2057 lines
71 KiB
Python
2057 lines
71 KiB
Python
|
"""Test the split module"""
|
||
|
|
||
|
import re
|
||
|
import warnings
|
||
|
from itertools import combinations, combinations_with_replacement, permutations
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
from scipy import stats
|
||
|
from scipy.sparse import issparse
|
||
|
from scipy.special import comb
|
||
|
|
||
|
from sklearn import config_context
|
||
|
from sklearn.datasets import load_digits, make_classification
|
||
|
from sklearn.dummy import DummyClassifier
|
||
|
from sklearn.model_selection import (
|
||
|
GridSearchCV,
|
||
|
GroupKFold,
|
||
|
GroupShuffleSplit,
|
||
|
KFold,
|
||
|
LeaveOneGroupOut,
|
||
|
LeaveOneOut,
|
||
|
LeavePGroupsOut,
|
||
|
LeavePOut,
|
||
|
PredefinedSplit,
|
||
|
RepeatedKFold,
|
||
|
RepeatedStratifiedKFold,
|
||
|
ShuffleSplit,
|
||
|
StratifiedGroupKFold,
|
||
|
StratifiedKFold,
|
||
|
StratifiedShuffleSplit,
|
||
|
TimeSeriesSplit,
|
||
|
check_cv,
|
||
|
cross_val_score,
|
||
|
train_test_split,
|
||
|
)
|
||
|
from sklearn.model_selection._split import (
|
||
|
_build_repr,
|
||
|
_validate_shuffle_split,
|
||
|
_yields_constant_splits,
|
||
|
)
|
||
|
from sklearn.svm import SVC
|
||
|
from sklearn.tests.metadata_routing_common import assert_request_is_empty
|
||
|
from sklearn.utils._array_api import (
|
||
|
_convert_to_numpy,
|
||
|
get_namespace,
|
||
|
yield_namespace_device_dtype_combinations,
|
||
|
)
|
||
|
from sklearn.utils._array_api import (
|
||
|
device as array_api_device,
|
||
|
)
|
||
|
from sklearn.utils._mocking import MockDataFrame
|
||
|
from sklearn.utils._testing import (
|
||
|
assert_allclose,
|
||
|
assert_array_almost_equal,
|
||
|
assert_array_equal,
|
||
|
ignore_warnings,
|
||
|
)
|
||
|
from sklearn.utils.estimator_checks import (
|
||
|
_array_api_for_tests,
|
||
|
)
|
||
|
from sklearn.utils.fixes import COO_CONTAINERS, CSC_CONTAINERS, CSR_CONTAINERS
|
||
|
from sklearn.utils.validation import _num_samples
|
||
|
|
||
|
NO_GROUP_SPLITTERS = [
|
||
|
KFold(),
|
||
|
StratifiedKFold(),
|
||
|
TimeSeriesSplit(),
|
||
|
LeaveOneOut(),
|
||
|
LeavePOut(p=2),
|
||
|
ShuffleSplit(),
|
||
|
StratifiedShuffleSplit(test_size=0.5),
|
||
|
PredefinedSplit([1, 1, 2, 2]),
|
||
|
RepeatedKFold(),
|
||
|
RepeatedStratifiedKFold(),
|
||
|
]
|
||
|
|
||
|
GROUP_SPLITTERS = [
|
||
|
GroupKFold(),
|
||
|
LeavePGroupsOut(n_groups=1),
|
||
|
StratifiedGroupKFold(),
|
||
|
LeaveOneGroupOut(),
|
||
|
GroupShuffleSplit(),
|
||
|
]
|
||
|
GROUP_SPLITTER_NAMES = set(splitter.__class__.__name__ for splitter in GROUP_SPLITTERS)
|
||
|
|
||
|
ALL_SPLITTERS = NO_GROUP_SPLITTERS + GROUP_SPLITTERS # type: ignore
|
||
|
|
||
|
X = np.ones(10)
|
||
|
y = np.arange(10) // 2
|
||
|
test_groups = (
|
||
|
np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]),
|
||
|
np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]),
|
||
|
np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]),
|
||
|
np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]),
|
||
|
[1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3],
|
||
|
["1", "1", "1", "1", "2", "2", "2", "3", "3", "3", "3", "3"],
|
||
|
)
|
||
|
digits = load_digits()
|
||
|
|
||
|
pytestmark = pytest.mark.filterwarnings(
|
||
|
"error:The groups parameter:UserWarning:sklearn.*"
|
||
|
)
|
||
|
|
||
|
|
||
|
def _split(splitter, X, y, groups):
|
||
|
if splitter.__class__.__name__ in GROUP_SPLITTER_NAMES:
|
||
|
return splitter.split(X, y, groups=groups)
|
||
|
else:
|
||
|
return splitter.split(X, y)
|
||
|
|
||
|
|
||
|
@ignore_warnings
|
||
|
def test_cross_validator_with_default_params():
|
||
|
n_samples = 4
|
||
|
n_unique_groups = 4
|
||
|
n_splits = 2
|
||
|
p = 2
|
||
|
n_shuffle_splits = 10 # (the default value)
|
||
|
|
||
|
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
|
||
|
X_1d = np.array([1, 2, 3, 4])
|
||
|
y = np.array([1, 1, 2, 2])
|
||
|
groups = np.array([1, 2, 3, 4])
|
||
|
loo = LeaveOneOut()
|
||
|
lpo = LeavePOut(p)
|
||
|
kf = KFold(n_splits)
|
||
|
skf = StratifiedKFold(n_splits)
|
||
|
lolo = LeaveOneGroupOut()
|
||
|
lopo = LeavePGroupsOut(p)
|
||
|
ss = ShuffleSplit(random_state=0)
|
||
|
ps = PredefinedSplit([1, 1, 2, 2]) # n_splits = np of unique folds = 2
|
||
|
sgkf = StratifiedGroupKFold(n_splits)
|
||
|
|
||
|
loo_repr = "LeaveOneOut()"
|
||
|
lpo_repr = "LeavePOut(p=2)"
|
||
|
kf_repr = "KFold(n_splits=2, random_state=None, shuffle=False)"
|
||
|
skf_repr = "StratifiedKFold(n_splits=2, random_state=None, shuffle=False)"
|
||
|
lolo_repr = "LeaveOneGroupOut()"
|
||
|
lopo_repr = "LeavePGroupsOut(n_groups=2)"
|
||
|
ss_repr = (
|
||
|
"ShuffleSplit(n_splits=10, random_state=0, test_size=None, train_size=None)"
|
||
|
)
|
||
|
ps_repr = "PredefinedSplit(test_fold=array([1, 1, 2, 2]))"
|
||
|
sgkf_repr = "StratifiedGroupKFold(n_splits=2, random_state=None, shuffle=False)"
|
||
|
|
||
|
n_splits_expected = [
|
||
|
n_samples,
|
||
|
comb(n_samples, p),
|
||
|
n_splits,
|
||
|
n_splits,
|
||
|
n_unique_groups,
|
||
|
comb(n_unique_groups, p),
|
||
|
n_shuffle_splits,
|
||
|
2,
|
||
|
n_splits,
|
||
|
]
|
||
|
|
||
|
for i, (cv, cv_repr) in enumerate(
|
||
|
zip(
|
||
|
[loo, lpo, kf, skf, lolo, lopo, ss, ps, sgkf],
|
||
|
[
|
||
|
loo_repr,
|
||
|
lpo_repr,
|
||
|
kf_repr,
|
||
|
skf_repr,
|
||
|
lolo_repr,
|
||
|
lopo_repr,
|
||
|
ss_repr,
|
||
|
ps_repr,
|
||
|
sgkf_repr,
|
||
|
],
|
||
|
)
|
||
|
):
|
||
|
# Test if get_n_splits works correctly
|
||
|
assert n_splits_expected[i] == cv.get_n_splits(X, y, groups)
|
||
|
|
||
|
# Test if the cross-validator works as expected even if
|
||
|
# the data is 1d
|
||
|
np.testing.assert_equal(
|
||
|
list(cv.split(X, y, groups)), list(cv.split(X_1d, y, groups))
|
||
|
)
|
||
|
# Test that train, test indices returned are integers
|
||
|
for train, test in cv.split(X, y, groups):
|
||
|
assert np.asarray(train).dtype.kind == "i"
|
||
|
assert np.asarray(test).dtype.kind == "i"
|
||
|
|
||
|
# Test if the repr works without any errors
|
||
|
assert cv_repr == repr(cv)
|
||
|
|
||
|
# ValueError for get_n_splits methods
|
||
|
msg = "The 'X' parameter should not be None."
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
loo.get_n_splits(None, y, groups)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
lpo.get_n_splits(None, y, groups)
|
||
|
|
||
|
|
||
|
def test_2d_y():
|
||
|
# smoke test for 2d y and multi-label
|
||
|
n_samples = 30
|
||
|
rng = np.random.RandomState(1)
|
||
|
X = rng.randint(0, 3, size=(n_samples, 2))
|
||
|
y = rng.randint(0, 3, size=(n_samples,))
|
||
|
y_2d = y.reshape(-1, 1)
|
||
|
y_multilabel = rng.randint(0, 2, size=(n_samples, 3))
|
||
|
groups = rng.randint(0, 3, size=(n_samples,))
|
||
|
splitters = [
|
||
|
LeaveOneOut(),
|
||
|
LeavePOut(p=2),
|
||
|
KFold(),
|
||
|
StratifiedKFold(),
|
||
|
RepeatedKFold(),
|
||
|
RepeatedStratifiedKFold(),
|
||
|
StratifiedGroupKFold(),
|
||
|
ShuffleSplit(),
|
||
|
StratifiedShuffleSplit(test_size=0.5),
|
||
|
GroupShuffleSplit(),
|
||
|
LeaveOneGroupOut(),
|
||
|
LeavePGroupsOut(n_groups=2),
|
||
|
GroupKFold(n_splits=3),
|
||
|
TimeSeriesSplit(),
|
||
|
PredefinedSplit(test_fold=groups),
|
||
|
]
|
||
|
for splitter in splitters:
|
||
|
list(_split(splitter, X, y, groups=groups))
|
||
|
list(_split(splitter, X, y_2d, groups=groups))
|
||
|
try:
|
||
|
list(_split(splitter, X, y_multilabel, groups=groups))
|
||
|
except ValueError as e:
|
||
|
allowed_target_types = ("binary", "multiclass")
|
||
|
msg = "Supported target types are: {}. Got 'multilabel".format(
|
||
|
allowed_target_types
|
||
|
)
|
||
|
assert msg in str(e)
|
||
|
|
||
|
|
||
|
def check_valid_split(train, test, n_samples=None):
|
||
|
# Use python sets to get more informative assertion failure messages
|
||
|
train, test = set(train), set(test)
|
||
|
|
||
|
# Train and test split should not overlap
|
||
|
assert train.intersection(test) == set()
|
||
|
|
||
|
if n_samples is not None:
|
||
|
# Check that the union of train an test split cover all the indices
|
||
|
assert train.union(test) == set(range(n_samples))
|
||
|
|
||
|
|
||
|
def check_cv_coverage(cv, X, y, groups, expected_n_splits):
|
||
|
n_samples = _num_samples(X)
|
||
|
# Check that a all the samples appear at least once in a test fold
|
||
|
assert cv.get_n_splits(X, y, groups) == expected_n_splits
|
||
|
|
||
|
collected_test_samples = set()
|
||
|
iterations = 0
|
||
|
for train, test in cv.split(X, y, groups):
|
||
|
check_valid_split(train, test, n_samples=n_samples)
|
||
|
iterations += 1
|
||
|
collected_test_samples.update(test)
|
||
|
|
||
|
# Check that the accumulated test samples cover the whole dataset
|
||
|
assert iterations == expected_n_splits
|
||
|
if n_samples is not None:
|
||
|
assert collected_test_samples == set(range(n_samples))
|
||
|
|
||
|
|
||
|
def test_kfold_valueerrors():
|
||
|
X1 = np.array([[1, 2], [3, 4], [5, 6]])
|
||
|
X2 = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])
|
||
|
# Check that errors are raised if there is not enough samples
|
||
|
(ValueError, next, KFold(4).split(X1))
|
||
|
|
||
|
# Check that a warning is raised if the least populated class has too few
|
||
|
# members.
|
||
|
y = np.array([3, 3, -1, -1, 3])
|
||
|
|
||
|
skf_3 = StratifiedKFold(3)
|
||
|
with pytest.warns(Warning, match="The least populated class"):
|
||
|
next(skf_3.split(X2, y))
|
||
|
|
||
|
sgkf_3 = StratifiedGroupKFold(3)
|
||
|
naive_groups = np.arange(len(y))
|
||
|
with pytest.warns(Warning, match="The least populated class"):
|
||
|
next(sgkf_3.split(X2, y, naive_groups))
|
||
|
|
||
|
# Check that despite the warning the folds are still computed even
|
||
|
# though all the classes are not necessarily represented at on each
|
||
|
# side of the split at each split
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("ignore")
|
||
|
check_cv_coverage(skf_3, X2, y, groups=None, expected_n_splits=3)
|
||
|
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("ignore")
|
||
|
check_cv_coverage(sgkf_3, X2, y, groups=naive_groups, expected_n_splits=3)
|
||
|
|
||
|
# Check that errors are raised if all n_groups for individual
|
||
|
# classes are less than n_splits.
|
||
|
y = np.array([3, 3, -1, -1, 2])
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
next(skf_3.split(X2, y))
|
||
|
with pytest.raises(ValueError):
|
||
|
next(sgkf_3.split(X2, y))
|
||
|
|
||
|
# Error when number of folds is <= 1
|
||
|
with pytest.raises(ValueError):
|
||
|
KFold(0)
|
||
|
with pytest.raises(ValueError):
|
||
|
KFold(1)
|
||
|
error_string = "k-fold cross-validation requires at least one train/test split"
|
||
|
with pytest.raises(ValueError, match=error_string):
|
||
|
StratifiedKFold(0)
|
||
|
with pytest.raises(ValueError, match=error_string):
|
||
|
StratifiedKFold(1)
|
||
|
with pytest.raises(ValueError, match=error_string):
|
||
|
StratifiedGroupKFold(0)
|
||
|
with pytest.raises(ValueError, match=error_string):
|
||
|
StratifiedGroupKFold(1)
|
||
|
|
||
|
# When n_splits is not integer:
|
||
|
with pytest.raises(ValueError):
|
||
|
KFold(1.5)
|
||
|
with pytest.raises(ValueError):
|
||
|
KFold(2.0)
|
||
|
with pytest.raises(ValueError):
|
||
|
StratifiedKFold(1.5)
|
||
|
with pytest.raises(ValueError):
|
||
|
StratifiedKFold(2.0)
|
||
|
with pytest.raises(ValueError):
|
||
|
StratifiedGroupKFold(1.5)
|
||
|
with pytest.raises(ValueError):
|
||
|
StratifiedGroupKFold(2.0)
|
||
|
|
||
|
# When shuffle is not a bool:
|
||
|
with pytest.raises(TypeError):
|
||
|
KFold(n_splits=4, shuffle=None)
|
||
|
|
||
|
|
||
|
def test_kfold_indices():
|
||
|
# Check all indices are returned in the test folds
|
||
|
X1 = np.ones(18)
|
||
|
kf = KFold(3)
|
||
|
check_cv_coverage(kf, X1, y=None, groups=None, expected_n_splits=3)
|
||
|
|
||
|
# Check all indices are returned in the test folds even when equal-sized
|
||
|
# folds are not possible
|
||
|
X2 = np.ones(17)
|
||
|
kf = KFold(3)
|
||
|
check_cv_coverage(kf, X2, y=None, groups=None, expected_n_splits=3)
|
||
|
|
||
|
# Check if get_n_splits returns the number of folds
|
||
|
assert 5 == KFold(5).get_n_splits(X2)
|
||
|
|
||
|
|
||
|
def test_kfold_no_shuffle():
|
||
|
# Manually check that KFold preserves the data ordering on toy datasets
|
||
|
X2 = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
|
||
|
|
||
|
splits = KFold(2).split(X2[:-1])
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(test, [0, 1])
|
||
|
assert_array_equal(train, [2, 3])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(test, [2, 3])
|
||
|
assert_array_equal(train, [0, 1])
|
||
|
|
||
|
splits = KFold(2).split(X2)
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(test, [0, 1, 2])
|
||
|
assert_array_equal(train, [3, 4])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(test, [3, 4])
|
||
|
assert_array_equal(train, [0, 1, 2])
|
||
|
|
||
|
|
||
|
def test_stratified_kfold_no_shuffle():
|
||
|
# Manually check that StratifiedKFold preserves the data ordering as much
|
||
|
# as possible on toy datasets in order to avoid hiding sample dependencies
|
||
|
# when possible
|
||
|
X, y = np.ones(4), [1, 1, 0, 0]
|
||
|
splits = StratifiedKFold(2).split(X, y)
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(test, [0, 2])
|
||
|
assert_array_equal(train, [1, 3])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(test, [1, 3])
|
||
|
assert_array_equal(train, [0, 2])
|
||
|
|
||
|
X, y = np.ones(7), [1, 1, 1, 0, 0, 0, 0]
|
||
|
splits = StratifiedKFold(2).split(X, y)
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(test, [0, 1, 3, 4])
|
||
|
assert_array_equal(train, [2, 5, 6])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(test, [2, 5, 6])
|
||
|
assert_array_equal(train, [0, 1, 3, 4])
|
||
|
|
||
|
# Check if get_n_splits returns the number of folds
|
||
|
assert 5 == StratifiedKFold(5).get_n_splits(X, y)
|
||
|
|
||
|
# Make sure string labels are also supported
|
||
|
X = np.ones(7)
|
||
|
y1 = ["1", "1", "1", "0", "0", "0", "0"]
|
||
|
y2 = [1, 1, 1, 0, 0, 0, 0]
|
||
|
np.testing.assert_equal(
|
||
|
list(StratifiedKFold(2).split(X, y1)), list(StratifiedKFold(2).split(X, y2))
|
||
|
)
|
||
|
|
||
|
# Check equivalence to KFold
|
||
|
y = [0, 1, 0, 1, 0, 1, 0, 1]
|
||
|
X = np.ones_like(y)
|
||
|
np.testing.assert_equal(
|
||
|
list(StratifiedKFold(3).split(X, y)), list(KFold(3).split(X, y))
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("shuffle", [False, True])
|
||
|
@pytest.mark.parametrize("k", [4, 5, 6, 7, 8, 9, 10])
|
||
|
@pytest.mark.parametrize("kfold", [StratifiedKFold, StratifiedGroupKFold])
|
||
|
def test_stratified_kfold_ratios(k, shuffle, kfold):
|
||
|
# Check that stratified kfold preserves class ratios in individual splits
|
||
|
# Repeat with shuffling turned off and on
|
||
|
n_samples = 1000
|
||
|
X = np.ones(n_samples)
|
||
|
y = np.array(
|
||
|
[4] * int(0.10 * n_samples)
|
||
|
+ [0] * int(0.89 * n_samples)
|
||
|
+ [1] * int(0.01 * n_samples)
|
||
|
)
|
||
|
# ensure perfect stratification with StratifiedGroupKFold
|
||
|
groups = np.arange(len(y))
|
||
|
distr = np.bincount(y) / len(y)
|
||
|
|
||
|
test_sizes = []
|
||
|
random_state = None if not shuffle else 0
|
||
|
skf = kfold(k, random_state=random_state, shuffle=shuffle)
|
||
|
for train, test in _split(skf, X, y, groups=groups):
|
||
|
assert_allclose(np.bincount(y[train]) / len(train), distr, atol=0.02)
|
||
|
assert_allclose(np.bincount(y[test]) / len(test), distr, atol=0.02)
|
||
|
test_sizes.append(len(test))
|
||
|
assert np.ptp(test_sizes) <= 1
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("shuffle", [False, True])
|
||
|
@pytest.mark.parametrize("k", [4, 6, 7])
|
||
|
@pytest.mark.parametrize("kfold", [StratifiedKFold, StratifiedGroupKFold])
|
||
|
def test_stratified_kfold_label_invariance(k, shuffle, kfold):
|
||
|
# Check that stratified kfold gives the same indices regardless of labels
|
||
|
n_samples = 100
|
||
|
y = np.array(
|
||
|
[2] * int(0.10 * n_samples)
|
||
|
+ [0] * int(0.89 * n_samples)
|
||
|
+ [1] * int(0.01 * n_samples)
|
||
|
)
|
||
|
X = np.ones(len(y))
|
||
|
# ensure perfect stratification with StratifiedGroupKFold
|
||
|
groups = np.arange(len(y))
|
||
|
|
||
|
def get_splits(y):
|
||
|
random_state = None if not shuffle else 0
|
||
|
return [
|
||
|
(list(train), list(test))
|
||
|
for train, test in _split(
|
||
|
kfold(k, random_state=random_state, shuffle=shuffle),
|
||
|
X,
|
||
|
y,
|
||
|
groups=groups,
|
||
|
)
|
||
|
]
|
||
|
|
||
|
splits_base = get_splits(y)
|
||
|
for perm in permutations([0, 1, 2]):
|
||
|
y_perm = np.take(perm, y)
|
||
|
splits_perm = get_splits(y_perm)
|
||
|
assert splits_perm == splits_base
|
||
|
|
||
|
|
||
|
def test_kfold_balance():
|
||
|
# Check that KFold returns folds with balanced sizes
|
||
|
for i in range(11, 17):
|
||
|
kf = KFold(5).split(X=np.ones(i))
|
||
|
sizes = [len(test) for _, test in kf]
|
||
|
|
||
|
assert (np.max(sizes) - np.min(sizes)) <= 1
|
||
|
assert np.sum(sizes) == i
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kfold", [StratifiedKFold, StratifiedGroupKFold])
|
||
|
def test_stratifiedkfold_balance(kfold):
|
||
|
# Check that KFold returns folds with balanced sizes (only when
|
||
|
# stratification is possible)
|
||
|
# Repeat with shuffling turned off and on
|
||
|
X = np.ones(17)
|
||
|
y = [0] * 3 + [1] * 14
|
||
|
# ensure perfect stratification with StratifiedGroupKFold
|
||
|
groups = np.arange(len(y))
|
||
|
|
||
|
for shuffle in (True, False):
|
||
|
cv = kfold(3, shuffle=shuffle)
|
||
|
for i in range(11, 17):
|
||
|
skf = _split(cv, X[:i], y[:i], groups[:i])
|
||
|
sizes = [len(test) for _, test in skf]
|
||
|
|
||
|
assert (np.max(sizes) - np.min(sizes)) <= 1
|
||
|
assert np.sum(sizes) == i
|
||
|
|
||
|
|
||
|
def test_shuffle_kfold():
|
||
|
# Check the indices are shuffled properly
|
||
|
kf = KFold(3)
|
||
|
kf2 = KFold(3, shuffle=True, random_state=0)
|
||
|
kf3 = KFold(3, shuffle=True, random_state=1)
|
||
|
|
||
|
X = np.ones(300)
|
||
|
|
||
|
all_folds = np.zeros(300)
|
||
|
for (tr1, te1), (tr2, te2), (tr3, te3) in zip(
|
||
|
kf.split(X), kf2.split(X), kf3.split(X)
|
||
|
):
|
||
|
for tr_a, tr_b in combinations((tr1, tr2, tr3), 2):
|
||
|
# Assert that there is no complete overlap
|
||
|
assert len(np.intersect1d(tr_a, tr_b)) != len(tr1)
|
||
|
|
||
|
# Set all test indices in successive iterations of kf2 to 1
|
||
|
all_folds[te2] = 1
|
||
|
|
||
|
# Check that all indices are returned in the different test folds
|
||
|
assert sum(all_folds) == 300
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kfold", [KFold, StratifiedKFold, StratifiedGroupKFold])
|
||
|
def test_shuffle_kfold_stratifiedkfold_reproducibility(kfold):
|
||
|
X = np.ones(15) # Divisible by 3
|
||
|
y = [0] * 7 + [1] * 8
|
||
|
groups_1 = np.arange(len(y))
|
||
|
X2 = np.ones(16) # Not divisible by 3
|
||
|
y2 = [0] * 8 + [1] * 8
|
||
|
groups_2 = np.arange(len(y2))
|
||
|
|
||
|
# Check that when the shuffle is True, multiple split calls produce the
|
||
|
# same split when random_state is int
|
||
|
kf = kfold(3, shuffle=True, random_state=0)
|
||
|
|
||
|
np.testing.assert_equal(
|
||
|
list(_split(kf, X, y, groups_1)), list(_split(kf, X, y, groups_1))
|
||
|
)
|
||
|
|
||
|
# Check that when the shuffle is True, multiple split calls often
|
||
|
# (not always) produce different splits when random_state is
|
||
|
# RandomState instance or None
|
||
|
kf = kfold(3, shuffle=True, random_state=np.random.RandomState(0))
|
||
|
for data in zip((X, X2), (y, y2), (groups_1, groups_2)):
|
||
|
# Test if the two splits are different cv
|
||
|
for (_, test_a), (_, test_b) in zip(_split(kf, *data), _split(kf, *data)):
|
||
|
# cv.split(...) returns an array of tuples, each tuple
|
||
|
# consisting of an array with train indices and test indices
|
||
|
# Ensure that the splits for data are not same
|
||
|
# when random state is not set
|
||
|
with pytest.raises(AssertionError):
|
||
|
np.testing.assert_array_equal(test_a, test_b)
|
||
|
|
||
|
|
||
|
def test_shuffle_stratifiedkfold():
|
||
|
# Check that shuffling is happening when requested, and for proper
|
||
|
# sample coverage
|
||
|
X_40 = np.ones(40)
|
||
|
y = [0] * 20 + [1] * 20
|
||
|
kf0 = StratifiedKFold(5, shuffle=True, random_state=0)
|
||
|
kf1 = StratifiedKFold(5, shuffle=True, random_state=1)
|
||
|
for (_, test0), (_, test1) in zip(kf0.split(X_40, y), kf1.split(X_40, y)):
|
||
|
assert set(test0) != set(test1)
|
||
|
check_cv_coverage(kf0, X_40, y, groups=None, expected_n_splits=5)
|
||
|
|
||
|
# Ensure that we shuffle each class's samples with different
|
||
|
# random_state in StratifiedKFold
|
||
|
# See https://github.com/scikit-learn/scikit-learn/pull/13124
|
||
|
X = np.arange(10)
|
||
|
y = [0] * 5 + [1] * 5
|
||
|
kf1 = StratifiedKFold(5, shuffle=True, random_state=0)
|
||
|
kf2 = StratifiedKFold(5, shuffle=True, random_state=1)
|
||
|
test_set1 = sorted([tuple(s[1]) for s in kf1.split(X, y)])
|
||
|
test_set2 = sorted([tuple(s[1]) for s in kf2.split(X, y)])
|
||
|
assert test_set1 != test_set2
|
||
|
|
||
|
|
||
|
def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372
|
||
|
# The digits samples are dependent: they are apparently grouped by authors
|
||
|
# although we don't have any information on the groups segment locations
|
||
|
# for this data. We can highlight this fact by computing k-fold cross-
|
||
|
# validation with and without shuffling: we observe that the shuffling case
|
||
|
# wrongly makes the IID assumption and is therefore too optimistic: it
|
||
|
# estimates a much higher accuracy (around 0.93) than that the non
|
||
|
# shuffling variant (around 0.81).
|
||
|
|
||
|
X, y = digits.data[:600], digits.target[:600]
|
||
|
model = SVC(C=10, gamma=0.005)
|
||
|
|
||
|
n_splits = 3
|
||
|
|
||
|
cv = KFold(n_splits=n_splits, shuffle=False)
|
||
|
mean_score = cross_val_score(model, X, y, cv=cv).mean()
|
||
|
assert 0.92 > mean_score
|
||
|
assert mean_score > 0.80
|
||
|
|
||
|
# Shuffling the data artificially breaks the dependency and hides the
|
||
|
# overfitting of the model with regards to the writing style of the authors
|
||
|
# by yielding a seriously overestimated score:
|
||
|
|
||
|
cv = KFold(n_splits, shuffle=True, random_state=0)
|
||
|
mean_score = cross_val_score(model, X, y, cv=cv).mean()
|
||
|
assert mean_score > 0.92
|
||
|
|
||
|
cv = KFold(n_splits, shuffle=True, random_state=1)
|
||
|
mean_score = cross_val_score(model, X, y, cv=cv).mean()
|
||
|
assert mean_score > 0.92
|
||
|
|
||
|
# Similarly, StratifiedKFold should try to shuffle the data as little
|
||
|
# as possible (while respecting the balanced class constraints)
|
||
|
# and thus be able to detect the dependency by not overestimating
|
||
|
# the CV score either. As the digits dataset is approximately balanced
|
||
|
# the estimated mean score is close to the score measured with
|
||
|
# non-shuffled KFold
|
||
|
|
||
|
cv = StratifiedKFold(n_splits)
|
||
|
mean_score = cross_val_score(model, X, y, cv=cv).mean()
|
||
|
assert 0.94 > mean_score
|
||
|
assert mean_score > 0.80
|
||
|
|
||
|
|
||
|
def test_stratified_group_kfold_trivial():
|
||
|
sgkf = StratifiedGroupKFold(n_splits=3)
|
||
|
# Trivial example - groups with the same distribution
|
||
|
y = np.array([1] * 6 + [0] * 12)
|
||
|
X = np.ones_like(y).reshape(-1, 1)
|
||
|
groups = np.asarray((1, 2, 3, 4, 5, 6, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6))
|
||
|
distr = np.bincount(y) / len(y)
|
||
|
test_sizes = []
|
||
|
for train, test in sgkf.split(X, y, groups):
|
||
|
# check group constraint
|
||
|
assert np.intersect1d(groups[train], groups[test]).size == 0
|
||
|
# check y distribution
|
||
|
assert_allclose(np.bincount(y[train]) / len(train), distr, atol=0.02)
|
||
|
assert_allclose(np.bincount(y[test]) / len(test), distr, atol=0.02)
|
||
|
test_sizes.append(len(test))
|
||
|
assert np.ptp(test_sizes) <= 1
|
||
|
|
||
|
|
||
|
def test_stratified_group_kfold_approximate():
|
||
|
# Not perfect stratification (even though it is possible) because of
|
||
|
# iteration over groups
|
||
|
sgkf = StratifiedGroupKFold(n_splits=3)
|
||
|
y = np.array([1] * 6 + [0] * 12)
|
||
|
X = np.ones_like(y).reshape(-1, 1)
|
||
|
groups = np.array([1, 2, 3, 3, 4, 4, 1, 1, 2, 2, 3, 4, 5, 5, 5, 6, 6, 6])
|
||
|
expected = np.asarray([[0.833, 0.166], [0.666, 0.333], [0.5, 0.5]])
|
||
|
test_sizes = []
|
||
|
for (train, test), expect_dist in zip(sgkf.split(X, y, groups), expected):
|
||
|
# check group constraint
|
||
|
assert np.intersect1d(groups[train], groups[test]).size == 0
|
||
|
split_dist = np.bincount(y[test]) / len(test)
|
||
|
assert_allclose(split_dist, expect_dist, atol=0.001)
|
||
|
test_sizes.append(len(test))
|
||
|
assert np.ptp(test_sizes) <= 1
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"y, groups, expected",
|
||
|
[
|
||
|
(
|
||
|
np.array([0] * 6 + [1] * 6),
|
||
|
np.array([1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]),
|
||
|
np.asarray([[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]),
|
||
|
),
|
||
|
(
|
||
|
np.array([0] * 9 + [1] * 3),
|
||
|
np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 6]),
|
||
|
np.asarray([[0.75, 0.25], [0.75, 0.25], [0.75, 0.25]]),
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_stratified_group_kfold_homogeneous_groups(y, groups, expected):
|
||
|
sgkf = StratifiedGroupKFold(n_splits=3)
|
||
|
X = np.ones_like(y).reshape(-1, 1)
|
||
|
for (train, test), expect_dist in zip(sgkf.split(X, y, groups), expected):
|
||
|
# check group constraint
|
||
|
assert np.intersect1d(groups[train], groups[test]).size == 0
|
||
|
split_dist = np.bincount(y[test]) / len(test)
|
||
|
assert_allclose(split_dist, expect_dist, atol=0.001)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("cls_distr", [(0.4, 0.6), (0.3, 0.7), (0.2, 0.8), (0.8, 0.2)])
|
||
|
@pytest.mark.parametrize("n_groups", [5, 30, 70])
|
||
|
def test_stratified_group_kfold_against_group_kfold(cls_distr, n_groups):
|
||
|
# Check that given sufficient amount of samples StratifiedGroupKFold
|
||
|
# produces better stratified folds than regular GroupKFold
|
||
|
n_splits = 5
|
||
|
sgkf = StratifiedGroupKFold(n_splits=n_splits)
|
||
|
gkf = GroupKFold(n_splits=n_splits)
|
||
|
rng = np.random.RandomState(0)
|
||
|
n_points = 1000
|
||
|
y = rng.choice(2, size=n_points, p=cls_distr)
|
||
|
X = np.ones_like(y).reshape(-1, 1)
|
||
|
g = rng.choice(n_groups, n_points)
|
||
|
sgkf_folds = sgkf.split(X, y, groups=g)
|
||
|
gkf_folds = gkf.split(X, y, groups=g)
|
||
|
sgkf_entr = 0
|
||
|
gkf_entr = 0
|
||
|
for (sgkf_train, sgkf_test), (_, gkf_test) in zip(sgkf_folds, gkf_folds):
|
||
|
# check group constraint
|
||
|
assert np.intersect1d(g[sgkf_train], g[sgkf_test]).size == 0
|
||
|
sgkf_distr = np.bincount(y[sgkf_test]) / len(sgkf_test)
|
||
|
gkf_distr = np.bincount(y[gkf_test]) / len(gkf_test)
|
||
|
sgkf_entr += stats.entropy(sgkf_distr, qk=cls_distr)
|
||
|
gkf_entr += stats.entropy(gkf_distr, qk=cls_distr)
|
||
|
sgkf_entr /= n_splits
|
||
|
gkf_entr /= n_splits
|
||
|
assert sgkf_entr <= gkf_entr
|
||
|
|
||
|
|
||
|
def test_shuffle_split():
|
||
|
ss1 = ShuffleSplit(test_size=0.2, random_state=0).split(X)
|
||
|
ss2 = ShuffleSplit(test_size=2, random_state=0).split(X)
|
||
|
ss3 = ShuffleSplit(test_size=np.int32(2), random_state=0).split(X)
|
||
|
ss4 = ShuffleSplit(test_size=int(2), random_state=0).split(X)
|
||
|
for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4):
|
||
|
assert_array_equal(t1[0], t2[0])
|
||
|
assert_array_equal(t2[0], t3[0])
|
||
|
assert_array_equal(t3[0], t4[0])
|
||
|
assert_array_equal(t1[1], t2[1])
|
||
|
assert_array_equal(t2[1], t3[1])
|
||
|
assert_array_equal(t3[1], t4[1])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("split_class", [ShuffleSplit, StratifiedShuffleSplit])
|
||
|
@pytest.mark.parametrize(
|
||
|
"train_size, exp_train, exp_test", [(None, 9, 1), (8, 8, 2), (0.8, 8, 2)]
|
||
|
)
|
||
|
def test_shuffle_split_default_test_size(split_class, train_size, exp_train, exp_test):
|
||
|
# Check that the default value has the expected behavior, i.e. 0.1 if both
|
||
|
# unspecified or complement train_size unless both are specified.
|
||
|
X = np.ones(10)
|
||
|
y = np.ones(10)
|
||
|
|
||
|
X_train, X_test = next(split_class(train_size=train_size).split(X, y))
|
||
|
|
||
|
assert len(X_train) == exp_train
|
||
|
assert len(X_test) == exp_test
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"train_size, exp_train, exp_test", [(None, 8, 2), (7, 7, 3), (0.7, 7, 3)]
|
||
|
)
|
||
|
def test_group_shuffle_split_default_test_size(train_size, exp_train, exp_test):
|
||
|
# Check that the default value has the expected behavior, i.e. 0.2 if both
|
||
|
# unspecified or complement train_size unless both are specified.
|
||
|
X = np.ones(10)
|
||
|
y = np.ones(10)
|
||
|
groups = range(10)
|
||
|
|
||
|
X_train, X_test = next(GroupShuffleSplit(train_size=train_size).split(X, y, groups))
|
||
|
|
||
|
assert len(X_train) == exp_train
|
||
|
assert len(X_test) == exp_test
|
||
|
|
||
|
|
||
|
@ignore_warnings
|
||
|
def test_stratified_shuffle_split_init():
|
||
|
X = np.arange(7)
|
||
|
y = np.asarray([0, 1, 1, 1, 2, 2, 2])
|
||
|
# Check that error is raised if there is a class with only one sample
|
||
|
with pytest.raises(ValueError):
|
||
|
next(StratifiedShuffleSplit(3, test_size=0.2).split(X, y))
|
||
|
|
||
|
# Check that error is raised if the test set size is smaller than n_classes
|
||
|
with pytest.raises(ValueError):
|
||
|
next(StratifiedShuffleSplit(3, test_size=2).split(X, y))
|
||
|
# Check that error is raised if the train set size is smaller than
|
||
|
# n_classes
|
||
|
with pytest.raises(ValueError):
|
||
|
next(StratifiedShuffleSplit(3, test_size=3, train_size=2).split(X, y))
|
||
|
|
||
|
X = np.arange(9)
|
||
|
y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2])
|
||
|
|
||
|
# Train size or test size too small
|
||
|
with pytest.raises(ValueError):
|
||
|
next(StratifiedShuffleSplit(train_size=2).split(X, y))
|
||
|
with pytest.raises(ValueError):
|
||
|
next(StratifiedShuffleSplit(test_size=2).split(X, y))
|
||
|
|
||
|
|
||
|
def test_stratified_shuffle_split_respects_test_size():
|
||
|
y = np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2])
|
||
|
test_size = 5
|
||
|
train_size = 10
|
||
|
sss = StratifiedShuffleSplit(
|
||
|
6, test_size=test_size, train_size=train_size, random_state=0
|
||
|
).split(np.ones(len(y)), y)
|
||
|
for train, test in sss:
|
||
|
assert len(train) == train_size
|
||
|
assert len(test) == test_size
|
||
|
|
||
|
|
||
|
def test_stratified_shuffle_split_iter():
|
||
|
ys = [
|
||
|
np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]),
|
||
|
np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]),
|
||
|
np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2] * 2),
|
||
|
np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]),
|
||
|
np.array([-1] * 800 + [1] * 50),
|
||
|
np.concatenate([[i] * (100 + i) for i in range(11)]),
|
||
|
[1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3],
|
||
|
["1", "1", "1", "1", "2", "2", "2", "3", "3", "3", "3", "3"],
|
||
|
]
|
||
|
|
||
|
for y in ys:
|
||
|
sss = StratifiedShuffleSplit(6, test_size=0.33, random_state=0).split(
|
||
|
np.ones(len(y)), y
|
||
|
)
|
||
|
y = np.asanyarray(y) # To make it indexable for y[train]
|
||
|
# this is how test-size is computed internally
|
||
|
# in _validate_shuffle_split
|
||
|
test_size = np.ceil(0.33 * len(y))
|
||
|
train_size = len(y) - test_size
|
||
|
for train, test in sss:
|
||
|
assert_array_equal(np.unique(y[train]), np.unique(y[test]))
|
||
|
# Checks if folds keep classes proportions
|
||
|
p_train = np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(
|
||
|
len(y[train])
|
||
|
)
|
||
|
p_test = np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(
|
||
|
len(y[test])
|
||
|
)
|
||
|
assert_array_almost_equal(p_train, p_test, 1)
|
||
|
assert len(train) + len(test) == y.size
|
||
|
assert len(train) == train_size
|
||
|
assert len(test) == test_size
|
||
|
assert_array_equal(np.intersect1d(train, test), [])
|
||
|
|
||
|
|
||
|
def test_stratified_shuffle_split_even():
|
||
|
# Test the StratifiedShuffleSplit, indices are drawn with a
|
||
|
# equal chance
|
||
|
n_folds = 5
|
||
|
n_splits = 1000
|
||
|
|
||
|
def assert_counts_are_ok(idx_counts, p):
|
||
|
# Here we test that the distribution of the counts
|
||
|
# per index is close enough to a binomial
|
||
|
threshold = 0.05 / n_splits
|
||
|
bf = stats.binom(n_splits, p)
|
||
|
for count in idx_counts:
|
||
|
prob = bf.pmf(count)
|
||
|
assert (
|
||
|
prob > threshold
|
||
|
), "An index is not drawn with chance corresponding to even draws"
|
||
|
|
||
|
for n_samples in (6, 22):
|
||
|
groups = np.array((n_samples // 2) * [0, 1])
|
||
|
splits = StratifiedShuffleSplit(
|
||
|
n_splits=n_splits, test_size=1.0 / n_folds, random_state=0
|
||
|
)
|
||
|
|
||
|
train_counts = [0] * n_samples
|
||
|
test_counts = [0] * n_samples
|
||
|
n_splits_actual = 0
|
||
|
for train, test in splits.split(X=np.ones(n_samples), y=groups):
|
||
|
n_splits_actual += 1
|
||
|
for counter, ids in [(train_counts, train), (test_counts, test)]:
|
||
|
for id in ids:
|
||
|
counter[id] += 1
|
||
|
assert n_splits_actual == n_splits
|
||
|
|
||
|
n_train, n_test = _validate_shuffle_split(
|
||
|
n_samples, test_size=1.0 / n_folds, train_size=1.0 - (1.0 / n_folds)
|
||
|
)
|
||
|
|
||
|
assert len(train) == n_train
|
||
|
assert len(test) == n_test
|
||
|
assert len(set(train).intersection(test)) == 0
|
||
|
|
||
|
group_counts = np.unique(groups)
|
||
|
assert splits.test_size == 1.0 / n_folds
|
||
|
assert n_train + n_test == len(groups)
|
||
|
assert len(group_counts) == 2
|
||
|
ex_test_p = float(n_test) / n_samples
|
||
|
ex_train_p = float(n_train) / n_samples
|
||
|
|
||
|
assert_counts_are_ok(train_counts, ex_train_p)
|
||
|
assert_counts_are_ok(test_counts, ex_test_p)
|
||
|
|
||
|
|
||
|
def test_stratified_shuffle_split_overlap_train_test_bug():
|
||
|
# See https://github.com/scikit-learn/scikit-learn/issues/6121 for
|
||
|
# the original bug report
|
||
|
y = [0, 1, 2, 3] * 3 + [4, 5] * 5
|
||
|
X = np.ones_like(y)
|
||
|
|
||
|
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.5, random_state=0)
|
||
|
|
||
|
train, test = next(sss.split(X=X, y=y))
|
||
|
|
||
|
# no overlap
|
||
|
assert_array_equal(np.intersect1d(train, test), [])
|
||
|
|
||
|
# complete partition
|
||
|
assert_array_equal(np.union1d(train, test), np.arange(len(y)))
|
||
|
|
||
|
|
||
|
def test_stratified_shuffle_split_multilabel():
|
||
|
# fix for issue 9037
|
||
|
for y in [
|
||
|
np.array([[0, 1], [1, 0], [1, 0], [0, 1]]),
|
||
|
np.array([[0, 1], [1, 1], [1, 1], [0, 1]]),
|
||
|
]:
|
||
|
X = np.ones_like(y)
|
||
|
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.5, random_state=0)
|
||
|
train, test = next(sss.split(X=X, y=y))
|
||
|
y_train = y[train]
|
||
|
y_test = y[test]
|
||
|
|
||
|
# no overlap
|
||
|
assert_array_equal(np.intersect1d(train, test), [])
|
||
|
|
||
|
# complete partition
|
||
|
assert_array_equal(np.union1d(train, test), np.arange(len(y)))
|
||
|
|
||
|
# correct stratification of entire rows
|
||
|
# (by design, here y[:, 0] uniquely determines the entire row of y)
|
||
|
expected_ratio = np.mean(y[:, 0])
|
||
|
assert expected_ratio == np.mean(y_train[:, 0])
|
||
|
assert expected_ratio == np.mean(y_test[:, 0])
|
||
|
|
||
|
|
||
|
def test_stratified_shuffle_split_multilabel_many_labels():
|
||
|
# fix in PR #9922: for multilabel data with > 1000 labels, str(row)
|
||
|
# truncates with an ellipsis for elements in positions 4 through
|
||
|
# len(row) - 4, so labels were not being correctly split using the powerset
|
||
|
# method for transforming a multilabel problem to a multiclass one; this
|
||
|
# test checks that this problem is fixed.
|
||
|
row_with_many_zeros = [1, 0, 1] + [0] * 1000 + [1, 0, 1]
|
||
|
row_with_many_ones = [1, 0, 1] + [1] * 1000 + [1, 0, 1]
|
||
|
y = np.array([row_with_many_zeros] * 10 + [row_with_many_ones] * 100)
|
||
|
X = np.ones_like(y)
|
||
|
|
||
|
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.5, random_state=0)
|
||
|
train, test = next(sss.split(X=X, y=y))
|
||
|
y_train = y[train]
|
||
|
y_test = y[test]
|
||
|
|
||
|
# correct stratification of entire rows
|
||
|
# (by design, here y[:, 4] uniquely determines the entire row of y)
|
||
|
expected_ratio = np.mean(y[:, 4])
|
||
|
assert expected_ratio == np.mean(y_train[:, 4])
|
||
|
assert expected_ratio == np.mean(y_test[:, 4])
|
||
|
|
||
|
|
||
|
def test_predefinedsplit_with_kfold_split():
|
||
|
# Check that PredefinedSplit can reproduce a split generated by Kfold.
|
||
|
folds = np.full(10, -1.0)
|
||
|
kf_train = []
|
||
|
kf_test = []
|
||
|
for i, (train_ind, test_ind) in enumerate(KFold(5, shuffle=True).split(X)):
|
||
|
kf_train.append(train_ind)
|
||
|
kf_test.append(test_ind)
|
||
|
folds[test_ind] = i
|
||
|
ps = PredefinedSplit(folds)
|
||
|
# n_splits is simply the no of unique folds
|
||
|
assert len(np.unique(folds)) == ps.get_n_splits()
|
||
|
ps_train, ps_test = zip(*ps.split())
|
||
|
assert_array_equal(ps_train, kf_train)
|
||
|
assert_array_equal(ps_test, kf_test)
|
||
|
|
||
|
|
||
|
def test_group_shuffle_split():
|
||
|
for groups_i in test_groups:
|
||
|
X = y = np.ones(len(groups_i))
|
||
|
n_splits = 6
|
||
|
test_size = 1.0 / 3
|
||
|
slo = GroupShuffleSplit(n_splits, test_size=test_size, random_state=0)
|
||
|
|
||
|
# Make sure the repr works
|
||
|
repr(slo)
|
||
|
|
||
|
# Test that the length is correct
|
||
|
assert slo.get_n_splits(X, y, groups=groups_i) == n_splits
|
||
|
|
||
|
l_unique = np.unique(groups_i)
|
||
|
l = np.asarray(groups_i)
|
||
|
|
||
|
for train, test in slo.split(X, y, groups=groups_i):
|
||
|
# First test: no train group is in the test set and vice versa
|
||
|
l_train_unique = np.unique(l[train])
|
||
|
l_test_unique = np.unique(l[test])
|
||
|
assert not np.any(np.isin(l[train], l_test_unique))
|
||
|
assert not np.any(np.isin(l[test], l_train_unique))
|
||
|
|
||
|
# Second test: train and test add up to all the data
|
||
|
assert l[train].size + l[test].size == l.size
|
||
|
|
||
|
# Third test: train and test are disjoint
|
||
|
assert_array_equal(np.intersect1d(train, test), [])
|
||
|
|
||
|
# Fourth test:
|
||
|
# unique train and test groups are correct, +- 1 for rounding error
|
||
|
assert abs(len(l_test_unique) - round(test_size * len(l_unique))) <= 1
|
||
|
assert (
|
||
|
abs(len(l_train_unique) - round((1.0 - test_size) * len(l_unique))) <= 1
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_leave_one_p_group_out():
|
||
|
logo = LeaveOneGroupOut()
|
||
|
lpgo_1 = LeavePGroupsOut(n_groups=1)
|
||
|
lpgo_2 = LeavePGroupsOut(n_groups=2)
|
||
|
|
||
|
# Make sure the repr works
|
||
|
assert repr(logo) == "LeaveOneGroupOut()"
|
||
|
assert repr(lpgo_1) == "LeavePGroupsOut(n_groups=1)"
|
||
|
assert repr(lpgo_2) == "LeavePGroupsOut(n_groups=2)"
|
||
|
assert repr(LeavePGroupsOut(n_groups=3)) == "LeavePGroupsOut(n_groups=3)"
|
||
|
|
||
|
for j, (cv, p_groups_out) in enumerate(((logo, 1), (lpgo_1, 1), (lpgo_2, 2))):
|
||
|
for i, groups_i in enumerate(test_groups):
|
||
|
n_groups = len(np.unique(groups_i))
|
||
|
n_splits = n_groups if p_groups_out == 1 else n_groups * (n_groups - 1) / 2
|
||
|
X = y = np.ones(len(groups_i))
|
||
|
|
||
|
# Test that the length is correct
|
||
|
assert cv.get_n_splits(X, y, groups=groups_i) == n_splits
|
||
|
|
||
|
groups_arr = np.asarray(groups_i)
|
||
|
|
||
|
# Split using the original list / array / list of string groups_i
|
||
|
for train, test in cv.split(X, y, groups=groups_i):
|
||
|
# First test: no train group is in the test set and vice versa
|
||
|
assert_array_equal(
|
||
|
np.intersect1d(groups_arr[train], groups_arr[test]).tolist(), []
|
||
|
)
|
||
|
|
||
|
# Second test: train and test add up to all the data
|
||
|
assert len(train) + len(test) == len(groups_i)
|
||
|
|
||
|
# Third test:
|
||
|
# The number of groups in test must be equal to p_groups_out
|
||
|
assert np.unique(groups_arr[test]).shape[0], p_groups_out
|
||
|
|
||
|
# check get_n_splits() with dummy parameters
|
||
|
assert logo.get_n_splits(None, None, ["a", "b", "c", "b", "c"]) == 3
|
||
|
assert logo.get_n_splits(groups=[1.0, 1.1, 1.0, 1.2]) == 3
|
||
|
assert lpgo_2.get_n_splits(None, None, np.arange(4)) == 6
|
||
|
assert lpgo_1.get_n_splits(groups=np.arange(4)) == 4
|
||
|
|
||
|
# raise ValueError if a `groups` parameter is illegal
|
||
|
with pytest.raises(ValueError):
|
||
|
logo.get_n_splits(None, None, [0.0, np.nan, 0.0])
|
||
|
with pytest.raises(ValueError):
|
||
|
lpgo_2.get_n_splits(None, None, [0.0, np.inf, 0.0])
|
||
|
|
||
|
msg = "The 'groups' parameter should not be None."
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
logo.get_n_splits(None, None, None)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
lpgo_1.get_n_splits(None, None, None)
|
||
|
|
||
|
|
||
|
def test_leave_group_out_changing_groups():
|
||
|
# Check that LeaveOneGroupOut and LeavePGroupsOut work normally if
|
||
|
# the groups variable is changed before calling split
|
||
|
groups = np.array([0, 1, 2, 1, 1, 2, 0, 0])
|
||
|
X = np.ones(len(groups))
|
||
|
groups_changing = np.array(groups, copy=True)
|
||
|
lolo = LeaveOneGroupOut().split(X, groups=groups)
|
||
|
lolo_changing = LeaveOneGroupOut().split(X, groups=groups)
|
||
|
lplo = LeavePGroupsOut(n_groups=2).split(X, groups=groups)
|
||
|
lplo_changing = LeavePGroupsOut(n_groups=2).split(X, groups=groups)
|
||
|
groups_changing[:] = 0
|
||
|
for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]:
|
||
|
for (train, test), (train_chan, test_chan) in zip(llo, llo_changing):
|
||
|
assert_array_equal(train, train_chan)
|
||
|
assert_array_equal(test, test_chan)
|
||
|
|
||
|
# n_splits = no of 2 (p) group combinations of the unique groups = 3C2 = 3
|
||
|
assert 3 == LeavePGroupsOut(n_groups=2).get_n_splits(X, y=X, groups=groups)
|
||
|
# n_splits = no of unique groups (C(uniq_lbls, 1) = n_unique_groups)
|
||
|
assert 3 == LeaveOneGroupOut().get_n_splits(X, y=X, groups=groups)
|
||
|
|
||
|
|
||
|
def test_leave_group_out_order_dependence():
|
||
|
# Check that LeaveOneGroupOut orders the splits according to the index
|
||
|
# of the group left out.
|
||
|
groups = np.array([2, 2, 0, 0, 1, 1])
|
||
|
X = np.ones(len(groups))
|
||
|
|
||
|
splits = iter(LeaveOneGroupOut().split(X, groups=groups))
|
||
|
|
||
|
expected_indices = [
|
||
|
([0, 1, 4, 5], [2, 3]),
|
||
|
([0, 1, 2, 3], [4, 5]),
|
||
|
([2, 3, 4, 5], [0, 1]),
|
||
|
]
|
||
|
|
||
|
for expected_train, expected_test in expected_indices:
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, expected_train)
|
||
|
assert_array_equal(test, expected_test)
|
||
|
|
||
|
|
||
|
def test_leave_one_p_group_out_error_on_fewer_number_of_groups():
|
||
|
X = y = groups = np.ones(0)
|
||
|
msg = re.escape("Found array with 0 sample(s)")
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
next(LeaveOneGroupOut().split(X, y, groups))
|
||
|
|
||
|
X = y = groups = np.ones(1)
|
||
|
msg = re.escape(
|
||
|
f"The groups parameter contains fewer than 2 unique groups ({groups})."
|
||
|
" LeaveOneGroupOut expects at least 2."
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
next(LeaveOneGroupOut().split(X, y, groups))
|
||
|
|
||
|
X = y = groups = np.ones(1)
|
||
|
msg = re.escape(
|
||
|
"The groups parameter contains fewer than (or equal to) n_groups "
|
||
|
f"(3) numbers of unique groups ({groups}). LeavePGroupsOut expects "
|
||
|
"that at least n_groups + 1 (4) unique groups "
|
||
|
"be present"
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
next(LeavePGroupsOut(n_groups=3).split(X, y, groups))
|
||
|
|
||
|
X = y = groups = np.arange(3)
|
||
|
msg = re.escape(
|
||
|
"The groups parameter contains fewer than (or equal to) n_groups "
|
||
|
f"(3) numbers of unique groups ({groups}). LeavePGroupsOut expects "
|
||
|
"that at least n_groups + 1 (4) unique groups "
|
||
|
"be present"
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
next(LeavePGroupsOut(n_groups=3).split(X, y, groups))
|
||
|
|
||
|
|
||
|
@ignore_warnings
|
||
|
def test_repeated_cv_value_errors():
|
||
|
# n_repeats is not integer or <= 0
|
||
|
for cv in (RepeatedKFold, RepeatedStratifiedKFold):
|
||
|
with pytest.raises(ValueError):
|
||
|
cv(n_repeats=0)
|
||
|
with pytest.raises(ValueError):
|
||
|
cv(n_repeats=1.5)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("RepeatedCV", [RepeatedKFold, RepeatedStratifiedKFold])
|
||
|
def test_repeated_cv_repr(RepeatedCV):
|
||
|
n_splits, n_repeats = 2, 6
|
||
|
repeated_cv = RepeatedCV(n_splits=n_splits, n_repeats=n_repeats)
|
||
|
repeated_cv_repr = "{}(n_repeats=6, n_splits=2, random_state=None)".format(
|
||
|
repeated_cv.__class__.__name__
|
||
|
)
|
||
|
assert repeated_cv_repr == repr(repeated_cv)
|
||
|
|
||
|
|
||
|
def test_repeated_kfold_determinstic_split():
|
||
|
X = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
|
||
|
random_state = 258173307
|
||
|
rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=random_state)
|
||
|
|
||
|
# split should produce same and deterministic splits on
|
||
|
# each call
|
||
|
for _ in range(3):
|
||
|
splits = rkf.split(X)
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [2, 4])
|
||
|
assert_array_equal(test, [0, 1, 3])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1, 3])
|
||
|
assert_array_equal(test, [2, 4])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1])
|
||
|
assert_array_equal(test, [2, 3, 4])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [2, 3, 4])
|
||
|
assert_array_equal(test, [0, 1])
|
||
|
|
||
|
with pytest.raises(StopIteration):
|
||
|
next(splits)
|
||
|
|
||
|
|
||
|
def test_get_n_splits_for_repeated_kfold():
|
||
|
n_splits = 3
|
||
|
n_repeats = 4
|
||
|
rkf = RepeatedKFold(n_splits=n_splits, n_repeats=n_repeats)
|
||
|
expected_n_splits = n_splits * n_repeats
|
||
|
assert expected_n_splits == rkf.get_n_splits()
|
||
|
|
||
|
|
||
|
def test_get_n_splits_for_repeated_stratified_kfold():
|
||
|
n_splits = 3
|
||
|
n_repeats = 4
|
||
|
rskf = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats)
|
||
|
expected_n_splits = n_splits * n_repeats
|
||
|
assert expected_n_splits == rskf.get_n_splits()
|
||
|
|
||
|
|
||
|
def test_repeated_stratified_kfold_determinstic_split():
|
||
|
X = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
|
||
|
y = [1, 1, 1, 0, 0]
|
||
|
random_state = 1944695409
|
||
|
rskf = RepeatedStratifiedKFold(n_splits=2, n_repeats=2, random_state=random_state)
|
||
|
|
||
|
# split should produce same and deterministic splits on
|
||
|
# each call
|
||
|
for _ in range(3):
|
||
|
splits = rskf.split(X, y)
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [1, 4])
|
||
|
assert_array_equal(test, [0, 2, 3])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 2, 3])
|
||
|
assert_array_equal(test, [1, 4])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [2, 3])
|
||
|
assert_array_equal(test, [0, 1, 4])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1, 4])
|
||
|
assert_array_equal(test, [2, 3])
|
||
|
|
||
|
with pytest.raises(StopIteration):
|
||
|
next(splits)
|
||
|
|
||
|
|
||
|
def test_train_test_split_errors():
|
||
|
pytest.raises(ValueError, train_test_split)
|
||
|
|
||
|
pytest.raises(ValueError, train_test_split, range(3), train_size=1.1)
|
||
|
|
||
|
pytest.raises(ValueError, train_test_split, range(3), test_size=0.6, train_size=0.6)
|
||
|
pytest.raises(
|
||
|
ValueError,
|
||
|
train_test_split,
|
||
|
range(3),
|
||
|
test_size=np.float32(0.6),
|
||
|
train_size=np.float32(0.6),
|
||
|
)
|
||
|
pytest.raises(ValueError, train_test_split, range(3), test_size="wrong_type")
|
||
|
pytest.raises(ValueError, train_test_split, range(3), test_size=2, train_size=4)
|
||
|
pytest.raises(TypeError, train_test_split, range(3), some_argument=1.1)
|
||
|
pytest.raises(ValueError, train_test_split, range(3), range(42))
|
||
|
pytest.raises(ValueError, train_test_split, range(10), shuffle=False, stratify=True)
|
||
|
|
||
|
with pytest.raises(
|
||
|
ValueError,
|
||
|
match=r"train_size=11 should be either positive and "
|
||
|
r"smaller than the number of samples 10 or a "
|
||
|
r"float in the \(0, 1\) range",
|
||
|
):
|
||
|
train_test_split(range(10), train_size=11, test_size=1)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"train_size, exp_train, exp_test", [(None, 7, 3), (8, 8, 2), (0.8, 8, 2)]
|
||
|
)
|
||
|
def test_train_test_split_default_test_size(train_size, exp_train, exp_test):
|
||
|
# Check that the default value has the expected behavior, i.e. complement
|
||
|
# train_size unless both are specified.
|
||
|
X_train, X_test = train_test_split(X, train_size=train_size)
|
||
|
|
||
|
assert len(X_train) == exp_train
|
||
|
assert len(X_test) == exp_test
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"array_namespace, device, dtype_name", yield_namespace_device_dtype_combinations()
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"shuffle,stratify",
|
||
|
(
|
||
|
(True, None),
|
||
|
(True, np.hstack((np.ones(6), np.zeros(4)))),
|
||
|
# stratification only works with shuffling
|
||
|
(False, None),
|
||
|
),
|
||
|
)
|
||
|
def test_array_api_train_test_split(
|
||
|
shuffle, stratify, array_namespace, device, dtype_name
|
||
|
):
|
||
|
xp = _array_api_for_tests(array_namespace, device)
|
||
|
|
||
|
X = np.arange(100).reshape((10, 10))
|
||
|
y = np.arange(10)
|
||
|
|
||
|
X_np = X.astype(dtype_name)
|
||
|
X_xp = xp.asarray(X_np, device=device)
|
||
|
|
||
|
y_np = y.astype(dtype_name)
|
||
|
y_xp = xp.asarray(y_np, device=device)
|
||
|
|
||
|
X_train_np, X_test_np, y_train_np, y_test_np = train_test_split(
|
||
|
X_np, y, random_state=0, shuffle=shuffle, stratify=stratify
|
||
|
)
|
||
|
with config_context(array_api_dispatch=True):
|
||
|
if stratify is not None:
|
||
|
stratify_xp = xp.asarray(stratify)
|
||
|
else:
|
||
|
stratify_xp = stratify
|
||
|
X_train_xp, X_test_xp, y_train_xp, y_test_xp = train_test_split(
|
||
|
X_xp, y_xp, shuffle=shuffle, stratify=stratify_xp, random_state=0
|
||
|
)
|
||
|
|
||
|
# Check that namespace is preserved, has to happen with
|
||
|
# array_api_dispatch enabled.
|
||
|
assert get_namespace(X_train_xp)[0] == get_namespace(X_xp)[0]
|
||
|
assert get_namespace(X_test_xp)[0] == get_namespace(X_xp)[0]
|
||
|
assert get_namespace(y_train_xp)[0] == get_namespace(y_xp)[0]
|
||
|
assert get_namespace(y_test_xp)[0] == get_namespace(y_xp)[0]
|
||
|
|
||
|
# Check device and dtype is preserved on output
|
||
|
assert array_api_device(X_train_xp) == array_api_device(X_xp)
|
||
|
assert array_api_device(y_train_xp) == array_api_device(y_xp)
|
||
|
assert array_api_device(X_test_xp) == array_api_device(X_xp)
|
||
|
assert array_api_device(y_test_xp) == array_api_device(y_xp)
|
||
|
|
||
|
assert X_train_xp.dtype == X_xp.dtype
|
||
|
assert y_train_xp.dtype == y_xp.dtype
|
||
|
assert X_test_xp.dtype == X_xp.dtype
|
||
|
assert y_test_xp.dtype == y_xp.dtype
|
||
|
|
||
|
assert_allclose(
|
||
|
_convert_to_numpy(X_train_xp, xp=xp),
|
||
|
X_train_np,
|
||
|
)
|
||
|
assert_allclose(
|
||
|
_convert_to_numpy(X_test_xp, xp=xp),
|
||
|
X_test_np,
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
|
||
|
def test_train_test_split(coo_container):
|
||
|
X = np.arange(100).reshape((10, 10))
|
||
|
X_s = coo_container(X)
|
||
|
y = np.arange(10)
|
||
|
|
||
|
# simple test
|
||
|
split = train_test_split(X, y, test_size=None, train_size=0.5)
|
||
|
X_train, X_test, y_train, y_test = split
|
||
|
assert len(y_test) == len(y_train)
|
||
|
# test correspondence of X and y
|
||
|
assert_array_equal(X_train[:, 0], y_train * 10)
|
||
|
assert_array_equal(X_test[:, 0], y_test * 10)
|
||
|
|
||
|
# don't convert lists to anything else by default
|
||
|
split = train_test_split(X, X_s, y.tolist())
|
||
|
X_train, X_test, X_s_train, X_s_test, y_train, y_test = split
|
||
|
assert isinstance(y_train, list)
|
||
|
assert isinstance(y_test, list)
|
||
|
|
||
|
# allow nd-arrays
|
||
|
X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2)
|
||
|
y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11)
|
||
|
split = train_test_split(X_4d, y_3d)
|
||
|
assert split[0].shape == (7, 5, 3, 2)
|
||
|
assert split[1].shape == (3, 5, 3, 2)
|
||
|
assert split[2].shape == (7, 7, 11)
|
||
|
assert split[3].shape == (3, 7, 11)
|
||
|
|
||
|
# test stratification option
|
||
|
y = np.array([1, 1, 1, 1, 2, 2, 2, 2])
|
||
|
for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]):
|
||
|
train, test = train_test_split(
|
||
|
y, test_size=test_size, stratify=y, random_state=0
|
||
|
)
|
||
|
assert len(test) == exp_test_size
|
||
|
assert len(test) + len(train) == len(y)
|
||
|
# check the 1:1 ratio of ones and twos in the data is preserved
|
||
|
assert np.sum(train == 1) == np.sum(train == 2)
|
||
|
|
||
|
# test unshuffled split
|
||
|
y = np.arange(10)
|
||
|
for test_size in [2, 0.2]:
|
||
|
train, test = train_test_split(y, shuffle=False, test_size=test_size)
|
||
|
assert_array_equal(test, [8, 9])
|
||
|
assert_array_equal(train, [0, 1, 2, 3, 4, 5, 6, 7])
|
||
|
|
||
|
|
||
|
def test_train_test_split_32bit_overflow():
|
||
|
"""Check for integer overflow on 32-bit platforms.
|
||
|
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/20774
|
||
|
"""
|
||
|
|
||
|
# A number 'n' big enough for expression 'n * n * train_size' to cause
|
||
|
# an overflow for signed 32-bit integer
|
||
|
big_number = 100000
|
||
|
|
||
|
# Definition of 'y' is a part of reproduction - population for at least
|
||
|
# one class should be in the same order of magnitude as size of X
|
||
|
X = np.arange(big_number)
|
||
|
y = X > (0.99 * big_number)
|
||
|
|
||
|
split = train_test_split(X, y, stratify=y, train_size=0.25)
|
||
|
X_train, X_test, y_train, y_test = split
|
||
|
|
||
|
assert X_train.size + X_test.size == big_number
|
||
|
assert y_train.size + y_test.size == big_number
|
||
|
|
||
|
|
||
|
@ignore_warnings
|
||
|
def test_train_test_split_pandas():
|
||
|
# check train_test_split doesn't destroy pandas dataframe
|
||
|
types = [MockDataFrame]
|
||
|
try:
|
||
|
from pandas import DataFrame
|
||
|
|
||
|
types.append(DataFrame)
|
||
|
except ImportError:
|
||
|
pass
|
||
|
for InputFeatureType in types:
|
||
|
# X dataframe
|
||
|
X_df = InputFeatureType(X)
|
||
|
X_train, X_test = train_test_split(X_df)
|
||
|
assert isinstance(X_train, InputFeatureType)
|
||
|
assert isinstance(X_test, InputFeatureType)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"sparse_container", COO_CONTAINERS + CSC_CONTAINERS + CSR_CONTAINERS
|
||
|
)
|
||
|
def test_train_test_split_sparse(sparse_container):
|
||
|
# check that train_test_split converts scipy sparse matrices
|
||
|
# to csr, as stated in the documentation
|
||
|
X = np.arange(100).reshape((10, 10))
|
||
|
X_s = sparse_container(X)
|
||
|
X_train, X_test = train_test_split(X_s)
|
||
|
assert issparse(X_train) and X_train.format == "csr"
|
||
|
assert issparse(X_test) and X_test.format == "csr"
|
||
|
|
||
|
|
||
|
def test_train_test_split_mock_pandas():
|
||
|
# X mock dataframe
|
||
|
X_df = MockDataFrame(X)
|
||
|
X_train, X_test = train_test_split(X_df)
|
||
|
assert isinstance(X_train, MockDataFrame)
|
||
|
assert isinstance(X_test, MockDataFrame)
|
||
|
X_train_arr, X_test_arr = train_test_split(X_df)
|
||
|
|
||
|
|
||
|
def test_train_test_split_list_input():
|
||
|
# Check that when y is a list / list of string labels, it works.
|
||
|
X = np.ones(7)
|
||
|
y1 = ["1"] * 4 + ["0"] * 3
|
||
|
y2 = np.hstack((np.ones(4), np.zeros(3)))
|
||
|
y3 = y2.tolist()
|
||
|
|
||
|
for stratify in (True, False):
|
||
|
X_train1, X_test1, y_train1, y_test1 = train_test_split(
|
||
|
X, y1, stratify=y1 if stratify else None, random_state=0
|
||
|
)
|
||
|
X_train2, X_test2, y_train2, y_test2 = train_test_split(
|
||
|
X, y2, stratify=y2 if stratify else None, random_state=0
|
||
|
)
|
||
|
X_train3, X_test3, y_train3, y_test3 = train_test_split(
|
||
|
X, y3, stratify=y3 if stratify else None, random_state=0
|
||
|
)
|
||
|
|
||
|
np.testing.assert_equal(X_train1, X_train2)
|
||
|
np.testing.assert_equal(y_train2, y_train3)
|
||
|
np.testing.assert_equal(X_test1, X_test3)
|
||
|
np.testing.assert_equal(y_test3, y_test2)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"test_size, train_size",
|
||
|
[(2.0, None), (1.0, None), (0.1, 0.95), (None, 1j), (11, None), (10, None), (8, 3)],
|
||
|
)
|
||
|
def test_shufflesplit_errors(test_size, train_size):
|
||
|
with pytest.raises(ValueError):
|
||
|
next(ShuffleSplit(test_size=test_size, train_size=train_size).split(X))
|
||
|
|
||
|
|
||
|
def test_shufflesplit_reproducible():
|
||
|
# Check that iterating twice on the ShuffleSplit gives the same
|
||
|
# sequence of train-test when the random_state is given
|
||
|
ss = ShuffleSplit(random_state=21)
|
||
|
assert_array_equal([a for a, b in ss.split(X)], [a for a, b in ss.split(X)])
|
||
|
|
||
|
|
||
|
def test_stratifiedshufflesplit_list_input():
|
||
|
# Check that when y is a list / list of string labels, it works.
|
||
|
sss = StratifiedShuffleSplit(test_size=2, random_state=42)
|
||
|
X = np.ones(7)
|
||
|
y1 = ["1"] * 4 + ["0"] * 3
|
||
|
y2 = np.hstack((np.ones(4), np.zeros(3)))
|
||
|
y3 = y2.tolist()
|
||
|
|
||
|
np.testing.assert_equal(list(sss.split(X, y1)), list(sss.split(X, y2)))
|
||
|
np.testing.assert_equal(list(sss.split(X, y3)), list(sss.split(X, y2)))
|
||
|
|
||
|
|
||
|
def test_train_test_split_allow_nans():
|
||
|
# Check that train_test_split allows input data with NaNs
|
||
|
X = np.arange(200, dtype=np.float64).reshape(10, -1)
|
||
|
X[2, :] = np.nan
|
||
|
y = np.repeat([0, 1], X.shape[0] / 2)
|
||
|
train_test_split(X, y, test_size=0.2, random_state=42)
|
||
|
|
||
|
|
||
|
def test_check_cv():
|
||
|
X = np.ones(9)
|
||
|
cv = check_cv(3, classifier=False)
|
||
|
# Use numpy.testing.assert_equal which recursively compares
|
||
|
# lists of lists
|
||
|
np.testing.assert_equal(list(KFold(3).split(X)), list(cv.split(X)))
|
||
|
|
||
|
y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1])
|
||
|
cv = check_cv(3, y_binary, classifier=True)
|
||
|
np.testing.assert_equal(
|
||
|
list(StratifiedKFold(3).split(X, y_binary)), list(cv.split(X, y_binary))
|
||
|
)
|
||
|
|
||
|
y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2])
|
||
|
cv = check_cv(3, y_multiclass, classifier=True)
|
||
|
np.testing.assert_equal(
|
||
|
list(StratifiedKFold(3).split(X, y_multiclass)), list(cv.split(X, y_multiclass))
|
||
|
)
|
||
|
# also works with 2d multiclass
|
||
|
y_multiclass_2d = y_multiclass.reshape(-1, 1)
|
||
|
cv = check_cv(3, y_multiclass_2d, classifier=True)
|
||
|
np.testing.assert_equal(
|
||
|
list(StratifiedKFold(3).split(X, y_multiclass_2d)),
|
||
|
list(cv.split(X, y_multiclass_2d)),
|
||
|
)
|
||
|
|
||
|
assert not np.all(
|
||
|
next(StratifiedKFold(3).split(X, y_multiclass_2d))[0]
|
||
|
== next(KFold(3).split(X, y_multiclass_2d))[0]
|
||
|
)
|
||
|
|
||
|
X = np.ones(5)
|
||
|
y_multilabel = np.array(
|
||
|
[[0, 0, 0, 0], [0, 1, 1, 0], [0, 0, 0, 1], [1, 1, 0, 1], [0, 0, 1, 0]]
|
||
|
)
|
||
|
cv = check_cv(3, y_multilabel, classifier=True)
|
||
|
np.testing.assert_equal(list(KFold(3).split(X)), list(cv.split(X)))
|
||
|
|
||
|
y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]])
|
||
|
cv = check_cv(3, y_multioutput, classifier=True)
|
||
|
np.testing.assert_equal(list(KFold(3).split(X)), list(cv.split(X)))
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
check_cv(cv="lolo")
|
||
|
|
||
|
|
||
|
def test_cv_iterable_wrapper():
|
||
|
kf_iter = KFold().split(X, y)
|
||
|
kf_iter_wrapped = check_cv(kf_iter)
|
||
|
# Since the wrapped iterable is enlisted and stored,
|
||
|
# split can be called any number of times to produce
|
||
|
# consistent results.
|
||
|
np.testing.assert_equal(
|
||
|
list(kf_iter_wrapped.split(X, y)), list(kf_iter_wrapped.split(X, y))
|
||
|
)
|
||
|
# If the splits are randomized, successive calls to split yields different
|
||
|
# results
|
||
|
kf_randomized_iter = KFold(shuffle=True, random_state=0).split(X, y)
|
||
|
kf_randomized_iter_wrapped = check_cv(kf_randomized_iter)
|
||
|
# numpy's assert_array_equal properly compares nested lists
|
||
|
np.testing.assert_equal(
|
||
|
list(kf_randomized_iter_wrapped.split(X, y)),
|
||
|
list(kf_randomized_iter_wrapped.split(X, y)),
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
splits_are_equal = True
|
||
|
np.testing.assert_equal(
|
||
|
list(kf_iter_wrapped.split(X, y)),
|
||
|
list(kf_randomized_iter_wrapped.split(X, y)),
|
||
|
)
|
||
|
except AssertionError:
|
||
|
splits_are_equal = False
|
||
|
assert not splits_are_equal, (
|
||
|
"If the splits are randomized, "
|
||
|
"successive calls to split should yield different results"
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("kfold", [GroupKFold, StratifiedGroupKFold])
|
||
|
def test_group_kfold(kfold):
|
||
|
rng = np.random.RandomState(0)
|
||
|
|
||
|
# Parameters of the test
|
||
|
n_groups = 15
|
||
|
n_samples = 1000
|
||
|
n_splits = 5
|
||
|
|
||
|
X = y = np.ones(n_samples)
|
||
|
|
||
|
# Construct the test data
|
||
|
tolerance = 0.05 * n_samples # 5 percent error allowed
|
||
|
groups = rng.randint(0, n_groups, n_samples)
|
||
|
|
||
|
ideal_n_groups_per_fold = n_samples // n_splits
|
||
|
|
||
|
len(np.unique(groups))
|
||
|
# Get the test fold indices from the test set indices of each fold
|
||
|
folds = np.zeros(n_samples)
|
||
|
lkf = kfold(n_splits=n_splits)
|
||
|
for i, (_, test) in enumerate(lkf.split(X, y, groups)):
|
||
|
folds[test] = i
|
||
|
|
||
|
# Check that folds have approximately the same size
|
||
|
assert len(folds) == len(groups)
|
||
|
for i in np.unique(folds):
|
||
|
assert tolerance >= abs(sum(folds == i) - ideal_n_groups_per_fold)
|
||
|
|
||
|
# Check that each group appears only in 1 fold
|
||
|
for group in np.unique(groups):
|
||
|
assert len(np.unique(folds[groups == group])) == 1
|
||
|
|
||
|
# Check that no group is on both sides of the split
|
||
|
groups = np.asarray(groups, dtype=object)
|
||
|
for train, test in lkf.split(X, y, groups):
|
||
|
assert len(np.intersect1d(groups[train], groups[test])) == 0
|
||
|
|
||
|
# Construct the test data
|
||
|
groups = np.array(
|
||
|
[
|
||
|
"Albert",
|
||
|
"Jean",
|
||
|
"Bertrand",
|
||
|
"Michel",
|
||
|
"Jean",
|
||
|
"Francis",
|
||
|
"Robert",
|
||
|
"Michel",
|
||
|
"Rachel",
|
||
|
"Lois",
|
||
|
"Michelle",
|
||
|
"Bernard",
|
||
|
"Marion",
|
||
|
"Laura",
|
||
|
"Jean",
|
||
|
"Rachel",
|
||
|
"Franck",
|
||
|
"John",
|
||
|
"Gael",
|
||
|
"Anna",
|
||
|
"Alix",
|
||
|
"Robert",
|
||
|
"Marion",
|
||
|
"David",
|
||
|
"Tony",
|
||
|
"Abel",
|
||
|
"Becky",
|
||
|
"Madmood",
|
||
|
"Cary",
|
||
|
"Mary",
|
||
|
"Alexandre",
|
||
|
"David",
|
||
|
"Francis",
|
||
|
"Barack",
|
||
|
"Abdoul",
|
||
|
"Rasha",
|
||
|
"Xi",
|
||
|
"Silvia",
|
||
|
]
|
||
|
)
|
||
|
|
||
|
n_groups = len(np.unique(groups))
|
||
|
n_samples = len(groups)
|
||
|
n_splits = 5
|
||
|
tolerance = 0.05 * n_samples # 5 percent error allowed
|
||
|
ideal_n_groups_per_fold = n_samples // n_splits
|
||
|
|
||
|
X = y = np.ones(n_samples)
|
||
|
|
||
|
# Get the test fold indices from the test set indices of each fold
|
||
|
folds = np.zeros(n_samples)
|
||
|
for i, (_, test) in enumerate(lkf.split(X, y, groups)):
|
||
|
folds[test] = i
|
||
|
|
||
|
# Check that folds have approximately the same size
|
||
|
assert len(folds) == len(groups)
|
||
|
for i in np.unique(folds):
|
||
|
assert tolerance >= abs(sum(folds == i) - ideal_n_groups_per_fold)
|
||
|
|
||
|
# Check that each group appears only in 1 fold
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("ignore", FutureWarning)
|
||
|
for group in np.unique(groups):
|
||
|
assert len(np.unique(folds[groups == group])) == 1
|
||
|
|
||
|
# Check that no group is on both sides of the split
|
||
|
groups = np.asarray(groups, dtype=object)
|
||
|
for train, test in lkf.split(X, y, groups):
|
||
|
assert len(np.intersect1d(groups[train], groups[test])) == 0
|
||
|
|
||
|
# groups can also be a list
|
||
|
cv_iter = list(lkf.split(X, y, groups.tolist()))
|
||
|
for (train1, test1), (train2, test2) in zip(lkf.split(X, y, groups), cv_iter):
|
||
|
assert_array_equal(train1, train2)
|
||
|
assert_array_equal(test1, test2)
|
||
|
|
||
|
# Should fail if there are more folds than groups
|
||
|
groups = np.array([1, 1, 1, 2, 2])
|
||
|
X = y = np.ones(len(groups))
|
||
|
with pytest.raises(ValueError, match="Cannot have number of splits.*greater"):
|
||
|
next(GroupKFold(n_splits=3).split(X, y, groups))
|
||
|
|
||
|
|
||
|
def test_time_series_cv():
|
||
|
X = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14]]
|
||
|
|
||
|
# Should fail if there are more folds than samples
|
||
|
with pytest.raises(ValueError, match="Cannot have number of folds.*greater"):
|
||
|
next(TimeSeriesSplit(n_splits=7).split(X))
|
||
|
|
||
|
tscv = TimeSeriesSplit(2)
|
||
|
|
||
|
# Manually check that Time Series CV preserves the data
|
||
|
# ordering on toy datasets
|
||
|
splits = tscv.split(X[:-1])
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1])
|
||
|
assert_array_equal(test, [2, 3])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1, 2, 3])
|
||
|
assert_array_equal(test, [4, 5])
|
||
|
|
||
|
splits = TimeSeriesSplit(2).split(X)
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1, 2])
|
||
|
assert_array_equal(test, [3, 4])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1, 2, 3, 4])
|
||
|
assert_array_equal(test, [5, 6])
|
||
|
|
||
|
# Check get_n_splits returns the correct number of splits
|
||
|
splits = TimeSeriesSplit(2).split(X)
|
||
|
n_splits_actual = len(list(splits))
|
||
|
assert n_splits_actual == tscv.get_n_splits()
|
||
|
assert n_splits_actual == 2
|
||
|
|
||
|
|
||
|
def _check_time_series_max_train_size(splits, check_splits, max_train_size):
|
||
|
for (train, test), (check_train, check_test) in zip(splits, check_splits):
|
||
|
assert_array_equal(test, check_test)
|
||
|
assert len(check_train) <= max_train_size
|
||
|
suffix_start = max(len(train) - max_train_size, 0)
|
||
|
assert_array_equal(check_train, train[suffix_start:])
|
||
|
|
||
|
|
||
|
def test_time_series_max_train_size():
|
||
|
X = np.zeros((6, 1))
|
||
|
splits = TimeSeriesSplit(n_splits=3).split(X)
|
||
|
check_splits = TimeSeriesSplit(n_splits=3, max_train_size=3).split(X)
|
||
|
_check_time_series_max_train_size(splits, check_splits, max_train_size=3)
|
||
|
|
||
|
# Test for the case where the size of a fold is greater than max_train_size
|
||
|
check_splits = TimeSeriesSplit(n_splits=3, max_train_size=2).split(X)
|
||
|
_check_time_series_max_train_size(splits, check_splits, max_train_size=2)
|
||
|
|
||
|
# Test for the case where the size of each fold is less than max_train_size
|
||
|
check_splits = TimeSeriesSplit(n_splits=3, max_train_size=5).split(X)
|
||
|
_check_time_series_max_train_size(splits, check_splits, max_train_size=2)
|
||
|
|
||
|
|
||
|
def test_time_series_test_size():
|
||
|
X = np.zeros((10, 1))
|
||
|
|
||
|
# Test alone
|
||
|
splits = TimeSeriesSplit(n_splits=3, test_size=3).split(X)
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0])
|
||
|
assert_array_equal(test, [1, 2, 3])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1, 2, 3])
|
||
|
assert_array_equal(test, [4, 5, 6])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1, 2, 3, 4, 5, 6])
|
||
|
assert_array_equal(test, [7, 8, 9])
|
||
|
|
||
|
# Test with max_train_size
|
||
|
splits = TimeSeriesSplit(n_splits=2, test_size=2, max_train_size=4).split(X)
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [2, 3, 4, 5])
|
||
|
assert_array_equal(test, [6, 7])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [4, 5, 6, 7])
|
||
|
assert_array_equal(test, [8, 9])
|
||
|
|
||
|
# Should fail with not enough data points for configuration
|
||
|
with pytest.raises(ValueError, match="Too many splits.*with test_size"):
|
||
|
splits = TimeSeriesSplit(n_splits=5, test_size=2).split(X)
|
||
|
next(splits)
|
||
|
|
||
|
|
||
|
def test_time_series_gap():
|
||
|
X = np.zeros((10, 1))
|
||
|
|
||
|
# Test alone
|
||
|
splits = TimeSeriesSplit(n_splits=2, gap=2).split(X)
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1])
|
||
|
assert_array_equal(test, [4, 5, 6])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1, 2, 3, 4])
|
||
|
assert_array_equal(test, [7, 8, 9])
|
||
|
|
||
|
# Test with max_train_size
|
||
|
splits = TimeSeriesSplit(n_splits=3, gap=2, max_train_size=2).split(X)
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1])
|
||
|
assert_array_equal(test, [4, 5])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [2, 3])
|
||
|
assert_array_equal(test, [6, 7])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [4, 5])
|
||
|
assert_array_equal(test, [8, 9])
|
||
|
|
||
|
# Test with test_size
|
||
|
splits = TimeSeriesSplit(n_splits=2, gap=2, max_train_size=4, test_size=2).split(X)
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1, 2, 3])
|
||
|
assert_array_equal(test, [6, 7])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [2, 3, 4, 5])
|
||
|
assert_array_equal(test, [8, 9])
|
||
|
|
||
|
# Test with additional test_size
|
||
|
splits = TimeSeriesSplit(n_splits=2, gap=2, test_size=3).split(X)
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1])
|
||
|
assert_array_equal(test, [4, 5, 6])
|
||
|
|
||
|
train, test = next(splits)
|
||
|
assert_array_equal(train, [0, 1, 2, 3, 4])
|
||
|
assert_array_equal(test, [7, 8, 9])
|
||
|
|
||
|
# Verify proper error is thrown
|
||
|
with pytest.raises(ValueError, match="Too many splits.*and gap"):
|
||
|
splits = TimeSeriesSplit(n_splits=4, gap=2).split(X)
|
||
|
next(splits)
|
||
|
|
||
|
|
||
|
@ignore_warnings
|
||
|
def test_nested_cv():
|
||
|
# Test if nested cross validation works with different combinations of cv
|
||
|
rng = np.random.RandomState(0)
|
||
|
|
||
|
X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
|
||
|
groups = rng.randint(0, 5, 15)
|
||
|
|
||
|
cvs = [
|
||
|
LeaveOneGroupOut(),
|
||
|
StratifiedKFold(n_splits=2),
|
||
|
LeaveOneOut(),
|
||
|
GroupKFold(n_splits=3),
|
||
|
StratifiedKFold(),
|
||
|
StratifiedGroupKFold(),
|
||
|
StratifiedShuffleSplit(n_splits=3, random_state=0),
|
||
|
]
|
||
|
|
||
|
for inner_cv, outer_cv in combinations_with_replacement(cvs, 2):
|
||
|
gs = GridSearchCV(
|
||
|
DummyClassifier(),
|
||
|
param_grid={"strategy": ["stratified", "most_frequent"]},
|
||
|
cv=inner_cv,
|
||
|
error_score="raise",
|
||
|
)
|
||
|
cross_val_score(
|
||
|
gs, X=X, y=y, groups=groups, cv=outer_cv, params={"groups": groups}
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_build_repr():
|
||
|
class MockSplitter:
|
||
|
def __init__(self, a, b=0, c=None):
|
||
|
self.a = a
|
||
|
self.b = b
|
||
|
self.c = c
|
||
|
|
||
|
def __repr__(self):
|
||
|
return _build_repr(self)
|
||
|
|
||
|
assert repr(MockSplitter(5, 6)) == "MockSplitter(a=5, b=6, c=None)"
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"CVSplitter", (ShuffleSplit, GroupShuffleSplit, StratifiedShuffleSplit)
|
||
|
)
|
||
|
def test_shuffle_split_empty_trainset(CVSplitter):
|
||
|
cv = CVSplitter(test_size=0.99)
|
||
|
X, y = [[1]], [0] # 1 sample
|
||
|
with pytest.raises(
|
||
|
ValueError,
|
||
|
match=(
|
||
|
"With n_samples=1, test_size=0.99 and train_size=None, "
|
||
|
"the resulting train set will be empty"
|
||
|
),
|
||
|
):
|
||
|
next(_split(cv, X, y, groups=[1]))
|
||
|
|
||
|
|
||
|
def test_train_test_split_empty_trainset():
|
||
|
(X,) = [[1]] # 1 sample
|
||
|
with pytest.raises(
|
||
|
ValueError,
|
||
|
match=(
|
||
|
"With n_samples=1, test_size=0.99 and train_size=None, "
|
||
|
"the resulting train set will be empty"
|
||
|
),
|
||
|
):
|
||
|
train_test_split(X, test_size=0.99)
|
||
|
|
||
|
X = [[1], [1], [1]] # 3 samples, ask for more than 2 thirds
|
||
|
with pytest.raises(
|
||
|
ValueError,
|
||
|
match=(
|
||
|
"With n_samples=3, test_size=0.67 and train_size=None, "
|
||
|
"the resulting train set will be empty"
|
||
|
),
|
||
|
):
|
||
|
train_test_split(X, test_size=0.67)
|
||
|
|
||
|
|
||
|
def test_leave_one_out_empty_trainset():
|
||
|
# LeaveOneGroup out expect at least 2 groups so no need to check
|
||
|
cv = LeaveOneOut()
|
||
|
X, y = [[1]], [0] # 1 sample
|
||
|
with pytest.raises(ValueError, match="Cannot perform LeaveOneOut with n_samples=1"):
|
||
|
next(cv.split(X, y))
|
||
|
|
||
|
|
||
|
def test_leave_p_out_empty_trainset():
|
||
|
# No need to check LeavePGroupsOut
|
||
|
cv = LeavePOut(p=2)
|
||
|
X, y = [[1], [2]], [0, 3] # 2 samples
|
||
|
with pytest.raises(
|
||
|
ValueError, match="p=2 must be strictly less than the number of samples=2"
|
||
|
):
|
||
|
next(cv.split(X, y))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("Klass", (KFold, StratifiedKFold, StratifiedGroupKFold))
|
||
|
def test_random_state_shuffle_false(Klass):
|
||
|
# passing a non-default random_state when shuffle=False makes no sense
|
||
|
with pytest.raises(ValueError, match="has no effect since shuffle is False"):
|
||
|
Klass(3, shuffle=False, random_state=0)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"cv, expected",
|
||
|
[
|
||
|
(KFold(), True),
|
||
|
(KFold(shuffle=True, random_state=123), True),
|
||
|
(StratifiedKFold(), True),
|
||
|
(StratifiedKFold(shuffle=True, random_state=123), True),
|
||
|
(StratifiedGroupKFold(shuffle=True, random_state=123), True),
|
||
|
(StratifiedGroupKFold(), True),
|
||
|
(RepeatedKFold(random_state=123), True),
|
||
|
(RepeatedStratifiedKFold(random_state=123), True),
|
||
|
(ShuffleSplit(random_state=123), True),
|
||
|
(GroupShuffleSplit(random_state=123), True),
|
||
|
(StratifiedShuffleSplit(random_state=123), True),
|
||
|
(GroupKFold(), True),
|
||
|
(TimeSeriesSplit(), True),
|
||
|
(LeaveOneOut(), True),
|
||
|
(LeaveOneGroupOut(), True),
|
||
|
(LeavePGroupsOut(n_groups=2), True),
|
||
|
(LeavePOut(p=2), True),
|
||
|
(KFold(shuffle=True, random_state=None), False),
|
||
|
(KFold(shuffle=True, random_state=None), False),
|
||
|
(StratifiedKFold(shuffle=True, random_state=np.random.RandomState(0)), False),
|
||
|
(StratifiedKFold(shuffle=True, random_state=np.random.RandomState(0)), False),
|
||
|
(RepeatedKFold(random_state=None), False),
|
||
|
(RepeatedKFold(random_state=np.random.RandomState(0)), False),
|
||
|
(RepeatedStratifiedKFold(random_state=None), False),
|
||
|
(RepeatedStratifiedKFold(random_state=np.random.RandomState(0)), False),
|
||
|
(ShuffleSplit(random_state=None), False),
|
||
|
(ShuffleSplit(random_state=np.random.RandomState(0)), False),
|
||
|
(GroupShuffleSplit(random_state=None), False),
|
||
|
(GroupShuffleSplit(random_state=np.random.RandomState(0)), False),
|
||
|
(StratifiedShuffleSplit(random_state=None), False),
|
||
|
(StratifiedShuffleSplit(random_state=np.random.RandomState(0)), False),
|
||
|
],
|
||
|
)
|
||
|
def test_yields_constant_splits(cv, expected):
|
||
|
assert _yields_constant_splits(cv) == expected
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("cv", ALL_SPLITTERS, ids=[str(cv) for cv in ALL_SPLITTERS])
|
||
|
def test_splitter_get_metadata_routing(cv):
|
||
|
"""Check get_metadata_routing returns the correct MetadataRouter."""
|
||
|
assert hasattr(cv, "get_metadata_routing")
|
||
|
metadata = cv.get_metadata_routing()
|
||
|
if cv in GROUP_SPLITTERS:
|
||
|
assert metadata.split.requests["groups"] is True
|
||
|
elif cv in NO_GROUP_SPLITTERS:
|
||
|
assert not metadata.split.requests
|
||
|
|
||
|
assert_request_is_empty(metadata, exclude=["split"])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("cv", ALL_SPLITTERS, ids=[str(cv) for cv in ALL_SPLITTERS])
|
||
|
def test_splitter_set_split_request(cv):
|
||
|
"""Check set_split_request is defined for group splitters and not for others."""
|
||
|
if cv in GROUP_SPLITTERS:
|
||
|
assert hasattr(cv, "set_split_request")
|
||
|
elif cv in NO_GROUP_SPLITTERS:
|
||
|
assert not hasattr(cv, "set_split_request")
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("cv", NO_GROUP_SPLITTERS, ids=str)
|
||
|
def test_no_group_splitters_warns_with_groups(cv):
|
||
|
msg = f"The groups parameter is ignored by {cv.__class__.__name__}"
|
||
|
|
||
|
n_samples = 30
|
||
|
rng = np.random.RandomState(1)
|
||
|
X = rng.randint(0, 3, size=(n_samples, 2))
|
||
|
y = rng.randint(0, 3, size=(n_samples,))
|
||
|
groups = rng.randint(0, 3, size=(n_samples,))
|
||
|
|
||
|
with pytest.warns(UserWarning, match=msg):
|
||
|
cv.split(X, y, groups=groups)
|