denotes the frequency
values and the `t-axis` dimension the temporal values of the
STFT values.
k0, k1
The start and the end index of the reconstructed signal. The
default (``k0 = 0``, ``k1 = None``) assumes that the maximum length
signal should be reconstructed.
f_axis, t_axis
The axes in `S` denoting the frequency and the time dimension.
Notes
-----
It is required that `S` has `f_pts` entries along the `f_axis`. For
the `t_axis` it is assumed that the first entry corresponds to
`p_min` * `delta_t` (being <= 0). The length of `t_axis` needs to be
compatible with `k1`. I.e., ``S.shape[t_axis] >= self.p_max(k1)`` must
hold, if `k1` is not ``None``. Else `k1` is set to `k_max` with::
q_max = S.shape[t_range] + self.p_min
k_max = (q_max - 1) * self.hop + self.m_num - self.m_num_mid
The :ref:`tutorial_stft` section of the :ref:`user_guide` discussed the
slicing behavior by means of an example.
See Also
--------
invertible: Check if STFT is invertible.
:meth:`~ShortTimeFFT.stft`: Perform Short-time Fourier transform.
:class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
"""
if f_axis == t_axis:
raise ValueError(f"{f_axis=} may not be equal to {t_axis=}!")
if S.shape[f_axis] != self.f_pts:
raise ValueError(f"{S.shape[f_axis]=} must be equal to " +
f"{self.f_pts=} ({S.shape=})!")
n_min = self.m_num-self.m_num_mid # minimum signal length
if not (S.shape[t_axis] >= (q_num := self.p_num(n_min))):
raise ValueError(f"{S.shape[t_axis]=} needs to have at least " +
f"{q_num} slices ({S.shape=})!")
if t_axis != S.ndim - 1 or f_axis != S.ndim - 2:
t_axis = S.ndim + t_axis if t_axis < 0 else t_axis
f_axis = S.ndim + f_axis if f_axis < 0 else f_axis
S = np.moveaxis(S, (f_axis, t_axis), (-2, -1))
q_max = S.shape[-1] + self.p_min
k_max = (q_max - 1) * self.hop + self.m_num - self.m_num_mid
k1 = k_max if k1 is None else k1
if not (self.k_min <= k0 < k1 <= k_max):
raise ValueError(f"({self.k_min=}) <= ({k0=}) < ({k1=}) <= " +
f"({k_max=}) is false!")
if not (num_pts := k1 - k0) >= n_min:
raise ValueError(f"({k1=}) - ({k0=}) = {num_pts} has to be at " +
f"least the half the window length {n_min}!")
q0 = (k0 // self.hop + self.p_min if k0 >= 0 else # p_min always <= 0
k0 // self.hop)
q1 = min(self.p_max(k1), q_max)
k_q0, k_q1 = self.nearest_k_p(k0), self.nearest_k_p(k1, left=False)
n_pts = k_q1 - k_q0 + self.m_num - self.m_num_mid
x = np.zeros(S.shape[:-2] + (n_pts,),
dtype=float if self.onesided_fft else complex)
for q_ in range(q0, q1):
xs = self._ifft_func(S[..., :, q_ - self.p_min]) * self.dual_win
i0 = q_ * self.hop - self.m_num_mid
i1 = min(i0 + self.m_num, n_pts+k0)
j0, j1 = 0, i1 - i0
if i0 < k0: # xs sticks out to the left on x:
j0 += k0 - i0
i0 = k0
x[..., i0-k0:i1-k0] += xs[..., j0:j1]
x = x[..., :k1-k0]
if x.ndim > 1:
x = np.moveaxis(x, -1, f_axis if f_axis < x.ndim else t_axis)
return x
@property
def fac_magnitude(self) -> float:
"""Factor to multiply the STFT values by to scale each frequency slice
to a magnitude spectrum.
It is 1 if attribute ``scaling == 'magnitude'``.
The window can be scaled to a magnitude spectrum by using the method
`scale_to`.
See Also
--------
fac_psd: Scaling factor for to a power spectral density spectrum.
scale_to: Scale window to obtain 'magnitude' or 'psd' scaling.
scaling: Normalization applied to the window function.
ShortTimeFFT: Class this property belongs to.
"""
if self.scaling == 'magnitude':
return 1
if self._fac_mag is None:
self._fac_mag = 1 / abs(sum(self.win))
return self._fac_mag
@property
def fac_psd(self) -> float:
"""Factor to multiply the STFT values by to scale each frequency slice
to a power spectral density (PSD).
It is 1 if attribute ``scaling == 'psd'``.
The window can be scaled to a psd spectrum by using the method
`scale_to`.
See Also
--------
fac_magnitude: Scaling factor for to a magnitude spectrum.
scale_to: Scale window to obtain 'magnitude' or 'psd' scaling.
scaling: Normalization applied to the window function.
ShortTimeFFT: Class this property belongs to.
"""
if self.scaling == 'psd':
return 1
if self._fac_psd is None:
self._fac_psd = 1 / np.sqrt(
sum(self.win.real**2+self.win.imag**2) / self.T)
return self._fac_psd
@property
def m_num(self) -> int:
"""Number of samples in window `win`.
Note that the FFT can be oversampled by zero-padding. This is achieved
by setting the `mfft` property.
See Also
--------
m_num_mid: Center index of window `win`.
mfft: Length of input for the FFT used - may be larger than `m_num`.
hop: Time increment in signal samples for sliding window.
win: Window function as real- or complex-valued 1d array.
ShortTimeFFT: Class this property belongs to.
"""
return len(self.win)
@property
def m_num_mid(self) -> int:
"""Center index of window `win`.
For odd `m_num`, ``(m_num - 1) / 2`` is returned and
for even `m_num` (per definition) ``m_num / 2`` is returned.
See Also
--------
m_num: Number of samples in window `win`.
mfft: Length of input for the FFT used - may be larger than `m_num`.
hop: ime increment in signal samples for sliding window.
win: Window function as real- or complex-valued 1d array.
ShortTimeFFT: Class this property belongs to.
"""
return self.m_num // 2
@cache
def _pre_padding(self) -> tuple[int, int]:
"""Smallest signal index and slice index due to padding.
Since, per convention, for time t=0, n,q is zero, the returned values
are negative or zero.
"""
w2 = self.win.real**2 + self.win.imag**2
# move window to the left until the overlap with t >= 0 vanishes:
n0 = -self.m_num_mid
for q_, n_ in enumerate(range(n0, n0-self.m_num-1, -self.hop)):
n_next = n_ - self.hop
if n_next + self.m_num <= 0 or all(w2[n_next:] == 0):
return n_, -q_
raise RuntimeError("This is code line should not have been reached!")
# If this case is reached, it probably means the first slice should be
# returned, i.e.: return n0, 0
@property
def k_min(self) -> int:
"""The smallest possible signal index of the STFT.
`k_min` is the index of the left-most non-zero value of the lowest
slice `p_min`. Since the zeroth slice is centered over the zeroth
sample of the input signal, `k_min` is never positive.
A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
section of the :ref:`user_guide`.
See Also
--------
k_max: First sample index after signal end not touched by a time slice.
lower_border_end: Where pre-padding effects end.
p_min: The smallest possible slice index.
p_max: Index of first non-overlapping upper time slice.
p_num: Number of time slices, i.e., `p_max` - `p_min`.
p_range: Determine and validate slice index range.
upper_border_begin: Where post-padding effects start.
ShortTimeFFT: Class this property belongs to.
"""
return self._pre_padding()[0]
@property
def p_min(self) -> int:
"""The smallest possible slice index.
`p_min` is the index of the left-most slice, where the window still
sticks into the signal, i.e., has non-zero part for t >= 0.
`k_min` is the smallest index where the window function of the slice
`p_min` is non-zero.
Since, per convention the zeroth slice is centered at t=0,
`p_min` <= 0 always holds.
A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
section of the :ref:`user_guide`.
See Also
--------
k_min: The smallest possible signal index.
k_max: First sample index after signal end not touched by a time slice.
p_max: Index of first non-overlapping upper time slice.
p_num: Number of time slices, i.e., `p_max` - `p_min`.
p_range: Determine and validate slice index range.
ShortTimeFFT: Class this property belongs to.
"""
return self._pre_padding()[1]
@lru_cache(maxsize=256)
def _post_padding(self, n: int) -> tuple[int, int]:
"""Largest signal index and slice index due to padding."""
w2 = self.win.real**2 + self.win.imag**2
# move window to the right until the overlap for t < t[n] vanishes:
q1 = n // self.hop # last slice index with t[p1] <= t[n]
k1 = q1 * self.hop - self.m_num_mid
for q_, k_ in enumerate(range(k1, n+self.m_num, self.hop), start=q1):
n_next = k_ + self.hop
if n_next >= n or all(w2[:n-n_next] == 0):
return k_ + self.m_num, q_ + 1
raise RuntimeError("This is code line should not have been reached!")
# If this case is reached, it probably means the last slice should be
# returned, i.e.: return k1 + self.m_num - self.m_num_mid, q1 + 1
def k_max(self, n: int) -> int:
"""First sample index after signal end not touched by a time slice.
`k_max` - 1 is the largest sample index of the slice `p_max` for a
given input signal of `n` samples.
A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
section of the :ref:`user_guide`.
See Also
--------
k_min: The smallest possible signal index.
p_min: The smallest possible slice index.
p_max: Index of first non-overlapping upper time slice.
p_num: Number of time slices, i.e., `p_max` - `p_min`.
p_range: Determine and validate slice index range.
ShortTimeFFT: Class this method belongs to.
"""
return self._post_padding(n)[0]
def p_max(self, n: int) -> int:
"""Index of first non-overlapping upper time slice for `n` sample
input.
Note that center point t[p_max] = (p_max(n)-1) * `delta_t` is typically
larger than last time index t[n-1] == (`n`-1) * `T`. The upper border
of samples indexes covered by the window slices is given by `k_max`.
Furthermore, `p_max` does not denote the number of slices `p_num` since
`p_min` is typically less than zero.
A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
section of the :ref:`user_guide`.
See Also
--------
k_min: The smallest possible signal index.
k_max: First sample index after signal end not touched by a time slice.
p_min: The smallest possible slice index.
p_num: Number of time slices, i.e., `p_max` - `p_min`.
p_range: Determine and validate slice index range.
ShortTimeFFT: Class this method belongs to.
"""
return self._post_padding(n)[1]
def p_num(self, n: int) -> int:
"""Number of time slices for an input signal with `n` samples.
It is given by `p_num` = `p_max` - `p_min` with `p_min` typically
being negative.
A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
section of the :ref:`user_guide`.
See Also
--------
k_min: The smallest possible signal index.
k_max: First sample index after signal end not touched by a time slice.
lower_border_end: Where pre-padding effects end.
p_min: The smallest possible slice index.
p_max: Index of first non-overlapping upper time slice.
p_range: Determine and validate slice index range.
upper_border_begin: Where post-padding effects start.
ShortTimeFFT: Class this method belongs to.
"""
return self.p_max(n) - self.p_min
@property
def lower_border_end(self) -> tuple[int, int]:
"""First signal index and first slice index unaffected by pre-padding.
Describes the point where the window does not stick out to the left
of the signal domain.
A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
section of the :ref:`user_guide`.
See Also
--------
k_min: The smallest possible signal index.
k_max: First sample index after signal end not touched by a time slice.
lower_border_end: Where pre-padding effects end.
p_min: The smallest possible slice index.
p_max: Index of first non-overlapping upper time slice.
p_num: Number of time slices, i.e., `p_max` - `p_min`.
p_range: Determine and validate slice index range.
upper_border_begin: Where post-padding effects start.
ShortTimeFFT: Class this property belongs to.
"""
# not using @cache decorator due to MyPy limitations
if self._lower_border_end is not None:
return self._lower_border_end
# first non-zero element in self.win:
m0 = np.flatnonzero(self.win.real**2 + self.win.imag**2)[0]
# move window to the right until does not stick out to the left:
k0 = -self.m_num_mid + m0
for q_, k_ in enumerate(range(k0, self.hop + 1, self.hop)):
if k_ + self.hop >= 0: # next entry does not stick out anymore
self._lower_border_end = (k_ + self.m_num, q_ + 1)
return self._lower_border_end
self._lower_border_end = (0, max(self.p_min, 0)) # ends at first slice
return self._lower_border_end
@lru_cache(maxsize=256)
def upper_border_begin(self, n: int) -> tuple[int, int]:
"""First signal index and first slice index affected by post-padding.
Describes the point where the window does begin stick out to the right
of the signal domain.
A detailed example is given :ref:`tutorial_stft_sliding_win` section
of the :ref:`user_guide`.
See Also
--------
k_min: The smallest possible signal index.
k_max: First sample index after signal end not touched by a time slice.
lower_border_end: Where pre-padding effects end.
p_min: The smallest possible slice index.
p_max: Index of first non-overlapping upper time slice.
p_num: Number of time slices, i.e., `p_max` - `p_min`.
p_range: Determine and validate slice index range.
ShortTimeFFT: Class this method belongs to.
"""
w2 = self.win.real**2 + self.win.imag**2
q2 = n // self.hop + 1 # first t[q] >= t[n]
q1 = max((n-self.m_num) // self.hop - 1, -1)
# move window left until does not stick out to the right:
for q_ in range(q2, q1, -1):
k_ = q_ * self.hop + (self.m_num - self.m_num_mid)
if k_ < n or all(w2[n-k_:] == 0):
return (q_ + 1) * self.hop - self.m_num_mid, q_ + 1
return 0, 0 # border starts at first slice
@property
def delta_t(self) -> float:
"""Time increment of STFT.
The time increment `delta_t` = `T` * `hop` represents the sample
increment `hop` converted to time based on the sampling interval `T`.
See Also
--------
delta_f: Width of the frequency bins of the STFT.
hop: Hop size in signal samples for sliding window.
t: Times of STFT for an input signal with `n` samples.
T: Sampling interval of input signal and window `win`.
ShortTimeFFT: Class this property belongs to
"""
return self.T * self.hop
def p_range(self, n: int, p0: int | None = None,
p1: int | None = None) -> tuple[int, int]:
"""Determine and validate slice index range.
Parameters
----------
n : int
Number of samples of input signal, assuming t[0] = 0.
p0 : int | None
First slice index. If 0 then the first slice is centered at t = 0.
If ``None`` then `p_min` is used. Note that p0 may be < 0 if
slices are left of t = 0.
p1 : int | None
End of interval (last value is p1-1).
If ``None`` then `p_max(n)` is used.
Returns
-------
p0_ : int
The fist slice index
p1_ : int
End of interval (last value is p1-1).
Notes
-----
A ``ValueError`` is raised if ``p_min <= p0 < p1 <= p_max(n)`` does not
hold.
See Also
--------
k_min: The smallest possible signal index.
k_max: First sample index after signal end not touched by a time slice.
lower_border_end: Where pre-padding effects end.
p_min: The smallest possible slice index.
p_max: Index of first non-overlapping upper time slice.
p_num: Number of time slices, i.e., `p_max` - `p_min`.
upper_border_begin: Where post-padding effects start.
ShortTimeFFT: Class this property belongs to.
"""
p_max = self.p_max(n) # shorthand
p0_ = self.p_min if p0 is None else p0
p1_ = p_max if p1 is None else p1
if not (self.p_min <= p0_ < p1_ <= p_max):
raise ValueError(f"Invalid Parameter {p0=}, {p1=}, i.e., " +
f"{self.p_min=} <= p0 < p1 <= {p_max=} " +
f"does not hold for signal length {n=}!")
return p0_, p1_
@lru_cache(maxsize=1)
def t(self, n: int, p0: int | None = None, p1: int | None = None,
k_offset: int = 0) -> np.ndarray:
"""Times of STFT for an input signal with `n` samples.
Returns a 1d array with times of the `~ShortTimeFFT.stft` values with
the same parametrization. Note that the slices are
``delta_t = hop * T`` time units apart.
Parameters
----------
n
Number of sample of the input signal.
p0
The first element of the range of slices to calculate. If ``None``
then it is set to :attr:`p_min`, which is the smallest possible
slice.
p1
The end of the array. If ``None`` then `p_max(n)` is used.
k_offset
Index of first sample (t = 0) in `x`.
See Also
--------
delta_t: Time increment of STFT (``hop*T``)
hop: Time increment in signal samples for sliding window.
nearest_k_p: Nearest sample index k_p for which t[k_p] == t[p] holds.
T: Sampling interval of input signal and of the window (``1/fs``).
fs: Sampling frequency (being ``1/T``)
ShortTimeFFT: Class this method belongs to.
"""
p0, p1 = self.p_range(n, p0, p1)
return np.arange(p0, p1) * self.delta_t + k_offset * self.T
def nearest_k_p(self, k: int, left: bool = True) -> int:
"""Return nearest sample index k_p for which t[k_p] == t[p] holds.
The nearest next smaller time sample p (where t[p] is the center
position of the window of the p-th slice) is p_k = k // `hop`.
If `hop` is a divisor of `k` than `k` is returned.
If `left` is set than p_k * `hop` is returned else (p_k+1) * `hop`.
This method can be used to slice an input signal into chunks for
calculating the STFT and iSTFT incrementally.
See Also
--------
delta_t: Time increment of STFT (``hop*T``)
hop: Time increment in signal samples for sliding window.
T: Sampling interval of input signal and of the window (``1/fs``).
fs: Sampling frequency (being ``1/T``)
t: Times of STFT for an input signal with `n` samples.
ShortTimeFFT: Class this method belongs to.
"""
p_q, remainder = divmod(k, self.hop)
if remainder == 0:
return k
return p_q * self.hop if left else (p_q + 1) * self.hop
@property
def delta_f(self) -> float:
"""Width of the frequency bins of the STFT.
Return the frequency interval `delta_f` = 1 / (`mfft` * `T`).
See Also
--------
delta_t: Time increment of STFT.
f_pts: Number of points along the frequency axis.
f: Frequencies values of the STFT.
mfft: Length of the input for FFT used.
T: Sampling interval.
t: Times of STFT for an input signal with `n` samples.
ShortTimeFFT: Class this property belongs to.
"""
return 1 / (self.mfft * self.T)
@property
def f_pts(self) -> int:
"""Number of points along the frequency axis.
See Also
--------
delta_f: Width of the frequency bins of the STFT.
f: Frequencies values of the STFT.
mfft: Length of the input for FFT used.
ShortTimeFFT: Class this property belongs to.
"""
return self.mfft // 2 + 1 if self.onesided_fft else self.mfft
@property
def onesided_fft(self) -> bool:
"""Return True if a one-sided FFT is used.
Returns ``True`` if `fft_mode` is either 'onesided' or 'onesided2X'.
See Also
--------
fft_mode: Utilized FFT ('twosided', 'centered', 'onesided' or
'onesided2X')
ShortTimeFFT: Class this property belongs to.
"""
return self.fft_mode in {'onesided', 'onesided2X'}
@property
def f(self) -> np.ndarray:
"""Frequencies values of the STFT.
A 1d array of length `f_pts` with `delta_f` spaced entries is returned.
See Also
--------
delta_f: Width of the frequency bins of the STFT.
f_pts: Number of points along the frequency axis.
mfft: Length of the input for FFT used.
ShortTimeFFT: Class this property belongs to.
"""
if self.fft_mode in {'onesided', 'onesided2X'}:
return fft_lib.rfftfreq(self.mfft, self.T)
elif self.fft_mode == 'twosided':
return fft_lib.fftfreq(self.mfft, self.T)
elif self.fft_mode == 'centered':
return fft_lib.fftshift(fft_lib.fftfreq(self.mfft, self.T))
# This should never happen but makes the Linters happy:
fft_modes = get_args(FFT_MODE_TYPE)
raise RuntimeError(f"{self.fft_mode=} not in {fft_modes}!")
def _fft_func(self, x: np.ndarray) -> np.ndarray:
"""FFT based on the `fft_mode`, `mfft`, `scaling` and `phase_shift`
attributes.
For multidimensional arrays the transformation is carried out on the
last axis.
"""
if self.phase_shift is not None:
if x.shape[-1] < self.mfft: # zero pad if needed
z_shape = list(x.shape)
z_shape[-1] = self.mfft - x.shape[-1]
x = np.hstack((x, np.zeros(z_shape, dtype=x.dtype)))
p_s = (self.phase_shift + self.m_num_mid) % self.m_num
x = np.roll(x, -p_s, axis=-1)
if self.fft_mode == 'twosided':
return fft_lib.fft(x, n=self.mfft, axis=-1)
if self.fft_mode == 'centered':
return fft_lib.fftshift(fft_lib.fft(x, self.mfft, axis=-1), axes=-1)
if self.fft_mode == 'onesided':
return fft_lib.rfft(x, n=self.mfft, axis=-1)
if self.fft_mode == 'onesided2X':
X = fft_lib.rfft(x, n=self.mfft, axis=-1)
# Either squared magnitude (psd) or magnitude is doubled:
fac = np.sqrt(2) if self.scaling == 'psd' else 2
# For even input length, the last entry is unpaired:
X[..., 1: -1 if self.mfft % 2 == 0 else None] *= fac
return X
# This should never happen but makes the Linter happy:
fft_modes = get_args(FFT_MODE_TYPE)
raise RuntimeError(f"{self.fft_mode=} not in {fft_modes}!")
def _ifft_func(self, X: np.ndarray) -> np.ndarray:
"""Inverse to `_fft_func`.
Returned is an array of length `m_num`. If the FFT is `onesided`
then a float array is returned else a complex array is returned.
For multidimensional arrays the transformation is carried out on the
last axis.
"""
if self.fft_mode == 'twosided':
x = fft_lib.ifft(X, n=self.mfft, axis=-1)
elif self.fft_mode == 'centered':
x = fft_lib.ifft(fft_lib.ifftshift(X, axes=-1), n=self.mfft, axis=-1)
elif self.fft_mode == 'onesided':
x = fft_lib.irfft(X, n=self.mfft, axis=-1)
elif self.fft_mode == 'onesided2X':
Xc = X.copy() # we do not want to modify function parameters
fac = np.sqrt(2) if self.scaling == 'psd' else 2
# For even length X the last value is not paired with a negative
# value on the two-sided FFT:
q1 = -1 if self.mfft % 2 == 0 else None
Xc[..., 1:q1] /= fac
x = fft_lib.irfft(Xc, n=self.mfft, axis=-1)
else: # This should never happen but makes the Linter happy:
error_str = f"{self.fft_mode=} not in {get_args(FFT_MODE_TYPE)}!"
raise RuntimeError(error_str)
if self.phase_shift is None:
return x[:self.m_num]
p_s = (self.phase_shift + self.m_num_mid) % self.m_num
return np.roll(x, p_s, axis=-1)[:self.m_num]
def extent(self, n: int, axes_seq: Literal['tf', 'ft'] = 'tf',
center_bins: bool = False) -> tuple[float, float, float, float]:
"""Return minimum and maximum values time-frequency values.
A tuple with four floats ``(t0, t1, f0, f1)`` for 'tf' and
``(f0, f1, t0, t1)`` for 'ft' is returned describing the corners
of the time-frequency domain of the `~ShortTimeFFT.stft`.
That tuple can be passed to `matplotlib.pyplot.imshow` as a parameter
with the same name.
Parameters
----------
n : int
Number of samples in input signal.
axes_seq : {'tf', 'ft'}
Return time extent first and then frequency extent or vice-versa.
center_bins: bool
If set (default ``False``), the values of the time slots and
frequency bins are moved from the side the middle. This is useful,
when plotting the `~ShortTimeFFT.stft` values as step functions,
i.e., with no interpolation.
See Also
--------
:func:`matplotlib.pyplot.imshow`: Display data as an image.
:class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
"""
if axes_seq not in ('tf', 'ft'):
raise ValueError(f"Parameter {axes_seq=} not in ['tf', 'ft']!")
if self.onesided_fft:
q0, q1 = 0, self.f_pts
elif self.fft_mode == 'centered':
q0 = -self.mfft // 2
q1 = self.mfft // 2 - 1 if self.mfft % 2 == 0 else self.mfft // 2
else:
raise ValueError(f"Attribute fft_mode={self.fft_mode} must be " +
"in ['centered', 'onesided', 'onesided2X']")
p0, p1 = self.p_min, self.p_max(n) # shorthand
if center_bins:
t0, t1 = self.delta_t * (p0 - 0.5), self.delta_t * (p1 - 0.5)
f0, f1 = self.delta_f * (q0 - 0.5), self.delta_f * (q1 - 0.5)
else:
t0, t1 = self.delta_t * p0, self.delta_t * p1
f0, f1 = self.delta_f * q0, self.delta_f * q1
return (t0, t1, f0, f1) if axes_seq == 'tf' else (f0, f1, t0, t1)