3RNN/Lib/site-packages/sklearn/model_selection/_split.py

2915 lines
101 KiB
Python
Raw Normal View History

2024-05-26 19:49:15 +02:00
"""
The :mod:`sklearn.model_selection._split` module includes classes and
functions to split the data based on a preset strategy.
"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Gael Varoquaux <gael.varoquaux@normalesup.org>
# Olivier Grisel <olivier.grisel@ensta.org>
# Raghav RV <rvraghav93@gmail.com>
# Leandro Hermida <hermidal@cs.umd.edu>
# Rodion Martynov <marrodion@gmail.com>
# License: BSD 3 clause
import numbers
import warnings
from abc import ABCMeta, abstractmethod
from collections import defaultdict
from collections.abc import Iterable
from inspect import signature
from itertools import chain, combinations
from math import ceil, floor
import numpy as np
from scipy.special import comb
from ..utils import (
_safe_indexing,
check_random_state,
indexable,
metadata_routing,
)
from ..utils._array_api import (
_convert_to_numpy,
ensure_common_namespace_device,
get_namespace,
)
from ..utils._param_validation import Interval, RealNotInt, validate_params
from ..utils.extmath import _approximate_mode
from ..utils.metadata_routing import _MetadataRequester
from ..utils.multiclass import type_of_target
from ..utils.validation import _num_samples, check_array, column_or_1d
__all__ = [
"BaseCrossValidator",
"KFold",
"GroupKFold",
"LeaveOneGroupOut",
"LeaveOneOut",
"LeavePGroupsOut",
"LeavePOut",
"RepeatedStratifiedKFold",
"RepeatedKFold",
"ShuffleSplit",
"GroupShuffleSplit",
"StratifiedKFold",
"StratifiedGroupKFold",
"StratifiedShuffleSplit",
"PredefinedSplit",
"train_test_split",
"check_cv",
]
class _UnsupportedGroupCVMixin:
"""Mixin for splitters that do not support Groups."""
def split(self, X, y=None, groups=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,)
The target variable for supervised learning problems.
groups : object
Always ignored, exists for compatibility.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
"""
if groups is not None:
warnings.warn(
f"The groups parameter is ignored by {self.__class__.__name__}",
UserWarning,
)
return super().split(X, y, groups=groups)
class GroupsConsumerMixin(_MetadataRequester):
"""A Mixin to ``groups`` by default.
This Mixin makes the object to request ``groups`` by default as ``True``.
.. versionadded:: 1.3
"""
__metadata_request__split = {"groups": True}
class BaseCrossValidator(_MetadataRequester, metaclass=ABCMeta):
"""Base class for all cross-validators.
Implementations must define `_iter_test_masks` or `_iter_test_indices`.
"""
# This indicates that by default CV splitters don't have a "groups" kwarg,
# unless indicated by inheriting from ``GroupsConsumerMixin``.
# This also prevents ``set_split_request`` to be generated for splitters
# which don't support ``groups``.
__metadata_request__split = {"groups": metadata_routing.UNUSED}
def split(self, X, y=None, groups=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,)
The target variable for supervised learning problems.
groups : array-like of shape (n_samples,), default=None
Group labels for the samples used while splitting the dataset into
train/test set.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
"""
X, y, groups = indexable(X, y, groups)
indices = np.arange(_num_samples(X))
for test_index in self._iter_test_masks(X, y, groups):
train_index = indices[np.logical_not(test_index)]
test_index = indices[test_index]
yield train_index, test_index
# Since subclasses must implement either _iter_test_masks or
# _iter_test_indices, neither can be abstract.
def _iter_test_masks(self, X=None, y=None, groups=None):
"""Generates boolean masks corresponding to test sets.
By default, delegates to _iter_test_indices(X, y, groups)
"""
for test_index in self._iter_test_indices(X, y, groups):
test_mask = np.zeros(_num_samples(X), dtype=bool)
test_mask[test_index] = True
yield test_mask
def _iter_test_indices(self, X=None, y=None, groups=None):
"""Generates integer indices corresponding to test sets."""
raise NotImplementedError
@abstractmethod
def get_n_splits(self, X=None, y=None, groups=None):
"""Returns the number of splitting iterations in the cross-validator."""
def __repr__(self):
return _build_repr(self)
class LeaveOneOut(_UnsupportedGroupCVMixin, BaseCrossValidator):
"""Leave-One-Out cross-validator.
Provides train/test indices to split data in train/test sets. Each
sample is used once as a test set (singleton) while the remaining
samples form the training set.
Note: ``LeaveOneOut()`` is equivalent to ``KFold(n_splits=n)`` and
``LeavePOut(p=1)`` where ``n`` is the number of samples.
Due to the high number of test sets (which is the same as the
number of samples) this cross-validation method can be very costly.
For large datasets one should favor :class:`KFold`, :class:`ShuffleSplit`
or :class:`StratifiedKFold`.
Read more in the :ref:`User Guide <leave_one_out>`.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import LeaveOneOut
>>> X = np.array([[1, 2], [3, 4]])
>>> y = np.array([1, 2])
>>> loo = LeaveOneOut()
>>> loo.get_n_splits(X)
2
>>> print(loo)
LeaveOneOut()
>>> for i, (train_index, test_index) in enumerate(loo.split(X)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" Test: index={test_index}")
Fold 0:
Train: index=[1]
Test: index=[0]
Fold 1:
Train: index=[0]
Test: index=[1]
See Also
--------
LeaveOneGroupOut : For splitting the data according to explicit,
domain-specific stratification of the dataset.
GroupKFold : K-fold iterator variant with non-overlapping groups.
"""
def _iter_test_indices(self, X, y=None, groups=None):
n_samples = _num_samples(X)
if n_samples <= 1:
raise ValueError(
"Cannot perform LeaveOneOut with n_samples={}.".format(n_samples)
)
return range(n_samples)
def get_n_splits(self, X, y=None, groups=None):
"""Returns the number of splitting iterations in the cross-validator.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : object
Always ignored, exists for compatibility.
groups : object
Always ignored, exists for compatibility.
Returns
-------
n_splits : int
Returns the number of splitting iterations in the cross-validator.
"""
if X is None:
raise ValueError("The 'X' parameter should not be None.")
return _num_samples(X)
class LeavePOut(_UnsupportedGroupCVMixin, BaseCrossValidator):
"""Leave-P-Out cross-validator.
Provides train/test indices to split data in train/test sets. This results
in testing on all distinct samples of size p, while the remaining n - p
samples form the training set in each iteration.
Note: ``LeavePOut(p)`` is NOT equivalent to
``KFold(n_splits=n_samples // p)`` which creates non-overlapping test sets.
Due to the high number of iterations which grows combinatorically with the
number of samples this cross-validation method can be very costly. For
large datasets one should favor :class:`KFold`, :class:`StratifiedKFold`
or :class:`ShuffleSplit`.
Read more in the :ref:`User Guide <leave_p_out>`.
Parameters
----------
p : int
Size of the test sets. Must be strictly less than the number of
samples.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import LeavePOut
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 3, 4])
>>> lpo = LeavePOut(2)
>>> lpo.get_n_splits(X)
6
>>> print(lpo)
LeavePOut(p=2)
>>> for i, (train_index, test_index) in enumerate(lpo.split(X)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" Test: index={test_index}")
Fold 0:
Train: index=[2 3]
Test: index=[0 1]
Fold 1:
Train: index=[1 3]
Test: index=[0 2]
Fold 2:
Train: index=[1 2]
Test: index=[0 3]
Fold 3:
Train: index=[0 3]
Test: index=[1 2]
Fold 4:
Train: index=[0 2]
Test: index=[1 3]
Fold 5:
Train: index=[0 1]
Test: index=[2 3]
"""
def __init__(self, p):
self.p = p
def _iter_test_indices(self, X, y=None, groups=None):
n_samples = _num_samples(X)
if n_samples <= self.p:
raise ValueError(
"p={} must be strictly less than the number of samples={}".format(
self.p, n_samples
)
)
for combination in combinations(range(n_samples), self.p):
yield np.array(combination)
def get_n_splits(self, X, y=None, groups=None):
"""Returns the number of splitting iterations in the cross-validator.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : object
Always ignored, exists for compatibility.
groups : object
Always ignored, exists for compatibility.
"""
if X is None:
raise ValueError("The 'X' parameter should not be None.")
return int(comb(_num_samples(X), self.p, exact=True))
class _BaseKFold(BaseCrossValidator, metaclass=ABCMeta):
"""Base class for K-Fold cross-validators and TimeSeriesSplit."""
@abstractmethod
def __init__(self, n_splits, *, shuffle, random_state):
if not isinstance(n_splits, numbers.Integral):
raise ValueError(
"The number of folds must be of Integral type. "
"%s of type %s was passed." % (n_splits, type(n_splits))
)
n_splits = int(n_splits)
if n_splits <= 1:
raise ValueError(
"k-fold cross-validation requires at least one"
" train/test split by setting n_splits=2 or more,"
" got n_splits={0}.".format(n_splits)
)
if not isinstance(shuffle, bool):
raise TypeError("shuffle must be True or False; got {0}".format(shuffle))
if not shuffle and random_state is not None: # None is the default
raise ValueError(
(
"Setting a random_state has no effect since shuffle is "
"False. You should leave "
"random_state to its default (None), or set shuffle=True."
),
)
self.n_splits = n_splits
self.shuffle = shuffle
self.random_state = random_state
def split(self, X, y=None, groups=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,), default=None
The target variable for supervised learning problems.
groups : array-like of shape (n_samples,), default=None
Group labels for the samples used while splitting the dataset into
train/test set.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
"""
X, y, groups = indexable(X, y, groups)
n_samples = _num_samples(X)
if self.n_splits > n_samples:
raise ValueError(
(
"Cannot have number of splits n_splits={0} greater"
" than the number of samples: n_samples={1}."
).format(self.n_splits, n_samples)
)
for train, test in super().split(X, y, groups):
yield train, test
def get_n_splits(self, X=None, y=None, groups=None):
"""Returns the number of splitting iterations in the cross-validator.
Parameters
----------
X : object
Always ignored, exists for compatibility.
y : object
Always ignored, exists for compatibility.
groups : object
Always ignored, exists for compatibility.
Returns
-------
n_splits : int
Returns the number of splitting iterations in the cross-validator.
"""
return self.n_splits
class KFold(_UnsupportedGroupCVMixin, _BaseKFold):
"""K-Fold cross-validator.
Provides train/test indices to split data in train/test sets. Split
dataset into k consecutive folds (without shuffling by default).
Each fold is then used once as a validation while the k - 1 remaining
folds form the training set.
Read more in the :ref:`User Guide <k_fold>`.
For visualisation of cross-validation behaviour and
comparison between common scikit-learn split methods
refer to :ref:`sphx_glr_auto_examples_model_selection_plot_cv_indices.py`
Parameters
----------
n_splits : int, default=5
Number of folds. Must be at least 2.
.. versionchanged:: 0.22
``n_splits`` default value changed from 3 to 5.
shuffle : bool, default=False
Whether to shuffle the data before splitting into batches.
Note that the samples within each split will not be shuffled.
random_state : int, RandomState instance or None, default=None
When `shuffle` is True, `random_state` affects the ordering of the
indices, which controls the randomness of each fold. Otherwise, this
parameter has no effect.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import KFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4])
>>> kf = KFold(n_splits=2)
>>> kf.get_n_splits(X)
2
>>> print(kf)
KFold(n_splits=2, random_state=None, shuffle=False)
>>> for i, (train_index, test_index) in enumerate(kf.split(X)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" Test: index={test_index}")
Fold 0:
Train: index=[2 3]
Test: index=[0 1]
Fold 1:
Train: index=[0 1]
Test: index=[2 3]
Notes
-----
The first ``n_samples % n_splits`` folds have size
``n_samples // n_splits + 1``, other folds have size
``n_samples // n_splits``, where ``n_samples`` is the number of samples.
Randomized CV splitters may return different results for each call of
split. You can make the results identical by setting `random_state`
to an integer.
See Also
--------
StratifiedKFold : Takes class information into account to avoid building
folds with imbalanced class distributions (for binary or multiclass
classification tasks).
GroupKFold : K-fold iterator variant with non-overlapping groups.
RepeatedKFold : Repeats K-Fold n times.
"""
def __init__(self, n_splits=5, *, shuffle=False, random_state=None):
super().__init__(n_splits=n_splits, shuffle=shuffle, random_state=random_state)
def _iter_test_indices(self, X, y=None, groups=None):
n_samples = _num_samples(X)
indices = np.arange(n_samples)
if self.shuffle:
check_random_state(self.random_state).shuffle(indices)
n_splits = self.n_splits
fold_sizes = np.full(n_splits, n_samples // n_splits, dtype=int)
fold_sizes[: n_samples % n_splits] += 1
current = 0
for fold_size in fold_sizes:
start, stop = current, current + fold_size
yield indices[start:stop]
current = stop
class GroupKFold(GroupsConsumerMixin, _BaseKFold):
"""K-fold iterator variant with non-overlapping groups.
Each group will appear exactly once in the test set across all folds (the
number of distinct groups has to be at least equal to the number of folds).
The folds are approximately balanced in the sense that the number of
samples is approximately the same in each test fold.
Read more in the :ref:`User Guide <group_k_fold>`.
For visualisation of cross-validation behaviour and
comparison between common scikit-learn split methods
refer to :ref:`sphx_glr_auto_examples_model_selection_plot_cv_indices.py`
Parameters
----------
n_splits : int, default=5
Number of folds. Must be at least 2.
.. versionchanged:: 0.22
``n_splits`` default value changed from 3 to 5.
Notes
-----
Groups appear in an arbitrary order throughout the folds.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import GroupKFold
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]])
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> groups = np.array([0, 0, 2, 2, 3, 3])
>>> group_kfold = GroupKFold(n_splits=2)
>>> group_kfold.get_n_splits(X, y, groups)
2
>>> print(group_kfold)
GroupKFold(n_splits=2)
>>> for i, (train_index, test_index) in enumerate(group_kfold.split(X, y, groups)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}, group={groups[train_index]}")
... print(f" Test: index={test_index}, group={groups[test_index]}")
Fold 0:
Train: index=[2 3], group=[2 2]
Test: index=[0 1 4 5], group=[0 0 3 3]
Fold 1:
Train: index=[0 1 4 5], group=[0 0 3 3]
Test: index=[2 3], group=[2 2]
See Also
--------
LeaveOneGroupOut : For splitting the data according to explicit
domain-specific stratification of the dataset.
StratifiedKFold : Takes class information into account to avoid building
folds with imbalanced class proportions (for binary or multiclass
classification tasks).
"""
def __init__(self, n_splits=5):
super().__init__(n_splits, shuffle=False, random_state=None)
def _iter_test_indices(self, X, y, groups):
if groups is None:
raise ValueError("The 'groups' parameter should not be None.")
groups = check_array(groups, input_name="groups", ensure_2d=False, dtype=None)
unique_groups, groups = np.unique(groups, return_inverse=True)
n_groups = len(unique_groups)
if self.n_splits > n_groups:
raise ValueError(
"Cannot have number of splits n_splits=%d greater"
" than the number of groups: %d." % (self.n_splits, n_groups)
)
# Weight groups by their number of occurrences
n_samples_per_group = np.bincount(groups)
# Distribute the most frequent groups first
indices = np.argsort(n_samples_per_group)[::-1]
n_samples_per_group = n_samples_per_group[indices]
# Total weight of each fold
n_samples_per_fold = np.zeros(self.n_splits)
# Mapping from group index to fold index
group_to_fold = np.zeros(len(unique_groups))
# Distribute samples by adding the largest weight to the lightest fold
for group_index, weight in enumerate(n_samples_per_group):
lightest_fold = np.argmin(n_samples_per_fold)
n_samples_per_fold[lightest_fold] += weight
group_to_fold[indices[group_index]] = lightest_fold
indices = group_to_fold[groups]
for f in range(self.n_splits):
yield np.where(indices == f)[0]
def split(self, X, y=None, groups=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,), default=None
The target variable for supervised learning problems.
groups : array-like of shape (n_samples,)
Group labels for the samples used while splitting the dataset into
train/test set.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
"""
return super().split(X, y, groups)
class StratifiedKFold(_BaseKFold):
"""Stratified K-Fold cross-validator.
Provides train/test indices to split data in train/test sets.
This cross-validation object is a variation of KFold that returns
stratified folds. The folds are made by preserving the percentage of
samples for each class.
Read more in the :ref:`User Guide <stratified_k_fold>`.
For visualisation of cross-validation behaviour and
comparison between common scikit-learn split methods
refer to :ref:`sphx_glr_auto_examples_model_selection_plot_cv_indices.py`
Parameters
----------
n_splits : int, default=5
Number of folds. Must be at least 2.
.. versionchanged:: 0.22
``n_splits`` default value changed from 3 to 5.
shuffle : bool, default=False
Whether to shuffle each class's samples before splitting into batches.
Note that the samples within each split will not be shuffled.
random_state : int, RandomState instance or None, default=None
When `shuffle` is True, `random_state` affects the ordering of the
indices, which controls the randomness of each fold for each class.
Otherwise, leave `random_state` as `None`.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import StratifiedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> skf = StratifiedKFold(n_splits=2)
>>> skf.get_n_splits(X, y)
2
>>> print(skf)
StratifiedKFold(n_splits=2, random_state=None, shuffle=False)
>>> for i, (train_index, test_index) in enumerate(skf.split(X, y)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" Test: index={test_index}")
Fold 0:
Train: index=[1 3]
Test: index=[0 2]
Fold 1:
Train: index=[0 2]
Test: index=[1 3]
Notes
-----
The implementation is designed to:
* Generate test sets such that all contain the same distribution of
classes, or as close as possible.
* Be invariant to class label: relabelling ``y = ["Happy", "Sad"]`` to
``y = [1, 0]`` should not change the indices generated.
* Preserve order dependencies in the dataset ordering, when
``shuffle=False``: all samples from class k in some test set were
contiguous in y, or separated in y by samples from classes other than k.
* Generate test sets where the smallest and largest differ by at most one
sample.
.. versionchanged:: 0.22
The previous implementation did not follow the last constraint.
See Also
--------
RepeatedStratifiedKFold : Repeats Stratified K-Fold n times.
"""
def __init__(self, n_splits=5, *, shuffle=False, random_state=None):
super().__init__(n_splits=n_splits, shuffle=shuffle, random_state=random_state)
def _make_test_folds(self, X, y=None):
rng = check_random_state(self.random_state)
y = np.asarray(y)
type_of_target_y = type_of_target(y)
allowed_target_types = ("binary", "multiclass")
if type_of_target_y not in allowed_target_types:
raise ValueError(
"Supported target types are: {}. Got {!r} instead.".format(
allowed_target_types, type_of_target_y
)
)
y = column_or_1d(y)
_, y_idx, y_inv = np.unique(y, return_index=True, return_inverse=True)
# y_inv encodes y according to lexicographic order. We invert y_idx to
# map the classes so that they are encoded by order of appearance:
# 0 represents the first label appearing in y, 1 the second, etc.
_, class_perm = np.unique(y_idx, return_inverse=True)
y_encoded = class_perm[y_inv]
n_classes = len(y_idx)
y_counts = np.bincount(y_encoded)
min_groups = np.min(y_counts)
if np.all(self.n_splits > y_counts):
raise ValueError(
"n_splits=%d cannot be greater than the"
" number of members in each class." % (self.n_splits)
)
if self.n_splits > min_groups:
warnings.warn(
"The least populated class in y has only %d"
" members, which is less than n_splits=%d."
% (min_groups, self.n_splits),
UserWarning,
)
# Determine the optimal number of samples from each class in each fold,
# using round robin over the sorted y. (This can be done direct from
# counts, but that code is unreadable.)
y_order = np.sort(y_encoded)
allocation = np.asarray(
[
np.bincount(y_order[i :: self.n_splits], minlength=n_classes)
for i in range(self.n_splits)
]
)
# To maintain the data order dependencies as best as possible within
# the stratification constraint, we assign samples from each class in
# blocks (and then mess that up when shuffle=True).
test_folds = np.empty(len(y), dtype="i")
for k in range(n_classes):
# since the kth column of allocation stores the number of samples
# of class k in each test set, this generates blocks of fold
# indices corresponding to the allocation for class k.
folds_for_class = np.arange(self.n_splits).repeat(allocation[:, k])
if self.shuffle:
rng.shuffle(folds_for_class)
test_folds[y_encoded == k] = folds_for_class
return test_folds
def _iter_test_masks(self, X, y=None, groups=None):
test_folds = self._make_test_folds(X, y)
for i in range(self.n_splits):
yield test_folds == i
def split(self, X, y, groups=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Note that providing ``y`` is sufficient to generate the splits and
hence ``np.zeros(n_samples)`` may be used as a placeholder for
``X`` instead of actual training data.
y : array-like of shape (n_samples,)
The target variable for supervised learning problems.
Stratification is done based on the y labels.
groups : object
Always ignored, exists for compatibility.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
Notes
-----
Randomized CV splitters may return different results for each call of
split. You can make the results identical by setting `random_state`
to an integer.
"""
if groups is not None:
warnings.warn(
f"The groups parameter is ignored by {self.__class__.__name__}",
UserWarning,
)
y = check_array(y, input_name="y", ensure_2d=False, dtype=None)
return super().split(X, y, groups)
class StratifiedGroupKFold(GroupsConsumerMixin, _BaseKFold):
"""Stratified K-Fold iterator variant with non-overlapping groups.
This cross-validation object is a variation of StratifiedKFold attempts to
return stratified folds with non-overlapping groups. The folds are made by
preserving the percentage of samples for each class.
Each group will appear exactly once in the test set across all folds (the
number of distinct groups has to be at least equal to the number of folds).
The difference between :class:`~sklearn.model_selection.GroupKFold`
and :class:`~sklearn.model_selection.StratifiedGroupKFold` is that
the former attempts to create balanced folds such that the number of
distinct groups is approximately the same in each fold, whereas
StratifiedGroupKFold attempts to create folds which preserve the
percentage of samples for each class as much as possible given the
constraint of non-overlapping groups between splits.
Read more in the :ref:`User Guide <cross_validation>`.
For visualisation of cross-validation behaviour and
comparison between common scikit-learn split methods
refer to :ref:`sphx_glr_auto_examples_model_selection_plot_cv_indices.py`
Parameters
----------
n_splits : int, default=5
Number of folds. Must be at least 2.
shuffle : bool, default=False
Whether to shuffle each class's samples before splitting into batches.
Note that the samples within each split will not be shuffled.
This implementation can only shuffle groups that have approximately the
same y distribution, no global shuffle will be performed.
random_state : int or RandomState instance, default=None
When `shuffle` is True, `random_state` affects the ordering of the
indices, which controls the randomness of each fold for each class.
Otherwise, leave `random_state` as `None`.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import StratifiedGroupKFold
>>> X = np.ones((17, 2))
>>> y = np.array([0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> groups = np.array([1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 6, 7, 8, 8])
>>> sgkf = StratifiedGroupKFold(n_splits=3)
>>> sgkf.get_n_splits(X, y)
3
>>> print(sgkf)
StratifiedGroupKFold(n_splits=3, random_state=None, shuffle=False)
>>> for i, (train_index, test_index) in enumerate(sgkf.split(X, y, groups)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" group={groups[train_index]}")
... print(f" Test: index={test_index}")
... print(f" group={groups[test_index]}")
Fold 0:
Train: index=[ 0 1 2 3 7 8 9 10 11 15 16]
group=[1 1 2 2 4 5 5 5 5 8 8]
Test: index=[ 4 5 6 12 13 14]
group=[3 3 3 6 6 7]
Fold 1:
Train: index=[ 4 5 6 7 8 9 10 11 12 13 14]
group=[3 3 3 4 5 5 5 5 6 6 7]
Test: index=[ 0 1 2 3 15 16]
group=[1 1 2 2 8 8]
Fold 2:
Train: index=[ 0 1 2 3 4 5 6 12 13 14 15 16]
group=[1 1 2 2 3 3 3 6 6 7 8 8]
Test: index=[ 7 8 9 10 11]
group=[4 5 5 5 5]
Notes
-----
The implementation is designed to:
* Mimic the behavior of StratifiedKFold as much as possible for trivial
groups (e.g. when each group contains only one sample).
* Be invariant to class label: relabelling ``y = ["Happy", "Sad"]`` to
``y = [1, 0]`` should not change the indices generated.
* Stratify based on samples as much as possible while keeping
non-overlapping groups constraint. That means that in some cases when
there is a small number of groups containing a large number of samples
the stratification will not be possible and the behavior will be close
to GroupKFold.
See also
--------
StratifiedKFold: Takes class information into account to build folds which
retain class distributions (for binary or multiclass classification
tasks).
GroupKFold: K-fold iterator variant with non-overlapping groups.
"""
def __init__(self, n_splits=5, shuffle=False, random_state=None):
super().__init__(n_splits=n_splits, shuffle=shuffle, random_state=random_state)
def _iter_test_indices(self, X, y, groups):
# Implementation is based on this kaggle kernel:
# https://www.kaggle.com/jakubwasikowski/stratified-group-k-fold-cross-validation
# and is a subject to Apache 2.0 License. You may obtain a copy of the
# License at http://www.apache.org/licenses/LICENSE-2.0
# Changelist:
# - Refactored function to a class following scikit-learn KFold
# interface.
# - Added heuristic for assigning group to the least populated fold in
# cases when all other criteria are equal
# - Swtch from using python ``Counter`` to ``np.unique`` to get class
# distribution
# - Added scikit-learn checks for input: checking that target is binary
# or multiclass, checking passed random state, checking that number
# of splits is less than number of members in each class, checking
# that least populated class has more members than there are splits.
rng = check_random_state(self.random_state)
y = np.asarray(y)
type_of_target_y = type_of_target(y)
allowed_target_types = ("binary", "multiclass")
if type_of_target_y not in allowed_target_types:
raise ValueError(
"Supported target types are: {}. Got {!r} instead.".format(
allowed_target_types, type_of_target_y
)
)
y = column_or_1d(y)
_, y_inv, y_cnt = np.unique(y, return_inverse=True, return_counts=True)
if np.all(self.n_splits > y_cnt):
raise ValueError(
"n_splits=%d cannot be greater than the"
" number of members in each class." % (self.n_splits)
)
n_smallest_class = np.min(y_cnt)
if self.n_splits > n_smallest_class:
warnings.warn(
"The least populated class in y has only %d"
" members, which is less than n_splits=%d."
% (n_smallest_class, self.n_splits),
UserWarning,
)
n_classes = len(y_cnt)
_, groups_inv, groups_cnt = np.unique(
groups, return_inverse=True, return_counts=True
)
y_counts_per_group = np.zeros((len(groups_cnt), n_classes))
for class_idx, group_idx in zip(y_inv, groups_inv):
y_counts_per_group[group_idx, class_idx] += 1
y_counts_per_fold = np.zeros((self.n_splits, n_classes))
groups_per_fold = defaultdict(set)
if self.shuffle:
rng.shuffle(y_counts_per_group)
# Stable sort to keep shuffled order for groups with the same
# class distribution variance
sorted_groups_idx = np.argsort(
-np.std(y_counts_per_group, axis=1), kind="mergesort"
)
for group_idx in sorted_groups_idx:
group_y_counts = y_counts_per_group[group_idx]
best_fold = self._find_best_fold(
y_counts_per_fold=y_counts_per_fold,
y_cnt=y_cnt,
group_y_counts=group_y_counts,
)
y_counts_per_fold[best_fold] += group_y_counts
groups_per_fold[best_fold].add(group_idx)
for i in range(self.n_splits):
test_indices = [
idx
for idx, group_idx in enumerate(groups_inv)
if group_idx in groups_per_fold[i]
]
yield test_indices
def _find_best_fold(self, y_counts_per_fold, y_cnt, group_y_counts):
best_fold = None
min_eval = np.inf
min_samples_in_fold = np.inf
for i in range(self.n_splits):
y_counts_per_fold[i] += group_y_counts
# Summarise the distribution over classes in each proposed fold
std_per_class = np.std(y_counts_per_fold / y_cnt.reshape(1, -1), axis=0)
y_counts_per_fold[i] -= group_y_counts
fold_eval = np.mean(std_per_class)
samples_in_fold = np.sum(y_counts_per_fold[i])
is_current_fold_better = (
fold_eval < min_eval
or np.isclose(fold_eval, min_eval)
and samples_in_fold < min_samples_in_fold
)
if is_current_fold_better:
min_eval = fold_eval
min_samples_in_fold = samples_in_fold
best_fold = i
return best_fold
class TimeSeriesSplit(_BaseKFold):
"""Time Series cross-validator.
Provides train/test indices to split time series data samples
that are observed at fixed time intervals, in train/test sets.
In each split, test indices must be higher than before, and thus shuffling
in cross validator is inappropriate.
This cross-validation object is a variation of :class:`KFold`.
In the kth split, it returns first k folds as train set and the
(k+1)th fold as test set.
Note that unlike standard cross-validation methods, successive
training sets are supersets of those that come before them.
Read more in the :ref:`User Guide <time_series_split>`.
For visualisation of cross-validation behaviour and
comparison between common scikit-learn split methods
refer to :ref:`sphx_glr_auto_examples_model_selection_plot_cv_indices.py`
.. versionadded:: 0.18
Parameters
----------
n_splits : int, default=5
Number of splits. Must be at least 2.
.. versionchanged:: 0.22
``n_splits`` default value changed from 3 to 5.
max_train_size : int, default=None
Maximum size for a single training set.
test_size : int, default=None
Used to limit the size of the test set. Defaults to
``n_samples // (n_splits + 1)``, which is the maximum allowed value
with ``gap=0``.
.. versionadded:: 0.24
gap : int, default=0
Number of samples to exclude from the end of each train set before
the test set.
.. versionadded:: 0.24
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import TimeSeriesSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> tscv = TimeSeriesSplit()
>>> print(tscv)
TimeSeriesSplit(gap=0, max_train_size=None, n_splits=5, test_size=None)
>>> for i, (train_index, test_index) in enumerate(tscv.split(X)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" Test: index={test_index}")
Fold 0:
Train: index=[0]
Test: index=[1]
Fold 1:
Train: index=[0 1]
Test: index=[2]
Fold 2:
Train: index=[0 1 2]
Test: index=[3]
Fold 3:
Train: index=[0 1 2 3]
Test: index=[4]
Fold 4:
Train: index=[0 1 2 3 4]
Test: index=[5]
>>> # Fix test_size to 2 with 12 samples
>>> X = np.random.randn(12, 2)
>>> y = np.random.randint(0, 2, 12)
>>> tscv = TimeSeriesSplit(n_splits=3, test_size=2)
>>> for i, (train_index, test_index) in enumerate(tscv.split(X)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" Test: index={test_index}")
Fold 0:
Train: index=[0 1 2 3 4 5]
Test: index=[6 7]
Fold 1:
Train: index=[0 1 2 3 4 5 6 7]
Test: index=[8 9]
Fold 2:
Train: index=[0 1 2 3 4 5 6 7 8 9]
Test: index=[10 11]
>>> # Add in a 2 period gap
>>> tscv = TimeSeriesSplit(n_splits=3, test_size=2, gap=2)
>>> for i, (train_index, test_index) in enumerate(tscv.split(X)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" Test: index={test_index}")
Fold 0:
Train: index=[0 1 2 3]
Test: index=[6 7]
Fold 1:
Train: index=[0 1 2 3 4 5]
Test: index=[8 9]
Fold 2:
Train: index=[0 1 2 3 4 5 6 7]
Test: index=[10 11]
For a more extended example see
:ref:`sphx_glr_auto_examples_applications_plot_cyclical_feature_engineering.py`.
Notes
-----
The training set has size ``i * n_samples // (n_splits + 1)
+ n_samples % (n_splits + 1)`` in the ``i`` th split,
with a test set of size ``n_samples//(n_splits + 1)`` by default,
where ``n_samples`` is the number of samples.
"""
def __init__(self, n_splits=5, *, max_train_size=None, test_size=None, gap=0):
super().__init__(n_splits, shuffle=False, random_state=None)
self.max_train_size = max_train_size
self.test_size = test_size
self.gap = gap
def split(self, X, y=None, groups=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,)
Always ignored, exists for compatibility.
groups : array-like of shape (n_samples,)
Always ignored, exists for compatibility.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
"""
if groups is not None:
warnings.warn(
f"The groups parameter is ignored by {self.__class__.__name__}",
UserWarning,
)
return self._split(X)
def _split(self, X):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
"""
(X,) = indexable(X)
n_samples = _num_samples(X)
n_splits = self.n_splits
n_folds = n_splits + 1
gap = self.gap
test_size = (
self.test_size if self.test_size is not None else n_samples // n_folds
)
# Make sure we have enough samples for the given split parameters
if n_folds > n_samples:
raise ValueError(
f"Cannot have number of folds={n_folds} greater"
f" than the number of samples={n_samples}."
)
if n_samples - gap - (test_size * n_splits) <= 0:
raise ValueError(
f"Too many splits={n_splits} for number of samples"
f"={n_samples} with test_size={test_size} and gap={gap}."
)
indices = np.arange(n_samples)
test_starts = range(n_samples - n_splits * test_size, n_samples, test_size)
for test_start in test_starts:
train_end = test_start - gap
if self.max_train_size and self.max_train_size < train_end:
yield (
indices[train_end - self.max_train_size : train_end],
indices[test_start : test_start + test_size],
)
else:
yield (
indices[:train_end],
indices[test_start : test_start + test_size],
)
class LeaveOneGroupOut(GroupsConsumerMixin, BaseCrossValidator):
"""Leave One Group Out cross-validator.
Provides train/test indices to split data such that each training set is
comprised of all samples except ones belonging to one specific group.
Arbitrary domain specific group information is provided an array integers
that encodes the group of each sample.
For instance the groups could be the year of collection of the samples
and thus allow for cross-validation against time-based splits.
Read more in the :ref:`User Guide <leave_one_group_out>`.
Notes
-----
Splits are ordered according to the index of the group left out. The first
split has testing set consisting of the group whose index in `groups` is
lowest, and so on.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import LeaveOneGroupOut
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 1, 2])
>>> groups = np.array([1, 1, 2, 2])
>>> logo = LeaveOneGroupOut()
>>> logo.get_n_splits(X, y, groups)
2
>>> logo.get_n_splits(groups=groups) # 'groups' is always required
2
>>> print(logo)
LeaveOneGroupOut()
>>> for i, (train_index, test_index) in enumerate(logo.split(X, y, groups)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}, group={groups[train_index]}")
... print(f" Test: index={test_index}, group={groups[test_index]}")
Fold 0:
Train: index=[2 3], group=[2 2]
Test: index=[0 1], group=[1 1]
Fold 1:
Train: index=[0 1], group=[1 1]
Test: index=[2 3], group=[2 2]
See also
--------
GroupKFold: K-fold iterator variant with non-overlapping groups.
"""
def _iter_test_masks(self, X, y, groups):
if groups is None:
raise ValueError("The 'groups' parameter should not be None.")
# We make a copy of groups to avoid side-effects during iteration
groups = check_array(
groups, input_name="groups", copy=True, ensure_2d=False, dtype=None
)
unique_groups = np.unique(groups)
if len(unique_groups) <= 1:
raise ValueError(
"The groups parameter contains fewer than 2 unique groups "
"(%s). LeaveOneGroupOut expects at least 2." % unique_groups
)
for i in unique_groups:
yield groups == i
def get_n_splits(self, X=None, y=None, groups=None):
"""Returns the number of splitting iterations in the cross-validator.
Parameters
----------
X : object
Always ignored, exists for compatibility.
y : object
Always ignored, exists for compatibility.
groups : array-like of shape (n_samples,)
Group labels for the samples used while splitting the dataset into
train/test set. This 'groups' parameter must always be specified to
calculate the number of splits, though the other parameters can be
omitted.
Returns
-------
n_splits : int
Returns the number of splitting iterations in the cross-validator.
"""
if groups is None:
raise ValueError("The 'groups' parameter should not be None.")
groups = check_array(groups, input_name="groups", ensure_2d=False, dtype=None)
return len(np.unique(groups))
def split(self, X, y=None, groups=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,), default=None
The target variable for supervised learning problems.
groups : array-like of shape (n_samples,)
Group labels for the samples used while splitting the dataset into
train/test set.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
"""
return super().split(X, y, groups)
class LeavePGroupsOut(GroupsConsumerMixin, BaseCrossValidator):
"""Leave P Group(s) Out cross-validator.
Provides train/test indices to split data according to a third-party
provided group. This group information can be used to encode arbitrary
domain specific stratifications of the samples as integers.
For instance the groups could be the year of collection of the samples
and thus allow for cross-validation against time-based splits.
The difference between LeavePGroupsOut and LeaveOneGroupOut is that
the former builds the test sets with all the samples assigned to
``p`` different values of the groups while the latter uses samples
all assigned the same groups.
Read more in the :ref:`User Guide <leave_p_groups_out>`.
Parameters
----------
n_groups : int
Number of groups (``p``) to leave out in the test split.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import LeavePGroupsOut
>>> X = np.array([[1, 2], [3, 4], [5, 6]])
>>> y = np.array([1, 2, 1])
>>> groups = np.array([1, 2, 3])
>>> lpgo = LeavePGroupsOut(n_groups=2)
>>> lpgo.get_n_splits(X, y, groups)
3
>>> lpgo.get_n_splits(groups=groups) # 'groups' is always required
3
>>> print(lpgo)
LeavePGroupsOut(n_groups=2)
>>> for i, (train_index, test_index) in enumerate(lpgo.split(X, y, groups)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}, group={groups[train_index]}")
... print(f" Test: index={test_index}, group={groups[test_index]}")
Fold 0:
Train: index=[2], group=[3]
Test: index=[0 1], group=[1 2]
Fold 1:
Train: index=[1], group=[2]
Test: index=[0 2], group=[1 3]
Fold 2:
Train: index=[0], group=[1]
Test: index=[1 2], group=[2 3]
See Also
--------
GroupKFold : K-fold iterator variant with non-overlapping groups.
"""
def __init__(self, n_groups):
self.n_groups = n_groups
def _iter_test_masks(self, X, y, groups):
if groups is None:
raise ValueError("The 'groups' parameter should not be None.")
groups = check_array(
groups, input_name="groups", copy=True, ensure_2d=False, dtype=None
)
unique_groups = np.unique(groups)
if self.n_groups >= len(unique_groups):
raise ValueError(
"The groups parameter contains fewer than (or equal to) "
"n_groups (%d) numbers of unique groups (%s). LeavePGroupsOut "
"expects that at least n_groups + 1 (%d) unique groups be "
"present" % (self.n_groups, unique_groups, self.n_groups + 1)
)
combi = combinations(range(len(unique_groups)), self.n_groups)
for indices in combi:
test_index = np.zeros(_num_samples(X), dtype=bool)
for l in unique_groups[np.array(indices)]:
test_index[groups == l] = True
yield test_index
def get_n_splits(self, X=None, y=None, groups=None):
"""Returns the number of splitting iterations in the cross-validator.
Parameters
----------
X : object
Always ignored, exists for compatibility.
y : object
Always ignored, exists for compatibility.
groups : array-like of shape (n_samples,)
Group labels for the samples used while splitting the dataset into
train/test set. This 'groups' parameter must always be specified to
calculate the number of splits, though the other parameters can be
omitted.
Returns
-------
n_splits : int
Returns the number of splitting iterations in the cross-validator.
"""
if groups is None:
raise ValueError("The 'groups' parameter should not be None.")
groups = check_array(groups, input_name="groups", ensure_2d=False, dtype=None)
return int(comb(len(np.unique(groups)), self.n_groups, exact=True))
def split(self, X, y=None, groups=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,), default=None
The target variable for supervised learning problems.
groups : array-like of shape (n_samples,)
Group labels for the samples used while splitting the dataset into
train/test set.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
"""
return super().split(X, y, groups)
class _RepeatedSplits(_MetadataRequester, metaclass=ABCMeta):
"""Repeated splits for an arbitrary randomized CV splitter.
Repeats splits for cross-validators n times with different randomization
in each repetition.
Parameters
----------
cv : callable
Cross-validator class.
n_repeats : int, default=10
Number of times cross-validator needs to be repeated.
random_state : int, RandomState instance or None, default=None
Passes `random_state` to the arbitrary repeating cross validator.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
**cvargs : additional params
Constructor parameters for cv. Must not contain random_state
and shuffle.
"""
# This indicates that by default CV splitters don't have a "groups" kwarg,
# unless indicated by inheriting from ``GroupsConsumerMixin``.
# This also prevents ``set_split_request`` to be generated for splitters
# which don't support ``groups``.
__metadata_request__split = {"groups": metadata_routing.UNUSED}
def __init__(self, cv, *, n_repeats=10, random_state=None, **cvargs):
if not isinstance(n_repeats, numbers.Integral):
raise ValueError("Number of repetitions must be of Integral type.")
if n_repeats <= 0:
raise ValueError("Number of repetitions must be greater than 0.")
if any(key in cvargs for key in ("random_state", "shuffle")):
raise ValueError("cvargs must not contain random_state or shuffle.")
self.cv = cv
self.n_repeats = n_repeats
self.random_state = random_state
self.cvargs = cvargs
def split(self, X, y=None, groups=None):
"""Generates indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,)
The target variable for supervised learning problems.
groups : array-like of shape (n_samples,), default=None
Group labels for the samples used while splitting the dataset into
train/test set.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
"""
n_repeats = self.n_repeats
rng = check_random_state(self.random_state)
for idx in range(n_repeats):
cv = self.cv(random_state=rng, shuffle=True, **self.cvargs)
for train_index, test_index in cv.split(X, y, groups):
yield train_index, test_index
def get_n_splits(self, X=None, y=None, groups=None):
"""Returns the number of splitting iterations in the cross-validator.
Parameters
----------
X : object
Always ignored, exists for compatibility.
``np.zeros(n_samples)`` may be used as a placeholder.
y : object
Always ignored, exists for compatibility.
``np.zeros(n_samples)`` may be used as a placeholder.
groups : array-like of shape (n_samples,), default=None
Group labels for the samples used while splitting the dataset into
train/test set.
Returns
-------
n_splits : int
Returns the number of splitting iterations in the cross-validator.
"""
rng = check_random_state(self.random_state)
cv = self.cv(random_state=rng, shuffle=True, **self.cvargs)
return cv.get_n_splits(X, y, groups) * self.n_repeats
def __repr__(self):
return _build_repr(self)
class RepeatedKFold(_UnsupportedGroupCVMixin, _RepeatedSplits):
"""Repeated K-Fold cross validator.
Repeats K-Fold n times with different randomization in each repetition.
Read more in the :ref:`User Guide <repeated_k_fold>`.
Parameters
----------
n_splits : int, default=5
Number of folds. Must be at least 2.
n_repeats : int, default=10
Number of times cross-validator needs to be repeated.
random_state : int, RandomState instance or None, default=None
Controls the randomness of each repeated cross-validation instance.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import RepeatedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=2652124)
>>> rkf.get_n_splits(X, y)
4
>>> print(rkf)
RepeatedKFold(n_repeats=2, n_splits=2, random_state=2652124)
>>> for i, (train_index, test_index) in enumerate(rkf.split(X)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" Test: index={test_index}")
...
Fold 0:
Train: index=[0 1]
Test: index=[2 3]
Fold 1:
Train: index=[2 3]
Test: index=[0 1]
Fold 2:
Train: index=[1 2]
Test: index=[0 3]
Fold 3:
Train: index=[0 3]
Test: index=[1 2]
Notes
-----
Randomized CV splitters may return different results for each call of
split. You can make the results identical by setting `random_state`
to an integer.
See Also
--------
RepeatedStratifiedKFold : Repeats Stratified K-Fold n times.
"""
def __init__(self, *, n_splits=5, n_repeats=10, random_state=None):
super().__init__(
KFold, n_repeats=n_repeats, random_state=random_state, n_splits=n_splits
)
class RepeatedStratifiedKFold(_UnsupportedGroupCVMixin, _RepeatedSplits):
"""Repeated Stratified K-Fold cross validator.
Repeats Stratified K-Fold n times with different randomization in each
repetition.
Read more in the :ref:`User Guide <repeated_k_fold>`.
Parameters
----------
n_splits : int, default=5
Number of folds. Must be at least 2.
n_repeats : int, default=10
Number of times cross-validator needs to be repeated.
random_state : int, RandomState instance or None, default=None
Controls the generation of the random states for each repetition.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import RepeatedStratifiedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> rskf = RepeatedStratifiedKFold(n_splits=2, n_repeats=2,
... random_state=36851234)
>>> rskf.get_n_splits(X, y)
4
>>> print(rskf)
RepeatedStratifiedKFold(n_repeats=2, n_splits=2, random_state=36851234)
>>> for i, (train_index, test_index) in enumerate(rskf.split(X, y)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" Test: index={test_index}")
...
Fold 0:
Train: index=[1 2]
Test: index=[0 3]
Fold 1:
Train: index=[0 3]
Test: index=[1 2]
Fold 2:
Train: index=[1 3]
Test: index=[0 2]
Fold 3:
Train: index=[0 2]
Test: index=[1 3]
Notes
-----
Randomized CV splitters may return different results for each call of
split. You can make the results identical by setting `random_state`
to an integer.
See Also
--------
RepeatedKFold : Repeats K-Fold n times.
"""
def __init__(self, *, n_splits=5, n_repeats=10, random_state=None):
super().__init__(
StratifiedKFold,
n_repeats=n_repeats,
random_state=random_state,
n_splits=n_splits,
)
class BaseShuffleSplit(_MetadataRequester, metaclass=ABCMeta):
"""Base class for *ShuffleSplit.
Parameters
----------
n_splits : int, default=10
Number of re-shuffling & splitting iterations.
test_size : float or int, default=None
If float, should be between 0.0 and 1.0 and represent the proportion
of the dataset to include in the test split. If int, represents the
absolute number of test samples. If None, the value is set to the
complement of the train size. If ``train_size`` is also None, it will
be set to 0.1.
train_size : float or int, default=None
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If
int, represents the absolute number of train samples. If None,
the value is automatically set to the complement of the test size.
random_state : int, RandomState instance or None, default=None
Controls the randomness of the training and testing indices produced.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
"""
# This indicates that by default CV splitters don't have a "groups" kwarg,
# unless indicated by inheriting from ``GroupsConsumerMixin``.
# This also prevents ``set_split_request`` to be generated for splitters
# which don't support ``groups``.
__metadata_request__split = {"groups": metadata_routing.UNUSED}
def __init__(
self, n_splits=10, *, test_size=None, train_size=None, random_state=None
):
self.n_splits = n_splits
self.test_size = test_size
self.train_size = train_size
self.random_state = random_state
self._default_test_size = 0.1
def split(self, X, y=None, groups=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,)
The target variable for supervised learning problems.
groups : array-like of shape (n_samples,), default=None
Group labels for the samples used while splitting the dataset into
train/test set.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
Notes
-----
Randomized CV splitters may return different results for each call of
split. You can make the results identical by setting `random_state`
to an integer.
"""
X, y, groups = indexable(X, y, groups)
for train, test in self._iter_indices(X, y, groups):
yield train, test
def _iter_indices(self, X, y=None, groups=None):
"""Generate (train, test) indices"""
n_samples = _num_samples(X)
n_train, n_test = _validate_shuffle_split(
n_samples,
self.test_size,
self.train_size,
default_test_size=self._default_test_size,
)
rng = check_random_state(self.random_state)
for i in range(self.n_splits):
# random partition
permutation = rng.permutation(n_samples)
ind_test = permutation[:n_test]
ind_train = permutation[n_test : (n_test + n_train)]
yield ind_train, ind_test
def get_n_splits(self, X=None, y=None, groups=None):
"""Returns the number of splitting iterations in the cross-validator.
Parameters
----------
X : object
Always ignored, exists for compatibility.
y : object
Always ignored, exists for compatibility.
groups : object
Always ignored, exists for compatibility.
Returns
-------
n_splits : int
Returns the number of splitting iterations in the cross-validator.
"""
return self.n_splits
def __repr__(self):
return _build_repr(self)
class ShuffleSplit(_UnsupportedGroupCVMixin, BaseShuffleSplit):
"""Random permutation cross-validator.
Yields indices to split data into training and test sets.
Note: contrary to other cross-validation strategies, random splits
do not guarantee that all folds will be different, although this is
still very likely for sizeable datasets.
Read more in the :ref:`User Guide <ShuffleSplit>`.
For visualisation of cross-validation behaviour and
comparison between common scikit-learn split methods
refer to :ref:`sphx_glr_auto_examples_model_selection_plot_cv_indices.py`
Parameters
----------
n_splits : int, default=10
Number of re-shuffling & splitting iterations.
test_size : float or int, default=None
If float, should be between 0.0 and 1.0 and represent the proportion
of the dataset to include in the test split. If int, represents the
absolute number of test samples. If None, the value is set to the
complement of the train size. If ``train_size`` is also None, it will
be set to 0.1.
train_size : float or int, default=None
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If
int, represents the absolute number of train samples. If None,
the value is automatically set to the complement of the test size.
random_state : int, RandomState instance or None, default=None
Controls the randomness of the training and testing indices produced.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import ShuffleSplit
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [3, 4], [5, 6]])
>>> y = np.array([1, 2, 1, 2, 1, 2])
>>> rs = ShuffleSplit(n_splits=5, test_size=.25, random_state=0)
>>> rs.get_n_splits(X)
5
>>> print(rs)
ShuffleSplit(n_splits=5, random_state=0, test_size=0.25, train_size=None)
>>> for i, (train_index, test_index) in enumerate(rs.split(X)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" Test: index={test_index}")
Fold 0:
Train: index=[1 3 0 4]
Test: index=[5 2]
Fold 1:
Train: index=[4 0 2 5]
Test: index=[1 3]
Fold 2:
Train: index=[1 2 4 0]
Test: index=[3 5]
Fold 3:
Train: index=[3 4 1 0]
Test: index=[5 2]
Fold 4:
Train: index=[3 5 1 0]
Test: index=[2 4]
>>> # Specify train and test size
>>> rs = ShuffleSplit(n_splits=5, train_size=0.5, test_size=.25,
... random_state=0)
>>> for i, (train_index, test_index) in enumerate(rs.split(X)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" Test: index={test_index}")
Fold 0:
Train: index=[1 3 0]
Test: index=[5 2]
Fold 1:
Train: index=[4 0 2]
Test: index=[1 3]
Fold 2:
Train: index=[1 2 4]
Test: index=[3 5]
Fold 3:
Train: index=[3 4 1]
Test: index=[5 2]
Fold 4:
Train: index=[3 5 1]
Test: index=[2 4]
"""
def __init__(
self, n_splits=10, *, test_size=None, train_size=None, random_state=None
):
super().__init__(
n_splits=n_splits,
test_size=test_size,
train_size=train_size,
random_state=random_state,
)
self._default_test_size = 0.1
class GroupShuffleSplit(GroupsConsumerMixin, BaseShuffleSplit):
"""Shuffle-Group(s)-Out cross-validation iterator.
Provides randomized train/test indices to split data according to a
third-party provided group. This group information can be used to encode
arbitrary domain specific stratifications of the samples as integers.
For instance the groups could be the year of collection of the samples
and thus allow for cross-validation against time-based splits.
The difference between LeavePGroupsOut and GroupShuffleSplit is that
the former generates splits using all subsets of size ``p`` unique groups,
whereas GroupShuffleSplit generates a user-determined number of random
test splits, each with a user-determined fraction of unique groups.
For example, a less computationally intensive alternative to
``LeavePGroupsOut(p=10)`` would be
``GroupShuffleSplit(test_size=10, n_splits=100)``.
Note: The parameters ``test_size`` and ``train_size`` refer to groups, and
not to samples, as in ShuffleSplit.
Read more in the :ref:`User Guide <group_shuffle_split>`.
For visualisation of cross-validation behaviour and
comparison between common scikit-learn split methods
refer to :ref:`sphx_glr_auto_examples_model_selection_plot_cv_indices.py`
Parameters
----------
n_splits : int, default=5
Number of re-shuffling & splitting iterations.
test_size : float, int, default=0.2
If float, should be between 0.0 and 1.0 and represent the proportion
of groups to include in the test split (rounded up). If int,
represents the absolute number of test groups. If None, the value is
set to the complement of the train size.
The default will change in version 0.21. It will remain 0.2 only
if ``train_size`` is unspecified, otherwise it will complement
the specified ``train_size``.
train_size : float or int, default=None
If float, should be between 0.0 and 1.0 and represent the
proportion of the groups to include in the train split. If
int, represents the absolute number of train groups. If None,
the value is automatically set to the complement of the test size.
random_state : int, RandomState instance or None, default=None
Controls the randomness of the training and testing indices produced.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import GroupShuffleSplit
>>> X = np.ones(shape=(8, 2))
>>> y = np.ones(shape=(8, 1))
>>> groups = np.array([1, 1, 2, 2, 2, 3, 3, 3])
>>> print(groups.shape)
(8,)
>>> gss = GroupShuffleSplit(n_splits=2, train_size=.7, random_state=42)
>>> gss.get_n_splits()
2
>>> print(gss)
GroupShuffleSplit(n_splits=2, random_state=42, test_size=None, train_size=0.7)
>>> for i, (train_index, test_index) in enumerate(gss.split(X, y, groups)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}, group={groups[train_index]}")
... print(f" Test: index={test_index}, group={groups[test_index]}")
Fold 0:
Train: index=[2 3 4 5 6 7], group=[2 2 2 3 3 3]
Test: index=[0 1], group=[1 1]
Fold 1:
Train: index=[0 1 5 6 7], group=[1 1 3 3 3]
Test: index=[2 3 4], group=[2 2 2]
See Also
--------
ShuffleSplit : Shuffles samples to create independent test/train sets.
LeavePGroupsOut : Train set leaves out all possible subsets of `p` groups.
"""
def __init__(
self, n_splits=5, *, test_size=None, train_size=None, random_state=None
):
super().__init__(
n_splits=n_splits,
test_size=test_size,
train_size=train_size,
random_state=random_state,
)
self._default_test_size = 0.2
def _iter_indices(self, X, y, groups):
if groups is None:
raise ValueError("The 'groups' parameter should not be None.")
groups = check_array(groups, input_name="groups", ensure_2d=False, dtype=None)
classes, group_indices = np.unique(groups, return_inverse=True)
for group_train, group_test in super()._iter_indices(X=classes):
# these are the indices of classes in the partition
# invert them into data indices
train = np.flatnonzero(np.isin(group_indices, group_train))
test = np.flatnonzero(np.isin(group_indices, group_test))
yield train, test
def split(self, X, y=None, groups=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,), default=None
The target variable for supervised learning problems.
groups : array-like of shape (n_samples,)
Group labels for the samples used while splitting the dataset into
train/test set.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
Notes
-----
Randomized CV splitters may return different results for each call of
split. You can make the results identical by setting `random_state`
to an integer.
"""
return super().split(X, y, groups)
class StratifiedShuffleSplit(BaseShuffleSplit):
"""Stratified ShuffleSplit cross-validator.
Provides train/test indices to split data in train/test sets.
This cross-validation object is a merge of StratifiedKFold and
ShuffleSplit, which returns stratified randomized folds. The folds
are made by preserving the percentage of samples for each class.
Note: like the ShuffleSplit strategy, stratified random splits
do not guarantee that all folds will be different, although this is
still very likely for sizeable datasets.
Read more in the :ref:`User Guide <stratified_shuffle_split>`.
For visualisation of cross-validation behaviour and
comparison between common scikit-learn split methods
refer to :ref:`sphx_glr_auto_examples_model_selection_plot_cv_indices.py`
Parameters
----------
n_splits : int, default=10
Number of re-shuffling & splitting iterations.
test_size : float or int, default=None
If float, should be between 0.0 and 1.0 and represent the proportion
of the dataset to include in the test split. If int, represents the
absolute number of test samples. If None, the value is set to the
complement of the train size. If ``train_size`` is also None, it will
be set to 0.1.
train_size : float or int, default=None
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If
int, represents the absolute number of train samples. If None,
the value is automatically set to the complement of the test size.
random_state : int, RandomState instance or None, default=None
Controls the randomness of the training and testing indices produced.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import StratifiedShuffleSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 0, 1, 1, 1])
>>> sss = StratifiedShuffleSplit(n_splits=5, test_size=0.5, random_state=0)
>>> sss.get_n_splits(X, y)
5
>>> print(sss)
StratifiedShuffleSplit(n_splits=5, random_state=0, ...)
>>> for i, (train_index, test_index) in enumerate(sss.split(X, y)):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" Test: index={test_index}")
Fold 0:
Train: index=[5 2 3]
Test: index=[4 1 0]
Fold 1:
Train: index=[5 1 4]
Test: index=[0 2 3]
Fold 2:
Train: index=[5 0 2]
Test: index=[4 3 1]
Fold 3:
Train: index=[4 1 0]
Test: index=[2 3 5]
Fold 4:
Train: index=[0 5 1]
Test: index=[3 4 2]
"""
def __init__(
self, n_splits=10, *, test_size=None, train_size=None, random_state=None
):
super().__init__(
n_splits=n_splits,
test_size=test_size,
train_size=train_size,
random_state=random_state,
)
self._default_test_size = 0.1
def _iter_indices(self, X, y, groups=None):
n_samples = _num_samples(X)
y = check_array(y, input_name="y", ensure_2d=False, dtype=None)
n_train, n_test = _validate_shuffle_split(
n_samples,
self.test_size,
self.train_size,
default_test_size=self._default_test_size,
)
# Convert to numpy as not all operations are supported by the Array API.
# `y` is probably never a very large array, which means that converting it
# should be cheap
xp, _ = get_namespace(y)
y = _convert_to_numpy(y, xp=xp)
if y.ndim == 2:
# for multi-label y, map each distinct row to a string repr
# using join because str(row) uses an ellipsis if len(row) > 1000
y = np.array([" ".join(row.astype("str")) for row in y])
classes, y_indices = np.unique(y, return_inverse=True)
n_classes = classes.shape[0]
class_counts = np.bincount(y_indices)
if np.min(class_counts) < 2:
raise ValueError(
"The least populated class in y has only 1"
" member, which is too few. The minimum"
" number of groups for any class cannot"
" be less than 2."
)
if n_train < n_classes:
raise ValueError(
"The train_size = %d should be greater or "
"equal to the number of classes = %d" % (n_train, n_classes)
)
if n_test < n_classes:
raise ValueError(
"The test_size = %d should be greater or "
"equal to the number of classes = %d" % (n_test, n_classes)
)
# Find the sorted list of instances for each class:
# (np.unique above performs a sort, so code is O(n logn) already)
class_indices = np.split(
np.argsort(y_indices, kind="mergesort"), np.cumsum(class_counts)[:-1]
)
rng = check_random_state(self.random_state)
for _ in range(self.n_splits):
# if there are ties in the class-counts, we want
# to make sure to break them anew in each iteration
n_i = _approximate_mode(class_counts, n_train, rng)
class_counts_remaining = class_counts - n_i
t_i = _approximate_mode(class_counts_remaining, n_test, rng)
train = []
test = []
for i in range(n_classes):
permutation = rng.permutation(class_counts[i])
perm_indices_class_i = class_indices[i].take(permutation, mode="clip")
train.extend(perm_indices_class_i[: n_i[i]])
test.extend(perm_indices_class_i[n_i[i] : n_i[i] + t_i[i]])
train = rng.permutation(train)
test = rng.permutation(test)
yield train, test
def split(self, X, y, groups=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Note that providing ``y`` is sufficient to generate the splits and
hence ``np.zeros(n_samples)`` may be used as a placeholder for
``X`` instead of actual training data.
y : array-like of shape (n_samples,) or (n_samples, n_labels)
The target variable for supervised learning problems.
Stratification is done based on the y labels.
groups : object
Always ignored, exists for compatibility.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
Notes
-----
Randomized CV splitters may return different results for each call of
split. You can make the results identical by setting `random_state`
to an integer.
"""
if groups is not None:
warnings.warn(
f"The groups parameter is ignored by {self.__class__.__name__}",
UserWarning,
)
y = check_array(y, input_name="y", ensure_2d=False, dtype=None)
return super().split(X, y, groups)
def _validate_shuffle_split(n_samples, test_size, train_size, default_test_size=None):
"""
Validation helper to check if the test/test sizes are meaningful w.r.t. the
size of the data (n_samples).
"""
if test_size is None and train_size is None:
test_size = default_test_size
test_size_type = np.asarray(test_size).dtype.kind
train_size_type = np.asarray(train_size).dtype.kind
if (
test_size_type == "i"
and (test_size >= n_samples or test_size <= 0)
or test_size_type == "f"
and (test_size <= 0 or test_size >= 1)
):
raise ValueError(
"test_size={0} should be either positive and smaller"
" than the number of samples {1} or a float in the "
"(0, 1) range".format(test_size, n_samples)
)
if (
train_size_type == "i"
and (train_size >= n_samples or train_size <= 0)
or train_size_type == "f"
and (train_size <= 0 or train_size >= 1)
):
raise ValueError(
"train_size={0} should be either positive and smaller"
" than the number of samples {1} or a float in the "
"(0, 1) range".format(train_size, n_samples)
)
if train_size is not None and train_size_type not in ("i", "f"):
raise ValueError("Invalid value for train_size: {}".format(train_size))
if test_size is not None and test_size_type not in ("i", "f"):
raise ValueError("Invalid value for test_size: {}".format(test_size))
if train_size_type == "f" and test_size_type == "f" and train_size + test_size > 1:
raise ValueError(
"The sum of test_size and train_size = {}, should be in the (0, 1)"
" range. Reduce test_size and/or train_size.".format(train_size + test_size)
)
if test_size_type == "f":
n_test = ceil(test_size * n_samples)
elif test_size_type == "i":
n_test = float(test_size)
if train_size_type == "f":
n_train = floor(train_size * n_samples)
elif train_size_type == "i":
n_train = float(train_size)
if train_size is None:
n_train = n_samples - n_test
elif test_size is None:
n_test = n_samples - n_train
if n_train + n_test > n_samples:
raise ValueError(
"The sum of train_size and test_size = %d, "
"should be smaller than the number of "
"samples %d. Reduce test_size and/or "
"train_size." % (n_train + n_test, n_samples)
)
n_train, n_test = int(n_train), int(n_test)
if n_train == 0:
raise ValueError(
"With n_samples={}, test_size={} and train_size={}, the "
"resulting train set will be empty. Adjust any of the "
"aforementioned parameters.".format(n_samples, test_size, train_size)
)
return n_train, n_test
class PredefinedSplit(BaseCrossValidator):
"""Predefined split cross-validator.
Provides train/test indices to split data into train/test sets using a
predefined scheme specified by the user with the ``test_fold`` parameter.
Read more in the :ref:`User Guide <predefined_split>`.
.. versionadded:: 0.16
Parameters
----------
test_fold : array-like of shape (n_samples,)
The entry ``test_fold[i]`` represents the index of the test set that
sample ``i`` belongs to. It is possible to exclude sample ``i`` from
any test set (i.e. include sample ``i`` in every training set) by
setting ``test_fold[i]`` equal to -1.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import PredefinedSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> test_fold = [0, 1, -1, 1]
>>> ps = PredefinedSplit(test_fold)
>>> ps.get_n_splits()
2
>>> print(ps)
PredefinedSplit(test_fold=array([ 0, 1, -1, 1]))
>>> for i, (train_index, test_index) in enumerate(ps.split()):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}")
... print(f" Test: index={test_index}")
Fold 0:
Train: index=[1 2 3]
Test: index=[0]
Fold 1:
Train: index=[0 2]
Test: index=[1 3]
"""
def __init__(self, test_fold):
self.test_fold = np.array(test_fold, dtype=int)
self.test_fold = column_or_1d(self.test_fold)
self.unique_folds = np.unique(self.test_fold)
self.unique_folds = self.unique_folds[self.unique_folds != -1]
def split(self, X=None, y=None, groups=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : object
Always ignored, exists for compatibility.
y : object
Always ignored, exists for compatibility.
groups : object
Always ignored, exists for compatibility.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
"""
if groups is not None:
warnings.warn(
f"The groups parameter is ignored by {self.__class__.__name__}",
UserWarning,
)
return self._split()
def _split(self):
"""Generate indices to split data into training and test set.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
"""
ind = np.arange(len(self.test_fold))
for test_index in self._iter_test_masks():
train_index = ind[np.logical_not(test_index)]
test_index = ind[test_index]
yield train_index, test_index
def _iter_test_masks(self):
"""Generates boolean masks corresponding to test sets."""
for f in self.unique_folds:
test_index = np.where(self.test_fold == f)[0]
test_mask = np.zeros(len(self.test_fold), dtype=bool)
test_mask[test_index] = True
yield test_mask
def get_n_splits(self, X=None, y=None, groups=None):
"""Returns the number of splitting iterations in the cross-validator.
Parameters
----------
X : object
Always ignored, exists for compatibility.
y : object
Always ignored, exists for compatibility.
groups : object
Always ignored, exists for compatibility.
Returns
-------
n_splits : int
Returns the number of splitting iterations in the cross-validator.
"""
return len(self.unique_folds)
class _CVIterableWrapper(BaseCrossValidator):
"""Wrapper class for old style cv objects and iterables."""
def __init__(self, cv):
self.cv = list(cv)
def get_n_splits(self, X=None, y=None, groups=None):
"""Returns the number of splitting iterations in the cross-validator.
Parameters
----------
X : object
Always ignored, exists for compatibility.
y : object
Always ignored, exists for compatibility.
groups : object
Always ignored, exists for compatibility.
Returns
-------
n_splits : int
Returns the number of splitting iterations in the cross-validator.
"""
return len(self.cv)
def split(self, X=None, y=None, groups=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : object
Always ignored, exists for compatibility.
y : object
Always ignored, exists for compatibility.
groups : object
Always ignored, exists for compatibility.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
"""
for train, test in self.cv:
yield train, test
def check_cv(cv=5, y=None, *, classifier=False):
"""Input checker utility for building a cross-validator.
Parameters
----------
cv : int, cross-validation generator, iterable or None, default=5
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable that generates (train, test) splits as arrays of indices.
For integer/None inputs, if classifier is True and ``y`` is either
binary or multiclass, :class:`StratifiedKFold` is used. In all other
cases, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value changed from 3-fold to 5-fold.
y : array-like, default=None
The target variable for supervised learning problems.
classifier : bool, default=False
Whether the task is a classification task, in which case
stratified KFold will be used.
Returns
-------
checked_cv : a cross-validator instance.
The return value is a cross-validator which generates the train/test
splits via the ``split`` method.
Examples
--------
>>> from sklearn.model_selection import check_cv
>>> check_cv(cv=5, y=None, classifier=False)
KFold(...)
>>> check_cv(cv=5, y=[1, 1, 0, 0, 0, 0], classifier=True)
StratifiedKFold(...)
"""
cv = 5 if cv is None else cv
if isinstance(cv, numbers.Integral):
if (
classifier
and (y is not None)
and (type_of_target(y, input_name="y") in ("binary", "multiclass"))
):
return StratifiedKFold(cv)
else:
return KFold(cv)
if not hasattr(cv, "split") or isinstance(cv, str):
if not isinstance(cv, Iterable) or isinstance(cv, str):
raise ValueError(
"Expected cv as an integer, cross-validation "
"object (from sklearn.model_selection) "
"or an iterable. Got %s." % cv
)
return _CVIterableWrapper(cv)
return cv # New style cv objects are passed without any modification
@validate_params(
{
"test_size": [
Interval(RealNotInt, 0, 1, closed="neither"),
Interval(numbers.Integral, 1, None, closed="left"),
None,
],
"train_size": [
Interval(RealNotInt, 0, 1, closed="neither"),
Interval(numbers.Integral, 1, None, closed="left"),
None,
],
"random_state": ["random_state"],
"shuffle": ["boolean"],
"stratify": ["array-like", None],
},
prefer_skip_nested_validation=True,
)
def train_test_split(
*arrays,
test_size=None,
train_size=None,
random_state=None,
shuffle=True,
stratify=None,
):
"""Split arrays or matrices into random train and test subsets.
Quick utility that wraps input validation,
``next(ShuffleSplit().split(X, y))``, and application to input data
into a single call for splitting (and optionally subsampling) data into a
one-liner.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
*arrays : sequence of indexables with same length / shape[0]
Allowed inputs are lists, numpy arrays, scipy-sparse
matrices or pandas dataframes.
test_size : float or int, default=None
If float, should be between 0.0 and 1.0 and represent the proportion
of the dataset to include in the test split. If int, represents the
absolute number of test samples. If None, the value is set to the
complement of the train size. If ``train_size`` is also None, it will
be set to 0.25.
train_size : float or int, default=None
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If
int, represents the absolute number of train samples. If None,
the value is automatically set to the complement of the test size.
random_state : int, RandomState instance or None, default=None
Controls the shuffling applied to the data before applying the split.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
shuffle : bool, default=True
Whether or not to shuffle the data before splitting. If shuffle=False
then stratify must be None.
stratify : array-like, default=None
If not None, data is split in a stratified fashion, using this as
the class labels.
Read more in the :ref:`User Guide <stratification>`.
Returns
-------
splitting : list, length=2 * len(arrays)
List containing train-test split of inputs.
.. versionadded:: 0.16
If the input is sparse, the output will be a
``scipy.sparse.csr_matrix``. Else, output type is the same as the
input type.
Examples
--------
>>> import numpy as np
>>> from sklearn.model_selection import train_test_split
>>> X, y = np.arange(10).reshape((5, 2)), range(5)
>>> X
array([[0, 1],
[2, 3],
[4, 5],
[6, 7],
[8, 9]])
>>> list(y)
[0, 1, 2, 3, 4]
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.33, random_state=42)
...
>>> X_train
array([[4, 5],
[0, 1],
[6, 7]])
>>> y_train
[2, 0, 3]
>>> X_test
array([[2, 3],
[8, 9]])
>>> y_test
[1, 4]
>>> train_test_split(y, shuffle=False)
[[0, 1, 2], [3, 4]]
"""
n_arrays = len(arrays)
if n_arrays == 0:
raise ValueError("At least one array required as input")
arrays = indexable(*arrays)
n_samples = _num_samples(arrays[0])
n_train, n_test = _validate_shuffle_split(
n_samples, test_size, train_size, default_test_size=0.25
)
if shuffle is False:
if stratify is not None:
raise ValueError(
"Stratified train/test split is not implemented for shuffle=False"
)
train = np.arange(n_train)
test = np.arange(n_train, n_train + n_test)
else:
if stratify is not None:
CVClass = StratifiedShuffleSplit
else:
CVClass = ShuffleSplit
cv = CVClass(test_size=n_test, train_size=n_train, random_state=random_state)
train, test = next(cv.split(X=arrays[0], y=stratify))
train, test = ensure_common_namespace_device(arrays[0], train, test)
return list(
chain.from_iterable(
(_safe_indexing(a, train), _safe_indexing(a, test)) for a in arrays
)
)
# Tell nose that train_test_split is not a test.
# (Needed for external libraries that may use nose.)
# Use setattr to avoid mypy errors when monkeypatching.
setattr(train_test_split, "__test__", False)
def _pprint(params, offset=0, printer=repr):
"""Pretty print the dictionary 'params'
Parameters
----------
params : dict
The dictionary to pretty print
offset : int, default=0
The offset in characters to add at the begin of each line.
printer : callable, default=repr
The function to convert entries to strings, typically
the builtin str or repr
"""
# Do a multi-line justified repr:
options = np.get_printoptions()
np.set_printoptions(precision=5, threshold=64, edgeitems=2)
params_list = list()
this_line_length = offset
line_sep = ",\n" + (1 + offset // 2) * " "
for i, (k, v) in enumerate(sorted(params.items())):
if isinstance(v, float):
# use str for representing floating point numbers
# this way we get consistent representation across
# architectures and versions.
this_repr = "%s=%s" % (k, str(v))
else:
# use repr of the rest
this_repr = "%s=%s" % (k, printer(v))
if len(this_repr) > 500:
this_repr = this_repr[:300] + "..." + this_repr[-100:]
if i > 0:
if this_line_length + len(this_repr) >= 75 or "\n" in this_repr:
params_list.append(line_sep)
this_line_length = len(line_sep)
else:
params_list.append(", ")
this_line_length += 2
params_list.append(this_repr)
this_line_length += len(this_repr)
np.set_printoptions(**options)
lines = "".join(params_list)
# Strip trailing space to avoid nightmare in doctests
lines = "\n".join(l.rstrip(" ") for l in lines.split("\n"))
return lines
def _build_repr(self):
# XXX This is copied from BaseEstimator's get_params
cls = self.__class__
init = getattr(cls.__init__, "deprecated_original", cls.__init__)
# Ignore varargs, kw and default values and pop self
init_signature = signature(init)
# Consider the constructor parameters excluding 'self'
if init is object.__init__:
args = []
else:
args = sorted(
[
p.name
for p in init_signature.parameters.values()
if p.name != "self" and p.kind != p.VAR_KEYWORD
]
)
class_name = self.__class__.__name__
params = dict()
for key in args:
# We need deprecation warnings to always be on in order to
# catch deprecated param values.
# This is set in utils/__init__.py but it gets overwritten
# when running under python3 somehow.
warnings.simplefilter("always", FutureWarning)
try:
with warnings.catch_warnings(record=True) as w:
value = getattr(self, key, None)
if value is None and hasattr(self, "cvargs"):
value = self.cvargs.get(key, None)
if len(w) and w[0].category == FutureWarning:
# if the parameter is deprecated, don't show it
continue
finally:
warnings.filters.pop(0)
params[key] = value
return "%s(%s)" % (class_name, _pprint(params, offset=len(class_name)))
def _yields_constant_splits(cv):
# Return True if calling cv.split() always returns the same splits
# We assume that if a cv doesn't have a shuffle parameter, it shuffles by
# default (e.g. ShuffleSplit). If it actually doesn't shuffle (e.g.
# LeaveOneOut), then it won't have a random_state parameter anyway, in
# which case it will default to 0, leading to output=True
shuffle = getattr(cv, "shuffle", True)
random_state = getattr(cv, "random_state", 0)
return isinstance(random_state, numbers.Integral) or not shuffle