48 lines
1.8 KiB
Python
48 lines
1.8 KiB
Python
|
import pytest
|
||
|
import numpy as np
|
||
|
from numpy.testing import assert_allclose
|
||
|
from scipy.stats import _boost
|
||
|
|
||
|
|
||
|
type_char_to_type_tol = {'f': (np.float32, 32*np.finfo(np.float32).eps),
|
||
|
'd': (np.float64, 32*np.finfo(np.float64).eps)}
|
||
|
|
||
|
|
||
|
# Each item in this list is
|
||
|
# (func, args, expected_value)
|
||
|
# All the values can be represented exactly, even with np.float32.
|
||
|
#
|
||
|
# This is not an exhaustive test data set of all the functions!
|
||
|
# It is a spot check of several functions, primarily for
|
||
|
# checking that the different data types are handled correctly.
|
||
|
test_data = [
|
||
|
(_boost._beta_cdf, (0.5, 2, 3), 0.6875),
|
||
|
(_boost._beta_ppf, (0.6875, 2, 3), 0.5),
|
||
|
(_boost._beta_pdf, (0.5, 2, 3), 1.5),
|
||
|
(_boost._beta_pdf, (0, 1, 5), 5.0),
|
||
|
(_boost._beta_pdf, (1, 5, 1), 5.0),
|
||
|
(_boost._beta_sf, (0.5, 2, 1), 0.75),
|
||
|
(_boost._beta_isf, (0.75, 2, 1), 0.5),
|
||
|
(_boost._binom_cdf, (1, 3, 0.5), 0.5),
|
||
|
(_boost._binom_pdf, (1, 4, 0.5), 0.25),
|
||
|
(_boost._hypergeom_cdf, (2, 3, 5, 6), 0.5),
|
||
|
(_boost._nbinom_cdf, (1, 4, 0.25), 0.015625),
|
||
|
(_boost._ncf_mean, (10, 12, 2.5), 1.5),
|
||
|
]
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('func, args, expected', test_data)
|
||
|
def test_stats_boost_ufunc(func, args, expected):
|
||
|
type_sigs = func.types
|
||
|
type_chars = [sig.split('->')[-1] for sig in type_sigs]
|
||
|
for type_char in type_chars:
|
||
|
typ, rtol = type_char_to_type_tol[type_char]
|
||
|
args = [typ(arg) for arg in args]
|
||
|
# Harmless overflow warnings are a "feature" of some wrappers on some
|
||
|
# platforms. This test is about dtype and accuracy, so let's avoid false
|
||
|
# test failures cause by these warnings. See gh-17432.
|
||
|
with np.errstate(over='ignore'):
|
||
|
value = func(*args)
|
||
|
assert isinstance(value, typ)
|
||
|
assert_allclose(value, expected, rtol=rtol)
|