100 lines
3.5 KiB
Python
100 lines
3.5 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Gradients for CuudnnRNN operators."""
|
||
|
from tensorflow.python.framework import ops
|
||
|
from tensorflow.python.ops import gen_cudnn_rnn_ops
|
||
|
|
||
|
|
||
|
@ops.RegisterGradient("CudnnRNN")
|
||
|
def _cudnn_rnn_backward(op: ops.Operation, *grads):
|
||
|
"""Gradients for the CudnnRNN op."""
|
||
|
if not op.get_attr("is_training"):
|
||
|
raise ValueError(
|
||
|
"To use CudnnRNN in gradients, is_training must be set to True.")
|
||
|
return gen_cudnn_rnn_ops.cudnn_rnn_backprop(
|
||
|
input=op.inputs[0],
|
||
|
input_h=op.inputs[1],
|
||
|
input_c=op.inputs[2],
|
||
|
params=op.inputs[3],
|
||
|
output=op.outputs[0],
|
||
|
output_h=op.outputs[1],
|
||
|
output_c=op.outputs[2],
|
||
|
output_backprop=grads[0],
|
||
|
output_h_backprop=grads[1],
|
||
|
output_c_backprop=grads[2],
|
||
|
reserve_space=op.outputs[3],
|
||
|
dropout=op.get_attr("dropout"),
|
||
|
seed=op.get_attr("seed"),
|
||
|
seed2=op.get_attr("seed2"),
|
||
|
rnn_mode=op.get_attr("rnn_mode"),
|
||
|
input_mode=op.get_attr("input_mode"),
|
||
|
direction=op.get_attr("direction"))
|
||
|
|
||
|
|
||
|
@ops.RegisterGradient("CudnnRNNV2")
|
||
|
def _cudnn_rnn_backward_v2(op: ops.Operation, *grad):
|
||
|
if not op.get_attr("is_training"):
|
||
|
raise ValueError(
|
||
|
"To use CudnnRNNV2 in gradients, is_training must be set to True.")
|
||
|
return gen_cudnn_rnn_ops.cudnn_rnn_backprop_v2(
|
||
|
input=op.inputs[0],
|
||
|
input_h=op.inputs[1],
|
||
|
input_c=op.inputs[2],
|
||
|
params=op.inputs[3],
|
||
|
output=op.outputs[0],
|
||
|
output_h=op.outputs[1],
|
||
|
output_c=op.outputs[2],
|
||
|
output_backprop=grad[0],
|
||
|
output_h_backprop=grad[1],
|
||
|
output_c_backprop=grad[2],
|
||
|
reserve_space=op.outputs[3],
|
||
|
host_reserved=op.outputs[4],
|
||
|
dropout=op.get_attr("dropout"),
|
||
|
seed=op.get_attr("seed"),
|
||
|
seed2=op.get_attr("seed2"),
|
||
|
rnn_mode=op.get_attr("rnn_mode"),
|
||
|
input_mode=op.get_attr("input_mode"),
|
||
|
direction=op.get_attr("direction"))
|
||
|
|
||
|
|
||
|
@ops.RegisterGradient("CudnnRNNV3")
|
||
|
def _cudnn_rnn_backwardv3(op: ops.Operation, *grads):
|
||
|
"""Gradients for the CudnnRNNV3 op."""
|
||
|
if not op.get_attr("is_training"):
|
||
|
raise ValueError(
|
||
|
"To use CudnnRNNV3 in gradients, is_training must be set to True.")
|
||
|
return gen_cudnn_rnn_ops.cudnn_rnn_backprop_v3(
|
||
|
input=op.inputs[0],
|
||
|
input_h=op.inputs[1],
|
||
|
input_c=op.inputs[2],
|
||
|
params=op.inputs[3],
|
||
|
sequence_lengths=op.inputs[4],
|
||
|
output=op.outputs[0],
|
||
|
output_h=op.outputs[1],
|
||
|
output_c=op.outputs[2],
|
||
|
output_backprop=grads[0],
|
||
|
output_h_backprop=grads[1],
|
||
|
output_c_backprop=grads[2],
|
||
|
reserve_space=op.outputs[3],
|
||
|
host_reserved=op.outputs[4],
|
||
|
dropout=op.get_attr("dropout"),
|
||
|
seed=op.get_attr("seed"),
|
||
|
seed2=op.get_attr("seed2"),
|
||
|
time_major=op.get_attr("time_major"),
|
||
|
num_proj=op.get_attr("num_proj"),
|
||
|
rnn_mode=op.get_attr("rnn_mode"),
|
||
|
input_mode=op.get_attr("input_mode"),
|
||
|
direction=op.get_attr("direction")) + (None,)
|