3RNN/Lib/site-packages/scipy/sparse/tests/test_array_api.py

562 lines
14 KiB
Python
Raw Normal View History

2024-05-26 19:49:15 +02:00
import pytest
import numpy as np
import numpy.testing as npt
import scipy.sparse
import scipy.sparse.linalg as spla
from scipy._lib._util import VisibleDeprecationWarning
sparray_types = ('bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil')
sparray_classes = [
getattr(scipy.sparse, f'{T}_array') for T in sparray_types
]
A = np.array([
[0, 1, 2, 0],
[2, 0, 0, 3],
[1, 4, 0, 0]
])
B = np.array([
[0, 1],
[2, 0]
])
X = np.array([
[1, 0, 0, 1],
[2, 1, 2, 0],
[0, 2, 1, 0],
[0, 0, 1, 2]
], dtype=float)
sparrays = [sparray(A) for sparray in sparray_classes]
square_sparrays = [sparray(B) for sparray in sparray_classes]
eig_sparrays = [sparray(X) for sparray in sparray_classes]
parametrize_sparrays = pytest.mark.parametrize(
"A", sparrays, ids=sparray_types
)
parametrize_square_sparrays = pytest.mark.parametrize(
"B", square_sparrays, ids=sparray_types
)
parametrize_eig_sparrays = pytest.mark.parametrize(
"X", eig_sparrays, ids=sparray_types
)
@parametrize_sparrays
def test_sum(A):
assert not isinstance(A.sum(axis=0), np.matrix), \
"Expected array, got matrix"
assert A.sum(axis=0).shape == (4,)
assert A.sum(axis=1).shape == (3,)
@parametrize_sparrays
def test_mean(A):
assert not isinstance(A.mean(axis=1), np.matrix), \
"Expected array, got matrix"
@parametrize_sparrays
def test_min_max(A):
# Some formats don't support min/max operations, so we skip those here.
if hasattr(A, 'min'):
assert not isinstance(A.min(axis=1), np.matrix), \
"Expected array, got matrix"
if hasattr(A, 'max'):
assert not isinstance(A.max(axis=1), np.matrix), \
"Expected array, got matrix"
if hasattr(A, 'argmin'):
assert not isinstance(A.argmin(axis=1), np.matrix), \
"Expected array, got matrix"
if hasattr(A, 'argmax'):
assert not isinstance(A.argmax(axis=1), np.matrix), \
"Expected array, got matrix"
@parametrize_sparrays
def test_todense(A):
assert not isinstance(A.todense(), np.matrix), \
"Expected array, got matrix"
@parametrize_sparrays
def test_indexing(A):
if A.__class__.__name__[:3] in ('dia', 'coo', 'bsr'):
return
with pytest.raises(NotImplementedError):
A[1, :]
with pytest.raises(NotImplementedError):
A[:, 1]
with pytest.raises(NotImplementedError):
A[1, [1, 2]]
with pytest.raises(NotImplementedError):
A[[1, 2], 1]
assert isinstance(A[[0]], scipy.sparse.sparray), \
"Expected sparse array, got sparse matrix"
assert isinstance(A[1, [[1, 2]]], scipy.sparse.sparray), \
"Expected ndarray, got sparse array"
assert isinstance(A[[[1, 2]], 1], scipy.sparse.sparray), \
"Expected ndarray, got sparse array"
assert isinstance(A[:, [1, 2]], scipy.sparse.sparray), \
"Expected sparse array, got something else"
@parametrize_sparrays
def test_dense_addition(A):
X = np.random.random(A.shape)
assert not isinstance(A + X, np.matrix), "Expected array, got matrix"
@parametrize_sparrays
def test_sparse_addition(A):
assert isinstance((A + A), scipy.sparse.sparray), "Expected array, got matrix"
@parametrize_sparrays
def test_elementwise_mul(A):
assert np.all((A * A).todense() == A.power(2).todense())
@parametrize_sparrays
def test_elementwise_rmul(A):
with pytest.raises(TypeError):
None * A
with pytest.raises(ValueError):
np.eye(3) * scipy.sparse.csr_array(np.arange(6).reshape(2, 3))
assert np.all((2 * A) == (A.todense() * 2))
assert np.all((A.todense() * A) == (A.todense() ** 2))
@parametrize_sparrays
def test_matmul(A):
assert np.all((A @ A.T).todense() == A.dot(A.T).todense())
@parametrize_sparrays
def test_power_operator(A):
assert isinstance((A**2), scipy.sparse.sparray), "Expected array, got matrix"
# https://github.com/scipy/scipy/issues/15948
npt.assert_equal((A**2).todense(), (A.todense())**2)
# power of zero is all ones (dense) so helpful msg exception
with pytest.raises(NotImplementedError, match="zero power"):
A**0
@parametrize_sparrays
def test_sparse_divide(A):
assert isinstance(A / A, np.ndarray)
@parametrize_sparrays
def test_sparse_dense_divide(A):
with pytest.warns(RuntimeWarning):
assert isinstance((A / A.todense()), scipy.sparse.sparray)
@parametrize_sparrays
def test_dense_divide(A):
assert isinstance((A / 2), scipy.sparse.sparray), "Expected array, got matrix"
@parametrize_sparrays
def test_no_A_attr(A):
with pytest.warns(VisibleDeprecationWarning):
A.A
@parametrize_sparrays
def test_no_H_attr(A):
with pytest.warns(VisibleDeprecationWarning):
A.H
@parametrize_sparrays
def test_getrow_getcol(A):
assert isinstance(A._getcol(0), scipy.sparse.sparray)
assert isinstance(A._getrow(0), scipy.sparse.sparray)
# -- linalg --
@parametrize_sparrays
def test_as_linearoperator(A):
L = spla.aslinearoperator(A)
npt.assert_allclose(L * [1, 2, 3, 4], A @ [1, 2, 3, 4])
@parametrize_square_sparrays
def test_inv(B):
if B.__class__.__name__[:3] != 'csc':
return
C = spla.inv(B)
assert isinstance(C, scipy.sparse.sparray)
npt.assert_allclose(C.todense(), np.linalg.inv(B.todense()))
@parametrize_square_sparrays
def test_expm(B):
if B.__class__.__name__[:3] != 'csc':
return
Bmat = scipy.sparse.csc_matrix(B)
C = spla.expm(B)
assert isinstance(C, scipy.sparse.sparray)
npt.assert_allclose(
C.todense(),
spla.expm(Bmat).todense()
)
@parametrize_square_sparrays
def test_expm_multiply(B):
if B.__class__.__name__[:3] != 'csc':
return
npt.assert_allclose(
spla.expm_multiply(B, np.array([1, 2])),
spla.expm(B) @ [1, 2]
)
@parametrize_sparrays
def test_norm(A):
C = spla.norm(A)
npt.assert_allclose(C, np.linalg.norm(A.todense()))
@parametrize_square_sparrays
def test_onenormest(B):
C = spla.onenormest(B)
npt.assert_allclose(C, np.linalg.norm(B.todense(), 1))
@parametrize_square_sparrays
def test_spsolve(B):
if B.__class__.__name__[:3] not in ('csc', 'csr'):
return
npt.assert_allclose(
spla.spsolve(B, [1, 2]),
np.linalg.solve(B.todense(), [1, 2])
)
def test_spsolve_triangular():
X = scipy.sparse.csr_array([
[1, 0, 0, 0],
[2, 1, 0, 0],
[3, 2, 1, 0],
[4, 3, 2, 1],
])
spla.spsolve_triangular(X, [1, 2, 3, 4])
@parametrize_square_sparrays
def test_factorized(B):
if B.__class__.__name__[:3] != 'csc':
return
LU = spla.factorized(B)
npt.assert_allclose(
LU(np.array([1, 2])),
np.linalg.solve(B.todense(), [1, 2])
)
@parametrize_square_sparrays
@pytest.mark.parametrize(
"solver",
["bicg", "bicgstab", "cg", "cgs", "gmres", "lgmres", "minres", "qmr",
"gcrotmk", "tfqmr"]
)
def test_solvers(B, solver):
if solver == "minres":
kwargs = {}
else:
kwargs = {'atol': 1e-5}
x, info = getattr(spla, solver)(B, np.array([1, 2]), **kwargs)
assert info >= 0 # no errors, even if perhaps did not converge fully
npt.assert_allclose(x, [1, 1], atol=1e-1)
@parametrize_sparrays
@pytest.mark.parametrize(
"solver",
["lsqr", "lsmr"]
)
def test_lstsqr(A, solver):
x, *_ = getattr(spla, solver)(A, [1, 2, 3])
npt.assert_allclose(A @ x, [1, 2, 3])
@parametrize_eig_sparrays
def test_eigs(X):
e, v = spla.eigs(X, k=1)
npt.assert_allclose(
X @ v,
e[0] * v
)
@parametrize_eig_sparrays
def test_eigsh(X):
X = X + X.T
e, v = spla.eigsh(X, k=1)
npt.assert_allclose(
X @ v,
e[0] * v
)
@parametrize_eig_sparrays
def test_svds(X):
u, s, vh = spla.svds(X, k=3)
u2, s2, vh2 = np.linalg.svd(X.todense())
s = np.sort(s)
s2 = np.sort(s2[:3])
npt.assert_allclose(s, s2, atol=1e-3)
def test_splu():
X = scipy.sparse.csc_array([
[1, 0, 0, 0],
[2, 1, 0, 0],
[3, 2, 1, 0],
[4, 3, 2, 1],
])
LU = spla.splu(X)
npt.assert_allclose(
LU.solve(np.array([1, 2, 3, 4])),
np.asarray([1, 0, 0, 0], dtype=np.float64),
rtol=1e-14, atol=3e-16
)
def test_spilu():
X = scipy.sparse.csc_array([
[1, 0, 0, 0],
[2, 1, 0, 0],
[3, 2, 1, 0],
[4, 3, 2, 1],
])
LU = spla.spilu(X)
npt.assert_allclose(
LU.solve(np.array([1, 2, 3, 4])),
np.asarray([1, 0, 0, 0], dtype=np.float64),
rtol=1e-14, atol=3e-16
)
@pytest.mark.parametrize(
"cls,indices_attrs",
[
(
scipy.sparse.csr_array,
["indices", "indptr"],
),
(
scipy.sparse.csc_array,
["indices", "indptr"],
),
(
scipy.sparse.coo_array,
["row", "col"],
),
]
)
@pytest.mark.parametrize("expected_dtype", [np.int64, np.int32])
def test_index_dtype_compressed(cls, indices_attrs, expected_dtype):
input_array = scipy.sparse.coo_array(np.arange(9).reshape(3, 3))
coo_tuple = (
input_array.data,
(
input_array.row.astype(expected_dtype),
input_array.col.astype(expected_dtype),
)
)
result = cls(coo_tuple)
for attr in indices_attrs:
assert getattr(result, attr).dtype == expected_dtype
result = cls(coo_tuple, shape=(3, 3))
for attr in indices_attrs:
assert getattr(result, attr).dtype == expected_dtype
if issubclass(cls, scipy.sparse._compressed._cs_matrix):
input_array_csr = input_array.tocsr()
csr_tuple = (
input_array_csr.data,
input_array_csr.indices.astype(expected_dtype),
input_array_csr.indptr.astype(expected_dtype),
)
result = cls(csr_tuple)
for attr in indices_attrs:
assert getattr(result, attr).dtype == expected_dtype
result = cls(csr_tuple, shape=(3, 3))
for attr in indices_attrs:
assert getattr(result, attr).dtype == expected_dtype
def test_default_is_matrix_diags():
m = scipy.sparse.diags([0, 1, 2])
assert not isinstance(m, scipy.sparse.sparray)
def test_default_is_matrix_eye():
m = scipy.sparse.eye(3)
assert not isinstance(m, scipy.sparse.sparray)
def test_default_is_matrix_spdiags():
m = scipy.sparse.spdiags([1, 2, 3], 0, 3, 3)
assert not isinstance(m, scipy.sparse.sparray)
def test_default_is_matrix_identity():
m = scipy.sparse.identity(3)
assert not isinstance(m, scipy.sparse.sparray)
def test_default_is_matrix_kron_dense():
m = scipy.sparse.kron(
np.array([[1, 2], [3, 4]]), np.array([[4, 3], [2, 1]])
)
assert not isinstance(m, scipy.sparse.sparray)
def test_default_is_matrix_kron_sparse():
m = scipy.sparse.kron(
np.array([[1, 2], [3, 4]]), np.array([[1, 0], [0, 0]])
)
assert not isinstance(m, scipy.sparse.sparray)
def test_default_is_matrix_kronsum():
m = scipy.sparse.kronsum(
np.array([[1, 0], [0, 1]]), np.array([[0, 1], [1, 0]])
)
assert not isinstance(m, scipy.sparse.sparray)
def test_default_is_matrix_random():
m = scipy.sparse.random(3, 3)
assert not isinstance(m, scipy.sparse.sparray)
def test_default_is_matrix_rand():
m = scipy.sparse.rand(3, 3)
assert not isinstance(m, scipy.sparse.sparray)
@pytest.mark.parametrize("fn", (scipy.sparse.hstack, scipy.sparse.vstack))
def test_default_is_matrix_stacks(fn):
"""Same idea as `test_default_construction_fn_matrices`, but for the
stacking creation functions."""
A = scipy.sparse.coo_matrix(np.eye(2))
B = scipy.sparse.coo_matrix([[0, 1], [1, 0]])
m = fn([A, B])
assert not isinstance(m, scipy.sparse.sparray)
def test_blocks_default_construction_fn_matrices():
"""Same idea as `test_default_construction_fn_matrices`, but for the block
creation function"""
A = scipy.sparse.coo_matrix(np.eye(2))
B = scipy.sparse.coo_matrix([[2], [0]])
C = scipy.sparse.coo_matrix([[3]])
# block diag
m = scipy.sparse.block_diag((A, B, C))
assert not isinstance(m, scipy.sparse.sparray)
# bmat
m = scipy.sparse.bmat([[A, None], [None, C]])
assert not isinstance(m, scipy.sparse.sparray)
def test_format_property():
for fmt in sparray_types:
arr_cls = getattr(scipy.sparse, f"{fmt}_array")
M = arr_cls([[1, 2]])
assert M.format == fmt
assert M._format == fmt
with pytest.raises(AttributeError):
M.format = "qqq"
def test_issparse():
m = scipy.sparse.eye(3)
a = scipy.sparse.csr_array(m)
assert not isinstance(m, scipy.sparse.sparray)
assert isinstance(a, scipy.sparse.sparray)
# Both sparse arrays and sparse matrices should be sparse
assert scipy.sparse.issparse(a)
assert scipy.sparse.issparse(m)
# ndarray and array_likes are not sparse
assert not scipy.sparse.issparse(a.todense())
assert not scipy.sparse.issparse(m.todense())
def test_isspmatrix():
m = scipy.sparse.eye(3)
a = scipy.sparse.csr_array(m)
assert not isinstance(m, scipy.sparse.sparray)
assert isinstance(a, scipy.sparse.sparray)
# Should only be true for sparse matrices, not sparse arrays
assert not scipy.sparse.isspmatrix(a)
assert scipy.sparse.isspmatrix(m)
# ndarray and array_likes are not sparse
assert not scipy.sparse.isspmatrix(a.todense())
assert not scipy.sparse.isspmatrix(m.todense())
@pytest.mark.parametrize(
("fmt", "fn"),
(
("bsr", scipy.sparse.isspmatrix_bsr),
("coo", scipy.sparse.isspmatrix_coo),
("csc", scipy.sparse.isspmatrix_csc),
("csr", scipy.sparse.isspmatrix_csr),
("dia", scipy.sparse.isspmatrix_dia),
("dok", scipy.sparse.isspmatrix_dok),
("lil", scipy.sparse.isspmatrix_lil),
),
)
def test_isspmatrix_format(fmt, fn):
m = scipy.sparse.eye(3, format=fmt)
a = scipy.sparse.csr_array(m).asformat(fmt)
assert not isinstance(m, scipy.sparse.sparray)
assert isinstance(a, scipy.sparse.sparray)
# Should only be true for sparse matrices, not sparse arrays
assert not fn(a)
assert fn(m)
# ndarray and array_likes are not sparse
assert not fn(a.todense())
assert not fn(m.todense())