90 lines
2.9 KiB
Cython
90 lines
2.9 KiB
Cython
|
# Author: Lars Buitinck
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
from libc.stdlib cimport abs
|
||
|
from libcpp.vector cimport vector
|
||
|
|
||
|
cimport numpy as cnp
|
||
|
import numpy as np
|
||
|
from ..utils._typedefs cimport int32_t, int64_t
|
||
|
from ..utils.murmurhash cimport murmurhash3_bytes_s32
|
||
|
from ..utils._vector_sentinel cimport vector_to_nd_array
|
||
|
|
||
|
cnp.import_array()
|
||
|
|
||
|
|
||
|
def transform(raw_X, Py_ssize_t n_features, dtype,
|
||
|
bint alternate_sign=1, unsigned int seed=0):
|
||
|
"""Guts of FeatureHasher.transform.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
n_samples : integer
|
||
|
indices, indptr, values : lists
|
||
|
For constructing a scipy.sparse.csr_matrix.
|
||
|
|
||
|
"""
|
||
|
cdef int32_t h
|
||
|
cdef double value
|
||
|
|
||
|
cdef vector[int32_t] indices
|
||
|
cdef vector[int64_t] indptr
|
||
|
indptr.push_back(0)
|
||
|
|
||
|
# Since Python array does not understand Numpy dtypes, we grow the indices
|
||
|
# and values arrays ourselves. Use a Py_ssize_t capacity for safety.
|
||
|
cdef Py_ssize_t capacity = 8192 # arbitrary
|
||
|
cdef int64_t size = 0
|
||
|
cdef cnp.ndarray values = np.empty(capacity, dtype=dtype)
|
||
|
|
||
|
for x in raw_X:
|
||
|
for f, v in x:
|
||
|
if isinstance(v, (str, unicode)):
|
||
|
f = "%s%s%s" % (f, '=', v)
|
||
|
value = 1
|
||
|
else:
|
||
|
value = v
|
||
|
|
||
|
if value == 0:
|
||
|
continue
|
||
|
|
||
|
if isinstance(f, unicode):
|
||
|
f = (<unicode>f).encode("utf-8")
|
||
|
# Need explicit type check because Murmurhash does not propagate
|
||
|
# all exceptions. Add "except *" there?
|
||
|
elif not isinstance(f, bytes):
|
||
|
raise TypeError("feature names must be strings")
|
||
|
|
||
|
h = murmurhash3_bytes_s32(<bytes>f, seed)
|
||
|
|
||
|
if h == - 2147483648:
|
||
|
# abs(-2**31) is undefined behavior because h is a `np.int32`
|
||
|
# The following is defined such that it is equal to: abs(-2**31) % n_features
|
||
|
indices.push_back((2147483647 - (n_features - 1)) % n_features)
|
||
|
else:
|
||
|
indices.push_back(abs(h) % n_features)
|
||
|
# improve inner product preservation in the hashed space
|
||
|
if alternate_sign:
|
||
|
value *= (h >= 0) * 2 - 1
|
||
|
values[size] = value
|
||
|
size += 1
|
||
|
|
||
|
if size == capacity:
|
||
|
capacity *= 2
|
||
|
# can't use resize member because there might be multiple
|
||
|
# references to the arrays due to Cython's error checking
|
||
|
values = np.resize(values, capacity)
|
||
|
|
||
|
indptr.push_back(size)
|
||
|
|
||
|
indices_array = vector_to_nd_array(&indices)
|
||
|
indptr_array = vector_to_nd_array(&indptr)
|
||
|
|
||
|
if indptr_array[indptr_array.shape[0]-1] > np.iinfo(np.int32).max: # = 2**31 - 1
|
||
|
# both indices and indptr have the same dtype in CSR arrays
|
||
|
indices_array = indices_array.astype(np.int64, copy=False)
|
||
|
else:
|
||
|
indptr_array = indptr_array.astype(np.int32, copy=False)
|
||
|
|
||
|
return (indices_array, indptr_array, values[:size])
|