3RNN/Lib/site-packages/tensorflow/lite/python/analyzer.py

106 lines
3.8 KiB
Python
Raw Normal View History

2024-05-26 19:49:15 +02:00
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This tool analyzes a TensorFlow Lite graph."""
import os
# pylint: disable=g-import-not-at-top
if not os.path.splitext(__file__)[0].endswith(
os.path.join("tflite_runtime", "analyzer")):
# This file is part of tensorflow package.
from tensorflow.lite.python import wrap_toco
from tensorflow.lite.python.analyzer_wrapper import _pywrap_analyzer_wrapper as _analyzer_wrapper
from tensorflow.python.util.tf_export import tf_export as _tf_export
else:
# This file is part of tflite_runtime package.
from tflite_runtime import _pywrap_analyzer_wrapper as _analyzer_wrapper
def _tf_export(*x, **kwargs):
del x, kwargs
return lambda x: x
@_tf_export("lite.experimental.Analyzer")
class ModelAnalyzer():
"""Provides a collection of TFLite model analyzer tools.
Example:
```python
model = tf.keras.applications.MobileNetV3Large()
fb_model = tf.lite.TFLiteConverterV2.from_keras_model(model).convert()
tf.lite.experimental.Analyzer.analyze(model_content=fb_model)
# === TFLite ModelAnalyzer ===
#
# Your TFLite model has 1 subgraph(s). In the subgraph description below,
# T# represents the Tensor numbers. For example, in Subgraph#0, the MUL op
# takes tensor #0 and tensor #19 as input and produces tensor #136 as output.
#
# Subgraph#0 main(T#0) -> [T#263]
# Op#0 MUL(T#0, T#19) -> [T#136]
# Op#1 ADD(T#136, T#18) -> [T#137]
# Op#2 CONV_2D(T#137, T#44, T#93) -> [T#138]
# Op#3 HARD_SWISH(T#138) -> [T#139]
# Op#4 DEPTHWISE_CONV_2D(T#139, T#94, T#24) -> [T#140]
# ...
```
WARNING: Experimental interface, subject to change.
"""
@staticmethod
def analyze(model_path=None,
model_content=None,
gpu_compatibility=False,
**kwargs):
"""Analyzes the given tflite_model with dumping model structure.
This tool provides a way to understand users' TFLite flatbuffer model by
dumping internal graph structure. It also provides additional features
like checking GPU delegate compatibility.
WARNING: Experimental interface, subject to change.
The output format is not guaranteed to stay stable, so don't
write scripts to this.
Args:
model_path: TFLite flatbuffer model path.
model_content: TFLite flatbuffer model object.
gpu_compatibility: Whether to check GPU delegate compatibility.
**kwargs: Experimental keyword arguments to analyze API.
Returns:
Print analyzed report via console output.
"""
if not model_path and not model_content:
raise ValueError("neither `model_path` nor `model_content` is provided")
if model_path:
print(f"=== {model_path} ===\n")
tflite_model = model_path
input_is_filepath = True
else:
print("=== TFLite ModelAnalyzer ===\n")
tflite_model = model_content
input_is_filepath = False
if kwargs.get("experimental_use_mlir", False):
print(
wrap_toco.wrapped_flat_buffer_file_to_mlir(tflite_model,
input_is_filepath))
else:
print(
_analyzer_wrapper.ModelAnalyzer(tflite_model, input_is_filepath,
gpu_compatibility))