585 lines
19 KiB
Python
585 lines
19 KiB
Python
|
import functools
|
||
|
import warnings
|
||
|
from typing import Any, List
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
import scipy.sparse as sp
|
||
|
|
||
|
from sklearn.exceptions import DataDimensionalityWarning, NotFittedError
|
||
|
from sklearn.metrics import euclidean_distances
|
||
|
from sklearn.random_projection import (
|
||
|
GaussianRandomProjection,
|
||
|
SparseRandomProjection,
|
||
|
_gaussian_random_matrix,
|
||
|
_sparse_random_matrix,
|
||
|
johnson_lindenstrauss_min_dim,
|
||
|
)
|
||
|
from sklearn.utils._testing import (
|
||
|
assert_allclose,
|
||
|
assert_allclose_dense_sparse,
|
||
|
assert_almost_equal,
|
||
|
assert_array_almost_equal,
|
||
|
assert_array_equal,
|
||
|
)
|
||
|
from sklearn.utils.fixes import COO_CONTAINERS
|
||
|
|
||
|
all_sparse_random_matrix: List[Any] = [_sparse_random_matrix]
|
||
|
all_dense_random_matrix: List[Any] = [_gaussian_random_matrix]
|
||
|
all_random_matrix = all_sparse_random_matrix + all_dense_random_matrix
|
||
|
|
||
|
all_SparseRandomProjection: List[Any] = [SparseRandomProjection]
|
||
|
all_DenseRandomProjection: List[Any] = [GaussianRandomProjection]
|
||
|
all_RandomProjection = all_SparseRandomProjection + all_DenseRandomProjection
|
||
|
|
||
|
|
||
|
def make_sparse_random_data(
|
||
|
coo_container,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
n_nonzeros,
|
||
|
random_state=None,
|
||
|
sparse_format="csr",
|
||
|
):
|
||
|
"""Make some random data with uniformly located non zero entries with
|
||
|
Gaussian distributed values; `sparse_format` can be `"csr"` (default) or
|
||
|
`None` (in which case a dense array is returned).
|
||
|
"""
|
||
|
rng = np.random.RandomState(random_state)
|
||
|
data_coo = coo_container(
|
||
|
(
|
||
|
rng.randn(n_nonzeros),
|
||
|
(
|
||
|
rng.randint(n_samples, size=n_nonzeros),
|
||
|
rng.randint(n_features, size=n_nonzeros),
|
||
|
),
|
||
|
),
|
||
|
shape=(n_samples, n_features),
|
||
|
)
|
||
|
if sparse_format is not None:
|
||
|
return data_coo.asformat(sparse_format)
|
||
|
else:
|
||
|
return data_coo.toarray()
|
||
|
|
||
|
|
||
|
def densify(matrix):
|
||
|
if not sp.issparse(matrix):
|
||
|
return matrix
|
||
|
else:
|
||
|
return matrix.toarray()
|
||
|
|
||
|
|
||
|
n_samples, n_features = (10, 1000)
|
||
|
n_nonzeros = int(n_samples * n_features / 100.0)
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# test on JL lemma
|
||
|
###############################################################################
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"n_samples, eps",
|
||
|
[
|
||
|
([100, 110], [0.9, 1.1]),
|
||
|
([90, 100], [0.1, 0.0]),
|
||
|
([50, -40], [0.1, 0.2]),
|
||
|
],
|
||
|
)
|
||
|
def test_invalid_jl_domain(n_samples, eps):
|
||
|
with pytest.raises(ValueError):
|
||
|
johnson_lindenstrauss_min_dim(n_samples, eps=eps)
|
||
|
|
||
|
|
||
|
def test_input_size_jl_min_dim():
|
||
|
with pytest.raises(ValueError):
|
||
|
johnson_lindenstrauss_min_dim(3 * [100], eps=2 * [0.9])
|
||
|
|
||
|
johnson_lindenstrauss_min_dim(
|
||
|
np.random.randint(1, 10, size=(10, 10)), eps=np.full((10, 10), 0.5)
|
||
|
)
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# tests random matrix generation
|
||
|
###############################################################################
|
||
|
def check_input_size_random_matrix(random_matrix):
|
||
|
inputs = [(0, 0), (-1, 1), (1, -1), (1, 0), (-1, 0)]
|
||
|
for n_components, n_features in inputs:
|
||
|
with pytest.raises(ValueError):
|
||
|
random_matrix(n_components, n_features)
|
||
|
|
||
|
|
||
|
def check_size_generated(random_matrix):
|
||
|
inputs = [(1, 5), (5, 1), (5, 5), (1, 1)]
|
||
|
for n_components, n_features in inputs:
|
||
|
assert random_matrix(n_components, n_features).shape == (
|
||
|
n_components,
|
||
|
n_features,
|
||
|
)
|
||
|
|
||
|
|
||
|
def check_zero_mean_and_unit_norm(random_matrix):
|
||
|
# All random matrix should produce a transformation matrix
|
||
|
# with zero mean and unit norm for each columns
|
||
|
|
||
|
A = densify(random_matrix(10000, 1, random_state=0))
|
||
|
|
||
|
assert_array_almost_equal(0, np.mean(A), 3)
|
||
|
assert_array_almost_equal(1.0, np.linalg.norm(A), 1)
|
||
|
|
||
|
|
||
|
def check_input_with_sparse_random_matrix(random_matrix):
|
||
|
n_components, n_features = 5, 10
|
||
|
|
||
|
for density in [-1.0, 0.0, 1.1]:
|
||
|
with pytest.raises(ValueError):
|
||
|
random_matrix(n_components, n_features, density=density)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("random_matrix", all_random_matrix)
|
||
|
def test_basic_property_of_random_matrix(random_matrix):
|
||
|
# Check basic properties of random matrix generation
|
||
|
check_input_size_random_matrix(random_matrix)
|
||
|
check_size_generated(random_matrix)
|
||
|
check_zero_mean_and_unit_norm(random_matrix)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("random_matrix", all_sparse_random_matrix)
|
||
|
def test_basic_property_of_sparse_random_matrix(random_matrix):
|
||
|
check_input_with_sparse_random_matrix(random_matrix)
|
||
|
|
||
|
random_matrix_dense = functools.partial(random_matrix, density=1.0)
|
||
|
|
||
|
check_zero_mean_and_unit_norm(random_matrix_dense)
|
||
|
|
||
|
|
||
|
def test_gaussian_random_matrix():
|
||
|
# Check some statical properties of Gaussian random matrix
|
||
|
# Check that the random matrix follow the proper distribution.
|
||
|
# Let's say that each element of a_{ij} of A is taken from
|
||
|
# a_ij ~ N(0.0, 1 / n_components).
|
||
|
#
|
||
|
n_components = 100
|
||
|
n_features = 1000
|
||
|
A = _gaussian_random_matrix(n_components, n_features, random_state=0)
|
||
|
|
||
|
assert_array_almost_equal(0.0, np.mean(A), 2)
|
||
|
assert_array_almost_equal(np.var(A, ddof=1), 1 / n_components, 1)
|
||
|
|
||
|
|
||
|
def test_sparse_random_matrix():
|
||
|
# Check some statical properties of sparse random matrix
|
||
|
n_components = 100
|
||
|
n_features = 500
|
||
|
|
||
|
for density in [0.3, 1.0]:
|
||
|
s = 1 / density
|
||
|
|
||
|
A = _sparse_random_matrix(
|
||
|
n_components, n_features, density=density, random_state=0
|
||
|
)
|
||
|
A = densify(A)
|
||
|
|
||
|
# Check possible values
|
||
|
values = np.unique(A)
|
||
|
assert np.sqrt(s) / np.sqrt(n_components) in values
|
||
|
assert -np.sqrt(s) / np.sqrt(n_components) in values
|
||
|
|
||
|
if density == 1.0:
|
||
|
assert np.size(values) == 2
|
||
|
else:
|
||
|
assert 0.0 in values
|
||
|
assert np.size(values) == 3
|
||
|
|
||
|
# Check that the random matrix follow the proper distribution.
|
||
|
# Let's say that each element of a_{ij} of A is taken from
|
||
|
#
|
||
|
# - -sqrt(s) / sqrt(n_components) with probability 1 / 2s
|
||
|
# - 0 with probability 1 - 1 / s
|
||
|
# - +sqrt(s) / sqrt(n_components) with probability 1 / 2s
|
||
|
#
|
||
|
assert_almost_equal(np.mean(A == 0.0), 1 - 1 / s, decimal=2)
|
||
|
assert_almost_equal(
|
||
|
np.mean(A == np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2
|
||
|
)
|
||
|
assert_almost_equal(
|
||
|
np.mean(A == -np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2
|
||
|
)
|
||
|
|
||
|
assert_almost_equal(np.var(A == 0.0, ddof=1), (1 - 1 / s) * 1 / s, decimal=2)
|
||
|
assert_almost_equal(
|
||
|
np.var(A == np.sqrt(s) / np.sqrt(n_components), ddof=1),
|
||
|
(1 - 1 / (2 * s)) * 1 / (2 * s),
|
||
|
decimal=2,
|
||
|
)
|
||
|
assert_almost_equal(
|
||
|
np.var(A == -np.sqrt(s) / np.sqrt(n_components), ddof=1),
|
||
|
(1 - 1 / (2 * s)) * 1 / (2 * s),
|
||
|
decimal=2,
|
||
|
)
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# tests on random projection transformer
|
||
|
###############################################################################
|
||
|
|
||
|
|
||
|
def test_random_projection_transformer_invalid_input():
|
||
|
n_components = "auto"
|
||
|
fit_data = [[0, 1, 2]]
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
with pytest.raises(ValueError):
|
||
|
RandomProjection(n_components=n_components).fit(fit_data)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
|
||
|
def test_try_to_transform_before_fit(coo_container, global_random_seed):
|
||
|
data = make_sparse_random_data(
|
||
|
coo_container,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
n_nonzeros,
|
||
|
random_state=global_random_seed,
|
||
|
sparse_format=None,
|
||
|
)
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
with pytest.raises(NotFittedError):
|
||
|
RandomProjection(n_components="auto").transform(data)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
|
||
|
def test_too_many_samples_to_find_a_safe_embedding(coo_container, global_random_seed):
|
||
|
data = make_sparse_random_data(
|
||
|
coo_container,
|
||
|
n_samples=1000,
|
||
|
n_features=100,
|
||
|
n_nonzeros=1000,
|
||
|
random_state=global_random_seed,
|
||
|
sparse_format=None,
|
||
|
)
|
||
|
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
rp = RandomProjection(n_components="auto", eps=0.1)
|
||
|
expected_msg = (
|
||
|
"eps=0.100000 and n_samples=1000 lead to a target dimension"
|
||
|
" of 5920 which is larger than the original space with"
|
||
|
" n_features=100"
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=expected_msg):
|
||
|
rp.fit(data)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
|
||
|
def test_random_projection_embedding_quality(coo_container):
|
||
|
data = make_sparse_random_data(
|
||
|
coo_container,
|
||
|
n_samples=8,
|
||
|
n_features=5000,
|
||
|
n_nonzeros=15000,
|
||
|
random_state=0,
|
||
|
sparse_format=None,
|
||
|
)
|
||
|
eps = 0.2
|
||
|
|
||
|
original_distances = euclidean_distances(data, squared=True)
|
||
|
original_distances = original_distances.ravel()
|
||
|
non_identical = original_distances != 0.0
|
||
|
|
||
|
# remove 0 distances to avoid division by 0
|
||
|
original_distances = original_distances[non_identical]
|
||
|
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
rp = RandomProjection(n_components="auto", eps=eps, random_state=0)
|
||
|
projected = rp.fit_transform(data)
|
||
|
|
||
|
projected_distances = euclidean_distances(projected, squared=True)
|
||
|
projected_distances = projected_distances.ravel()
|
||
|
|
||
|
# remove 0 distances to avoid division by 0
|
||
|
projected_distances = projected_distances[non_identical]
|
||
|
|
||
|
distances_ratio = projected_distances / original_distances
|
||
|
|
||
|
# check that the automatically tuned values for the density respect the
|
||
|
# contract for eps: pairwise distances are preserved according to the
|
||
|
# Johnson-Lindenstrauss lemma
|
||
|
assert distances_ratio.max() < 1 + eps
|
||
|
assert 1 - eps < distances_ratio.min()
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
|
||
|
def test_SparseRandomProj_output_representation(coo_container):
|
||
|
dense_data = make_sparse_random_data(
|
||
|
coo_container,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
n_nonzeros,
|
||
|
random_state=0,
|
||
|
sparse_format=None,
|
||
|
)
|
||
|
sparse_data = make_sparse_random_data(
|
||
|
coo_container,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
n_nonzeros,
|
||
|
random_state=0,
|
||
|
sparse_format="csr",
|
||
|
)
|
||
|
for SparseRandomProj in all_SparseRandomProjection:
|
||
|
# when using sparse input, the projected data can be forced to be a
|
||
|
# dense numpy array
|
||
|
rp = SparseRandomProj(n_components=10, dense_output=True, random_state=0)
|
||
|
rp.fit(dense_data)
|
||
|
assert isinstance(rp.transform(dense_data), np.ndarray)
|
||
|
assert isinstance(rp.transform(sparse_data), np.ndarray)
|
||
|
|
||
|
# the output can be left to a sparse matrix instead
|
||
|
rp = SparseRandomProj(n_components=10, dense_output=False, random_state=0)
|
||
|
rp = rp.fit(dense_data)
|
||
|
# output for dense input will stay dense:
|
||
|
assert isinstance(rp.transform(dense_data), np.ndarray)
|
||
|
|
||
|
# output for sparse output will be sparse:
|
||
|
assert sp.issparse(rp.transform(sparse_data))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
|
||
|
def test_correct_RandomProjection_dimensions_embedding(
|
||
|
coo_container, global_random_seed
|
||
|
):
|
||
|
data = make_sparse_random_data(
|
||
|
coo_container,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
n_nonzeros,
|
||
|
random_state=global_random_seed,
|
||
|
sparse_format=None,
|
||
|
)
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
rp = RandomProjection(n_components="auto", random_state=0, eps=0.5).fit(data)
|
||
|
|
||
|
# the number of components is adjusted from the shape of the training
|
||
|
# set
|
||
|
assert rp.n_components == "auto"
|
||
|
assert rp.n_components_ == 110
|
||
|
|
||
|
if RandomProjection in all_SparseRandomProjection:
|
||
|
assert rp.density == "auto"
|
||
|
assert_almost_equal(rp.density_, 0.03, 2)
|
||
|
|
||
|
assert rp.components_.shape == (110, n_features)
|
||
|
|
||
|
projected_1 = rp.transform(data)
|
||
|
assert projected_1.shape == (n_samples, 110)
|
||
|
|
||
|
# once the RP is 'fitted' the projection is always the same
|
||
|
projected_2 = rp.transform(data)
|
||
|
assert_array_equal(projected_1, projected_2)
|
||
|
|
||
|
# fit transform with same random seed will lead to the same results
|
||
|
rp2 = RandomProjection(random_state=0, eps=0.5)
|
||
|
projected_3 = rp2.fit_transform(data)
|
||
|
assert_array_equal(projected_1, projected_3)
|
||
|
|
||
|
# Try to transform with an input X of size different from fitted.
|
||
|
with pytest.raises(ValueError):
|
||
|
rp.transform(data[:, 1:5])
|
||
|
|
||
|
# it is also possible to fix the number of components and the density
|
||
|
# level
|
||
|
if RandomProjection in all_SparseRandomProjection:
|
||
|
rp = RandomProjection(n_components=100, density=0.001, random_state=0)
|
||
|
projected = rp.fit_transform(data)
|
||
|
assert projected.shape == (n_samples, 100)
|
||
|
assert rp.components_.shape == (100, n_features)
|
||
|
assert rp.components_.nnz < 115 # close to 1% density
|
||
|
assert 85 < rp.components_.nnz # close to 1% density
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
|
||
|
def test_warning_n_components_greater_than_n_features(
|
||
|
coo_container, global_random_seed
|
||
|
):
|
||
|
n_features = 20
|
||
|
n_samples = 5
|
||
|
n_nonzeros = int(n_features / 4)
|
||
|
data = make_sparse_random_data(
|
||
|
coo_container,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
n_nonzeros,
|
||
|
random_state=global_random_seed,
|
||
|
sparse_format=None,
|
||
|
)
|
||
|
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
with pytest.warns(DataDimensionalityWarning):
|
||
|
RandomProjection(n_components=n_features + 1).fit(data)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
|
||
|
def test_works_with_sparse_data(coo_container, global_random_seed):
|
||
|
n_features = 20
|
||
|
n_samples = 5
|
||
|
n_nonzeros = int(n_features / 4)
|
||
|
dense_data = make_sparse_random_data(
|
||
|
coo_container,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
n_nonzeros,
|
||
|
random_state=global_random_seed,
|
||
|
sparse_format=None,
|
||
|
)
|
||
|
sparse_data = make_sparse_random_data(
|
||
|
coo_container,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
n_nonzeros,
|
||
|
random_state=global_random_seed,
|
||
|
sparse_format="csr",
|
||
|
)
|
||
|
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
rp_dense = RandomProjection(n_components=3, random_state=1).fit(dense_data)
|
||
|
rp_sparse = RandomProjection(n_components=3, random_state=1).fit(sparse_data)
|
||
|
assert_array_almost_equal(
|
||
|
densify(rp_dense.components_), densify(rp_sparse.components_)
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_johnson_lindenstrauss_min_dim():
|
||
|
"""Test Johnson-Lindenstrauss for small eps.
|
||
|
|
||
|
Regression test for #17111: before #19374, 32-bit systems would fail.
|
||
|
"""
|
||
|
assert johnson_lindenstrauss_min_dim(100, eps=1e-5) == 368416070986
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
|
||
|
@pytest.mark.parametrize("random_projection_cls", all_RandomProjection)
|
||
|
def test_random_projection_feature_names_out(
|
||
|
coo_container, random_projection_cls, global_random_seed
|
||
|
):
|
||
|
data = make_sparse_random_data(
|
||
|
coo_container,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
n_nonzeros,
|
||
|
random_state=global_random_seed,
|
||
|
sparse_format=None,
|
||
|
)
|
||
|
random_projection = random_projection_cls(n_components=2)
|
||
|
random_projection.fit(data)
|
||
|
names_out = random_projection.get_feature_names_out()
|
||
|
class_name_lower = random_projection_cls.__name__.lower()
|
||
|
expected_names_out = np.array(
|
||
|
[f"{class_name_lower}{i}" for i in range(random_projection.n_components_)],
|
||
|
dtype=object,
|
||
|
)
|
||
|
|
||
|
assert_array_equal(names_out, expected_names_out)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
|
||
|
@pytest.mark.parametrize("n_samples", (2, 9, 10, 11, 1000))
|
||
|
@pytest.mark.parametrize("n_features", (2, 9, 10, 11, 1000))
|
||
|
@pytest.mark.parametrize("random_projection_cls", all_RandomProjection)
|
||
|
@pytest.mark.parametrize("compute_inverse_components", [True, False])
|
||
|
def test_inverse_transform(
|
||
|
coo_container,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
random_projection_cls,
|
||
|
compute_inverse_components,
|
||
|
global_random_seed,
|
||
|
):
|
||
|
n_components = 10
|
||
|
|
||
|
random_projection = random_projection_cls(
|
||
|
n_components=n_components,
|
||
|
compute_inverse_components=compute_inverse_components,
|
||
|
random_state=global_random_seed,
|
||
|
)
|
||
|
|
||
|
X_dense = make_sparse_random_data(
|
||
|
coo_container,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
n_nonzeros=n_samples * n_features // 100 + 1,
|
||
|
random_state=global_random_seed,
|
||
|
sparse_format=None,
|
||
|
)
|
||
|
X_csr = make_sparse_random_data(
|
||
|
coo_container,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
n_nonzeros=n_samples * n_features // 100 + 1,
|
||
|
random_state=global_random_seed,
|
||
|
sparse_format="csr",
|
||
|
)
|
||
|
|
||
|
for X in [X_dense, X_csr]:
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.filterwarnings(
|
||
|
"ignore",
|
||
|
message=(
|
||
|
"The number of components is higher than the number of features"
|
||
|
),
|
||
|
category=DataDimensionalityWarning,
|
||
|
)
|
||
|
projected = random_projection.fit_transform(X)
|
||
|
|
||
|
if compute_inverse_components:
|
||
|
assert hasattr(random_projection, "inverse_components_")
|
||
|
inv_components = random_projection.inverse_components_
|
||
|
assert inv_components.shape == (n_features, n_components)
|
||
|
|
||
|
projected_back = random_projection.inverse_transform(projected)
|
||
|
assert projected_back.shape == X.shape
|
||
|
|
||
|
projected_again = random_projection.transform(projected_back)
|
||
|
if hasattr(projected, "toarray"):
|
||
|
projected = projected.toarray()
|
||
|
assert_allclose(projected, projected_again, rtol=1e-7, atol=1e-10)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("random_projection_cls", all_RandomProjection)
|
||
|
@pytest.mark.parametrize(
|
||
|
"input_dtype, expected_dtype",
|
||
|
(
|
||
|
(np.float32, np.float32),
|
||
|
(np.float64, np.float64),
|
||
|
(np.int32, np.float64),
|
||
|
(np.int64, np.float64),
|
||
|
),
|
||
|
)
|
||
|
def test_random_projection_dtype_match(
|
||
|
random_projection_cls, input_dtype, expected_dtype
|
||
|
):
|
||
|
# Verify output matrix dtype
|
||
|
rng = np.random.RandomState(42)
|
||
|
X = rng.rand(25, 3000)
|
||
|
rp = random_projection_cls(random_state=0)
|
||
|
transformed = rp.fit_transform(X.astype(input_dtype))
|
||
|
|
||
|
assert rp.components_.dtype == expected_dtype
|
||
|
assert transformed.dtype == expected_dtype
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("random_projection_cls", all_RandomProjection)
|
||
|
def test_random_projection_numerical_consistency(random_projection_cls):
|
||
|
# Verify numerical consistency among np.float32 and np.float64
|
||
|
atol = 1e-5
|
||
|
rng = np.random.RandomState(42)
|
||
|
X = rng.rand(25, 3000)
|
||
|
rp_32 = random_projection_cls(random_state=0)
|
||
|
rp_64 = random_projection_cls(random_state=0)
|
||
|
|
||
|
projection_32 = rp_32.fit_transform(X.astype(np.float32))
|
||
|
projection_64 = rp_64.fit_transform(X.astype(np.float64))
|
||
|
|
||
|
assert_allclose(projection_64, projection_32, atol=atol)
|
||
|
|
||
|
assert_allclose_dense_sparse(rp_32.components_, rp_64.components_)
|