96 lines
3.2 KiB
Python
96 lines
3.2 KiB
Python
|
"""Determination of parameter bounds"""
|
||
|
|
||
|
# Author: Paolo Losi
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
from numbers import Real
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from ..preprocessing import LabelBinarizer
|
||
|
from ..utils._param_validation import Interval, StrOptions, validate_params
|
||
|
from ..utils.extmath import safe_sparse_dot
|
||
|
from ..utils.validation import check_array, check_consistent_length
|
||
|
|
||
|
|
||
|
@validate_params(
|
||
|
{
|
||
|
"X": ["array-like", "sparse matrix"],
|
||
|
"y": ["array-like"],
|
||
|
"loss": [StrOptions({"squared_hinge", "log"})],
|
||
|
"fit_intercept": ["boolean"],
|
||
|
"intercept_scaling": [Interval(Real, 0, None, closed="neither")],
|
||
|
},
|
||
|
prefer_skip_nested_validation=True,
|
||
|
)
|
||
|
def l1_min_c(X, y, *, loss="squared_hinge", fit_intercept=True, intercept_scaling=1.0):
|
||
|
"""Return the lowest bound for C.
|
||
|
|
||
|
The lower bound for C is computed such that for C in (l1_min_C, infinity)
|
||
|
the model is guaranteed not to be empty. This applies to l1 penalized
|
||
|
classifiers, such as LinearSVC with penalty='l1' and
|
||
|
linear_model.LogisticRegression with penalty='l1'.
|
||
|
|
||
|
This value is valid if class_weight parameter in fit() is not set.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
Training vector, where `n_samples` is the number of samples and
|
||
|
`n_features` is the number of features.
|
||
|
|
||
|
y : array-like of shape (n_samples,)
|
||
|
Target vector relative to X.
|
||
|
|
||
|
loss : {'squared_hinge', 'log'}, default='squared_hinge'
|
||
|
Specifies the loss function.
|
||
|
With 'squared_hinge' it is the squared hinge loss (a.k.a. L2 loss).
|
||
|
With 'log' it is the loss of logistic regression models.
|
||
|
|
||
|
fit_intercept : bool, default=True
|
||
|
Specifies if the intercept should be fitted by the model.
|
||
|
It must match the fit() method parameter.
|
||
|
|
||
|
intercept_scaling : float, default=1.0
|
||
|
When fit_intercept is True, instance vector x becomes
|
||
|
[x, intercept_scaling],
|
||
|
i.e. a "synthetic" feature with constant value equals to
|
||
|
intercept_scaling is appended to the instance vector.
|
||
|
It must match the fit() method parameter.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
l1_min_c : float
|
||
|
Minimum value for C.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.svm import l1_min_c
|
||
|
>>> from sklearn.datasets import make_classification
|
||
|
>>> X, y = make_classification(n_samples=100, n_features=20, random_state=42)
|
||
|
>>> print(f"{l1_min_c(X, y, loss='squared_hinge', fit_intercept=True):.4f}")
|
||
|
0.0044
|
||
|
"""
|
||
|
|
||
|
X = check_array(X, accept_sparse="csc")
|
||
|
check_consistent_length(X, y)
|
||
|
|
||
|
Y = LabelBinarizer(neg_label=-1).fit_transform(y).T
|
||
|
# maximum absolute value over classes and features
|
||
|
den = np.max(np.abs(safe_sparse_dot(Y, X)))
|
||
|
if fit_intercept:
|
||
|
bias = np.full(
|
||
|
(np.size(y), 1), intercept_scaling, dtype=np.array(intercept_scaling).dtype
|
||
|
)
|
||
|
den = max(den, abs(np.dot(Y, bias)).max())
|
||
|
|
||
|
if den == 0.0:
|
||
|
raise ValueError(
|
||
|
"Ill-posed l1_min_c calculation: l1 will always "
|
||
|
"select zero coefficients for this data"
|
||
|
)
|
||
|
if loss == "squared_hinge":
|
||
|
return 0.5 / den
|
||
|
else: # loss == 'log':
|
||
|
return 2.0 / den
|