3RNN/Lib/site-packages/sklearn/cluster/tests/test_bisect_k_means.py

159 lines
5.0 KiB
Python
Raw Normal View History

2024-05-26 19:49:15 +02:00
import numpy as np
import pytest
from sklearn.cluster import BisectingKMeans
from sklearn.metrics import v_measure_score
from sklearn.utils._testing import assert_allclose, assert_array_equal
from sklearn.utils.fixes import CSR_CONTAINERS
@pytest.mark.parametrize("bisecting_strategy", ["biggest_inertia", "largest_cluster"])
@pytest.mark.parametrize("init", ["k-means++", "random"])
def test_three_clusters(bisecting_strategy, init):
"""Tries to perform bisect k-means for three clusters to check
if splitting data is performed correctly.
"""
X = np.array(
[[1, 1], [10, 1], [3, 1], [10, 0], [2, 1], [10, 2], [10, 8], [10, 9], [10, 10]]
)
bisect_means = BisectingKMeans(
n_clusters=3,
random_state=0,
bisecting_strategy=bisecting_strategy,
init=init,
)
bisect_means.fit(X)
expected_centers = [[2, 1], [10, 1], [10, 9]]
expected_labels = [0, 1, 0, 1, 0, 1, 2, 2, 2]
assert_allclose(
sorted(expected_centers), sorted(bisect_means.cluster_centers_.tolist())
)
assert_allclose(v_measure_score(expected_labels, bisect_means.labels_), 1.0)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_sparse(csr_container):
"""Test Bisecting K-Means with sparse data.
Checks if labels and centers are the same between dense and sparse.
"""
rng = np.random.RandomState(0)
X = rng.rand(20, 2)
X[X < 0.8] = 0
X_csr = csr_container(X)
bisect_means = BisectingKMeans(n_clusters=3, random_state=0)
bisect_means.fit(X_csr)
sparse_centers = bisect_means.cluster_centers_
bisect_means.fit(X)
normal_centers = bisect_means.cluster_centers_
# Check if results is the same for dense and sparse data
assert_allclose(normal_centers, sparse_centers, atol=1e-8)
@pytest.mark.parametrize("n_clusters", [4, 5])
def test_n_clusters(n_clusters):
"""Test if resulting labels are in range [0, n_clusters - 1]."""
rng = np.random.RandomState(0)
X = rng.rand(10, 2)
bisect_means = BisectingKMeans(n_clusters=n_clusters, random_state=0)
bisect_means.fit(X)
assert_array_equal(np.unique(bisect_means.labels_), np.arange(n_clusters))
def test_one_cluster():
"""Test single cluster."""
X = np.array([[1, 2], [10, 2], [10, 8]])
bisect_means = BisectingKMeans(n_clusters=1, random_state=0).fit(X)
# All labels from fit or predict should be equal 0
assert all(bisect_means.labels_ == 0)
assert all(bisect_means.predict(X) == 0)
assert_allclose(bisect_means.cluster_centers_, X.mean(axis=0).reshape(1, -1))
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS + [None])
def test_fit_predict(csr_container):
"""Check if labels from fit(X) method are same as from fit(X).predict(X)."""
rng = np.random.RandomState(0)
X = rng.rand(10, 2)
if csr_container is not None:
X[X < 0.8] = 0
X = csr_container(X)
bisect_means = BisectingKMeans(n_clusters=3, random_state=0)
bisect_means.fit(X)
assert_array_equal(bisect_means.labels_, bisect_means.predict(X))
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS + [None])
def test_dtype_preserved(csr_container, global_dtype):
"""Check that centers dtype is the same as input data dtype."""
rng = np.random.RandomState(0)
X = rng.rand(10, 2).astype(global_dtype, copy=False)
if csr_container is not None:
X[X < 0.8] = 0
X = csr_container(X)
km = BisectingKMeans(n_clusters=3, random_state=0)
km.fit(X)
assert km.cluster_centers_.dtype == global_dtype
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS + [None])
def test_float32_float64_equivalence(csr_container):
"""Check that the results are the same between float32 and float64."""
rng = np.random.RandomState(0)
X = rng.rand(10, 2)
if csr_container is not None:
X[X < 0.8] = 0
X = csr_container(X)
km64 = BisectingKMeans(n_clusters=3, random_state=0).fit(X)
km32 = BisectingKMeans(n_clusters=3, random_state=0).fit(X.astype(np.float32))
assert_allclose(km32.cluster_centers_, km64.cluster_centers_)
assert_array_equal(km32.labels_, km64.labels_)
@pytest.mark.parametrize("algorithm", ("lloyd", "elkan"))
def test_no_crash_on_empty_bisections(algorithm):
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/27081
rng = np.random.RandomState(0)
X_train = rng.rand(3000, 10)
bkm = BisectingKMeans(n_clusters=10, algorithm=algorithm).fit(X_train)
# predict on scaled data to trigger pathologic case
# where the inner mask leads to empty bisections.
X_test = 50 * rng.rand(100, 10)
labels = bkm.predict(X_test) # should not crash with idiv by 0
assert np.isin(np.unique(labels), np.arange(10)).all()
def test_one_feature():
# Check that no error is raised when there is only one feature
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/27236
X = np.random.normal(size=(128, 1))
BisectingKMeans(bisecting_strategy="biggest_inertia", random_state=0).fit(X)