3RNN/Lib/site-packages/tensorflow/python/framework/indexed_slices.py

456 lines
16 KiB
Python
Raw Normal View History

2024-05-26 19:49:15 +02:00
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Indexed slices."""
# pylint: disable=g-bad-name
import collections
import warnings
import numpy as np
from tensorflow.core.protobuf import struct_pb2
from tensorflow.python import tf2
from tensorflow.python.eager import context
from tensorflow.python.framework import composite_tensor
from tensorflow.python.framework import composite_tensor_gradient
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_conversion_registry
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_spec
from tensorflow.python.framework import tensor_util
from tensorflow.python.framework import type_spec
from tensorflow.python.ops import gen_math_ops
from tensorflow.python.saved_model import nested_structure_coder
from tensorflow.python.types import internal
from tensorflow.python.util.compat import collections_abc
from tensorflow.python.util.tf_export import tf_export
class IndexedSlicesCompositeTensorGradient(
composite_tensor_gradient.CompositeTensorGradient):
"""CompositeTensorGradient for IndexedSlices."""
def get_gradient_components(self, value):
return value
def replace_gradient_components(self, value, component_grads):
return component_grads
# TODO(mdan): Should IndexedSlices be a "tensor"?
@tf_export("IndexedSlices")
class IndexedSlices(
internal.IndexedSlices,
internal.NativeObject,
composite_tensor.CompositeTensor):
"""A sparse representation of a set of tensor slices at given indices.
This class is a simple wrapper for a pair of `Tensor` objects:
* `values`: A `Tensor` of any dtype with shape `[D0, D1, ..., Dn]`.
* `indices`: A 1-D integer `Tensor` with shape `[D0]`.
An `IndexedSlices` is typically used to represent a subset of a larger
tensor `dense` of shape `[LARGE0, D1, .. , DN]` where `LARGE0 >> D0`.
The values in `indices` are the indices in the first dimension of
the slices that have been extracted from the larger tensor.
The dense tensor `dense` represented by an `IndexedSlices` `slices` has
```python
dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...]
```
The `IndexedSlices` class is used principally in the definition of
gradients for operations that have sparse gradients
(e.g. `tf.gather`).
>>> v = tf.Variable([[0.,1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]])
>>> with tf.GradientTape() as tape:
... r = tf.gather(v, [1,3])
>>> index_slices = tape.gradient(r,v)
>>> index_slices
<...IndexedSlices object ...>
>>> index_slices.indices.numpy()
array([1, 3], dtype=int32)
>>> index_slices.values.numpy()
array([[1., 1., 1.],
[1., 1., 1.]], dtype=float32)
Contrast this representation with
`tf.sparse.SparseTensor`,
which uses multi-dimensional indices and scalar values.
"""
def __init__(self, values, indices, dense_shape=None):
"""Creates an `IndexedSlices`."""
self._values = values
self._indices = indices
self._dense_shape = dense_shape
@property
def values(self):
"""A `Tensor` containing the values of the slices."""
return self._values
@property
def indices(self):
"""A 1-D `Tensor` containing the indices of the slices."""
return self._indices
@property
def dense_shape(self):
"""A 1-D `Tensor` containing the shape of the corresponding dense tensor."""
return self._dense_shape
@property
def shape(self):
"""Gets the `tf.TensorShape` representing the shape of the dense tensor.
Returns:
A `tf.TensorShape` object.
"""
if self._dense_shape is None:
return tensor_shape.TensorShape(None)
return tensor_util.constant_value_as_shape(self._dense_shape)
@property
def name(self):
"""The name of this `IndexedSlices`."""
return self.values.name
@property
def device(self):
"""The name of the device on which `values` will be produced, or `None`."""
return self.values.device
@property
def op(self) -> ops.Operation:
"""The `Operation` that produces `values` as an output."""
return self.values.op
@property
def dtype(self):
"""The `DType` of elements in this tensor."""
return self.values.dtype
@property
def graph(self) -> ops.Graph:
"""The `Graph` that contains the values, indices, and shape tensors."""
return self._values.graph
def __str__(self):
return "IndexedSlices(indices=%s, values=%s%s)" % (
self._indices, self._values,
(", dense_shape=%s" %
(self._dense_shape,)) if self._dense_shape is not None else "")
def __neg__(self):
return IndexedSlices(-self.values, self.indices, self.dense_shape)
__composite_gradient__ = IndexedSlicesCompositeTensorGradient()
@property
def _type_spec(self):
indices_shape = self._indices.shape.merge_with(self._values.shape[:1])
dense_shape = tensor_shape.TensorShape([None]).concatenate(
self._values.shape[1:])
if self._dense_shape is not None:
dense_shape_dtype = self._dense_shape.dtype
dense_shape = dense_shape.merge_with(
tensor_util.constant_value_as_shape(self._dense_shape))
else:
dense_shape_dtype = None
return IndexedSlicesSpec(dense_shape, self.dtype, self._indices.dtype,
dense_shape_dtype, indices_shape)
def _shape_invariant_to_type_spec(self, shape):
# From tf.while_loop docs: "If a loop variable is an IndexedSlices, the
# shape invariant must be a shape invariant of the values tensor of the
# IndexedSlices. It means the shapes of the three tensors of the
# IndexedSlices are (shape, [shape[0]], [shape.ndims])."
indices_shape = shape[:1]
dense_shape = tensor_shape.TensorShape([None]).concatenate(shape[1:])
if self._dense_shape is None:
dense_shape_dtype = None
else:
dense_shape_dtype = self._dense_shape.dtype
return IndexedSlicesSpec(dense_shape, self.dtype, self._indices.dtype,
dense_shape_dtype, indices_shape)
def consumers(self):
return self._consumers()
IndexedSlicesValue = collections.namedtuple(
"IndexedSlicesValue", ["values", "indices", "dense_shape"])
@tf_export("IndexedSlicesSpec")
class IndexedSlicesSpec(type_spec.TypeSpec):
"""Type specification for a `tf.IndexedSlices`."""
__slots__ = ["_shape", "_values_dtype", "_indices_dtype",
"_dense_shape_dtype", "_indices_shape"]
value_type = property(lambda self: IndexedSlices)
def __init__(self, shape=None, dtype=dtypes.float32,
indices_dtype=dtypes.int64, dense_shape_dtype=None,
indices_shape=None):
"""Constructs a type specification for a `tf.IndexedSlices`.
Args:
shape: The dense shape of the `IndexedSlices`, or `None` to allow any
dense shape.
dtype: `tf.DType` of values in the `IndexedSlices`.
indices_dtype: `tf.DType` of the `indices` in the `IndexedSlices`. One
of `tf.int32` or `tf.int64`.
dense_shape_dtype: `tf.DType` of the `dense_shape` in the `IndexedSlices`.
One of `tf.int32`, `tf.int64`, or `None` (if the `IndexedSlices` has
no `dense_shape` tensor).
indices_shape: The shape of the `indices` component, which indicates
how many slices are in the `IndexedSlices`.
"""
self._shape = tensor_shape.as_shape(shape)
self._values_dtype = dtypes.as_dtype(dtype)
self._indices_dtype = dtypes.as_dtype(indices_dtype)
if dense_shape_dtype is None:
self._dense_shape_dtype = None
else:
self._dense_shape_dtype = dtypes.as_dtype(dense_shape_dtype)
self._indices_shape = tensor_shape.as_shape(indices_shape).with_rank(1)
def _serialize(self):
return (self._shape, self._values_dtype, self._indices_dtype,
self._dense_shape_dtype, self._indices_shape)
@property
def _component_specs(self):
value_shape = self._indices_shape.concatenate(self._shape[1:])
specs = [
tensor_spec.TensorSpec(value_shape, self._values_dtype),
tensor_spec.TensorSpec(self._indices_shape, self._indices_dtype)]
if self._dense_shape_dtype is not None:
specs.append(
tensor_spec.TensorSpec([self._shape.ndims], self._dense_shape_dtype))
return tuple(specs)
def _to_components(self, value):
if value.dense_shape is None:
return (value.values, value.indices)
else:
return (value.values, value.indices, value.dense_shape)
def _from_components(self, tensor_list):
if (all(isinstance(t, np.ndarray) for t in tensor_list) and
not tf2.enabled()):
if len(tensor_list) == 2:
return IndexedSlicesValue(tensor_list[0], tensor_list[1], None)
else:
return IndexedSlicesValue(*tensor_list)
else:
return IndexedSlices(*tensor_list)
nested_structure_coder.register_codec(
nested_structure_coder.BuiltInTypeSpecCodec(
IndexedSlicesSpec, struct_pb2.TypeSpecProto.INDEXED_SLICES_SPEC
)
)
@tf_export(v1=["convert_to_tensor_or_indexed_slices"])
def convert_to_tensor_or_indexed_slices(value, dtype=None, name=None):
"""Converts the given object to a `Tensor` or an `IndexedSlices`.
If `value` is an `IndexedSlices` or `SparseTensor` it is returned
unmodified. Otherwise, it is converted to a `Tensor` using
`convert_to_tensor()`.
Args:
value: An `IndexedSlices`, `SparseTensor`, or an object that can be consumed
by `convert_to_tensor()`.
dtype: (Optional.) The required `DType` of the returned `Tensor` or
`IndexedSlices`.
name: (Optional.) A name to use if a new `Tensor` is created.
Returns:
A `Tensor`, `IndexedSlices`, or `SparseTensor` based on `value`.
Raises:
ValueError: If `dtype` does not match the element type of `value`.
"""
return internal_convert_to_tensor_or_indexed_slices(
value=value, dtype=dtype, name=name, as_ref=False)
def internal_convert_to_tensor_or_indexed_slices(value,
dtype=None,
name=None,
as_ref=False):
"""Converts the given object to a `Tensor` or an `IndexedSlices`.
If `value` is an `IndexedSlices` or `SparseTensor` it is returned
unmodified. Otherwise, it is converted to a `Tensor` using
`convert_to_tensor()`.
Args:
value: An `IndexedSlices`, `SparseTensor`, or an object that can be consumed
by `convert_to_tensor()`.
dtype: (Optional.) The required `DType` of the returned `Tensor` or
`IndexedSlices`.
name: (Optional.) A name to use if a new `Tensor` is created.
as_ref: True if the caller wants the results as ref tensors.
Returns:
A `Tensor`, `IndexedSlices`, or `SparseTensor` based on `value`.
Raises:
ValueError: If `dtype` does not match the element type of `value`.
"""
if isinstance(value, ops.EagerTensor) and not context.executing_eagerly():
return ops.convert_to_tensor(value, dtype=dtype, name=name, as_ref=as_ref)
# TODO(mdan): Name says tensor_or_indexed_slices. So do explicitly just that?
elif isinstance(value, internal.NativeObject):
if dtype and not dtypes.as_dtype(dtype).is_compatible_with(value.dtype):
raise ValueError(
"Incompatible tensor conversion requested to `dtype` "
f"{dtypes.as_dtype(dtype).name} for `value` ({value}) with dtype"
f" {value.dtype.name}.")
return value
else:
return ops.convert_to_tensor(value, dtype=dtype, name=name, as_ref=as_ref)
def internal_convert_n_to_tensor_or_indexed_slices(values,
dtype=None,
name=None,
as_ref=False):
"""Converts `values` to a list of `Tensor` or `IndexedSlices` objects.
Any `IndexedSlices` or `SparseTensor` objects in `values` are returned
unmodified.
Args:
values: An iterable of `None`, `IndexedSlices`, `SparseTensor`, or objects
that can be consumed by `convert_to_tensor()`.
dtype: (Optional.) The required `DType` of the returned `Tensor` or
`IndexedSlices`.
name: (Optional.) A name prefix to used when a new `Tensor` is created, in
which case element `i` will be given the name `name + '_' + i`.
as_ref: True if the caller wants the results as ref tensors.
Returns:
A list of `Tensor`, `IndexedSlices`, `SparseTensor` and/or `None` objects.
Raises:
TypeError: If no conversion function is registered for an element in
`values`.
RuntimeError: If a registered conversion function returns an invalid
value.
"""
if not isinstance(values, collections_abc.Iterable):
raise TypeError("Argument `values` must be iterable.")
ret = []
for i, value in enumerate(values):
if value is None:
ret.append(value)
else:
n = None if name is None else "%s_%d" % (name, i)
ret.append(
internal_convert_to_tensor_or_indexed_slices(
value, dtype=dtype, name=n, as_ref=as_ref))
return ret
def convert_n_to_tensor_or_indexed_slices(values, dtype=None, name=None):
"""Converts `values` to a list of `Output` or `IndexedSlices` objects.
Any `IndexedSlices` or `SparseTensor` objects in `values` are returned
unmodified.
Args:
values: A list of `None`, `IndexedSlices`, `SparseTensor`, or objects that
can be consumed by `convert_to_tensor()`.
dtype: (Optional.) The required `DType` of the returned `Tensor`
`IndexedSlices`.
name: (Optional.) A name prefix to used when a new `Tensor` is created, in
which case element `i` will be given the name `name + '_' + i`.
Returns:
A list of `Tensor`, `IndexedSlices`, and/or `SparseTensor` objects.
Raises:
TypeError: If no conversion function is registered for an element in
`values`.
RuntimeError: If a registered conversion function returns an invalid
value.
"""
return internal_convert_n_to_tensor_or_indexed_slices(
values=values, dtype=dtype, name=name, as_ref=False)
# Warn the user if we convert a sparse representation to dense with at
# least this number of elements.
_LARGE_SPARSE_NUM_ELEMENTS = 100000000
def _indexed_slices_to_tensor(value, dtype=None, name=None, as_ref=False):
"""Converts an IndexedSlices object `value` to a Tensor.
NOTE(mrry): This function is potentially expensive.
Args:
value: An ops.IndexedSlices object.
dtype: The dtype of the Tensor to be returned.
name: Optional name to use for the returned Tensor.
as_ref: True if a ref is requested.
Returns:
A dense Tensor representing the values in the given IndexedSlices.
Raises:
ValueError: If the IndexedSlices does not have the same dtype.
"""
_ = as_ref
if dtype and not dtype.is_compatible_with(value.dtype):
raise ValueError(
f"Incompatible tensor conversion requested to `dtype` {dtype.name} for "
f"IndexedSlices ({value}) with dtype {value.dtype.name}")
if value.dense_shape is None:
raise ValueError(
"Tensor conversion requested for IndexedSlices for argument `value` "
f"without dense_shape: {value!s}")
# TODO(mrry): Consider adding static shape information to
# IndexedSlices, to avoid using numpy here.
if not context.executing_eagerly():
dense_shape_value = tensor_util.constant_value(value.dense_shape)
if dense_shape_value is not None:
num_elements = np.prod(dense_shape_value)
if num_elements >= _LARGE_SPARSE_NUM_ELEMENTS:
warnings.warn(
"Converting sparse IndexedSlices to a dense Tensor with %d "
"elements. This may consume a large amount of memory." %
num_elements)
return gen_math_ops.unsorted_segment_sum(
value.values, value.indices, value.dense_shape[0], name=name)
tensor_conversion_registry.register_tensor_conversion_function(
IndexedSlices, _indexed_slices_to_tensor)