3RNN/Lib/site-packages/sklearn/tree/_tree.pxd

124 lines
5.0 KiB
Cython
Raw Normal View History

2024-05-26 19:49:15 +02:00
# Authors: Gilles Louppe <g.louppe@gmail.com>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Brian Holt <bdholt1@gmail.com>
# Joel Nothman <joel.nothman@gmail.com>
# Arnaud Joly <arnaud.v.joly@gmail.com>
# Jacob Schreiber <jmschreiber91@gmail.com>
# Nelson Liu <nelson@nelsonliu.me>
#
# License: BSD 3 clause
# See _tree.pyx for details.
import numpy as np
cimport numpy as cnp
from ..utils._typedefs cimport float32_t, float64_t, intp_t, int32_t, uint32_t
from ._splitter cimport Splitter
from ._splitter cimport SplitRecord
cdef struct Node:
# Base storage structure for the nodes in a Tree object
intp_t left_child # id of the left child of the node
intp_t right_child # id of the right child of the node
intp_t feature # Feature used for splitting the node
float64_t threshold # Threshold value at the node
float64_t impurity # Impurity of the node (i.e., the value of the criterion)
intp_t n_node_samples # Number of samples at the node
float64_t weighted_n_node_samples # Weighted number of samples at the node
unsigned char missing_go_to_left # Whether features have missing values
cdef struct ParentInfo:
# Structure to store information about the parent of a node
# This is passed to the splitter, to provide information about the previous split
float64_t lower_bound # the lower bound of the parent's impurity
float64_t upper_bound # the upper bound of the parent's impurity
float64_t impurity # the impurity of the parent
intp_t n_constant_features # the number of constant features found in parent
cdef class Tree:
# The Tree object is a binary tree structure constructed by the
# TreeBuilder. The tree structure is used for predictions and
# feature importances.
# Input/Output layout
cdef public intp_t n_features # Number of features in X
cdef intp_t* n_classes # Number of classes in y[:, k]
cdef public intp_t n_outputs # Number of outputs in y
cdef public intp_t max_n_classes # max(n_classes)
# Inner structures: values are stored separately from node structure,
# since size is determined at runtime.
cdef public intp_t max_depth # Max depth of the tree
cdef public intp_t node_count # Counter for node IDs
cdef public intp_t capacity # Capacity of tree, in terms of nodes
cdef Node* nodes # Array of nodes
cdef float64_t* value # (capacity, n_outputs, max_n_classes) array of values
cdef intp_t value_stride # = n_outputs * max_n_classes
# Methods
cdef intp_t _add_node(self, intp_t parent, bint is_left, bint is_leaf,
intp_t feature, float64_t threshold, float64_t impurity,
intp_t n_node_samples,
float64_t weighted_n_node_samples,
unsigned char missing_go_to_left) except -1 nogil
cdef int _resize(self, intp_t capacity) except -1 nogil
cdef int _resize_c(self, intp_t capacity=*) except -1 nogil
cdef cnp.ndarray _get_value_ndarray(self)
cdef cnp.ndarray _get_node_ndarray(self)
cpdef cnp.ndarray predict(self, object X)
cpdef cnp.ndarray apply(self, object X)
cdef cnp.ndarray _apply_dense(self, object X)
cdef cnp.ndarray _apply_sparse_csr(self, object X)
cpdef object decision_path(self, object X)
cdef object _decision_path_dense(self, object X)
cdef object _decision_path_sparse_csr(self, object X)
cpdef compute_node_depths(self)
cpdef compute_feature_importances(self, normalize=*)
# =============================================================================
# Tree builder
# =============================================================================
cdef class TreeBuilder:
# The TreeBuilder recursively builds a Tree object from training samples,
# using a Splitter object for splitting internal nodes and assigning
# values to leaves.
#
# This class controls the various stopping criteria and the node splitting
# evaluation order, e.g. depth-first or best-first.
cdef Splitter splitter # Splitting algorithm
cdef intp_t min_samples_split # Minimum number of samples in an internal node
cdef intp_t min_samples_leaf # Minimum number of samples in a leaf
cdef float64_t min_weight_leaf # Minimum weight in a leaf
cdef intp_t max_depth # Maximal tree depth
cdef float64_t min_impurity_decrease # Impurity threshold for early stopping
cpdef build(
self,
Tree tree,
object X,
const float64_t[:, ::1] y,
const float64_t[:] sample_weight=*,
const unsigned char[::1] missing_values_in_feature_mask=*,
)
cdef _check_input(
self,
object X,
const float64_t[:, ::1] y,
const float64_t[:] sample_weight,
)