4879 lines
231 KiB
Python
4879 lines
231 KiB
Python
|
"""Python wrappers around TensorFlow ops.
|
||
|
|
||
|
This file is MACHINE GENERATED! Do not edit.
|
||
|
"""
|
||
|
|
||
|
import collections
|
||
|
|
||
|
from tensorflow.python import pywrap_tfe as pywrap_tfe
|
||
|
from tensorflow.python.eager import context as _context
|
||
|
from tensorflow.python.eager import core as _core
|
||
|
from tensorflow.python.eager import execute as _execute
|
||
|
from tensorflow.python.framework import dtypes as _dtypes
|
||
|
from tensorflow.security.fuzzing.py import annotation_types as _atypes
|
||
|
|
||
|
from tensorflow.python.framework import op_def_registry as _op_def_registry
|
||
|
from tensorflow.python.framework import ops as _ops
|
||
|
from tensorflow.python.framework import op_def_library as _op_def_library
|
||
|
from tensorflow.python.util.deprecation import deprecated_endpoints
|
||
|
from tensorflow.python.util import dispatch as _dispatch
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
from typing import TypeVar, List, Any
|
||
|
from typing_extensions import Annotated
|
||
|
|
||
|
TV_AdjustContrast_T = TypeVar("TV_AdjustContrast_T", _atypes.Float32, _atypes.Float64, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt8)
|
||
|
|
||
|
def adjust_contrast(images: Annotated[Any, TV_AdjustContrast_T], contrast_factor: Annotated[Any, _atypes.Float32], min_value: Annotated[Any, _atypes.Float32], max_value: Annotated[Any, _atypes.Float32], name=None) -> Annotated[Any, _atypes.Float32]:
|
||
|
r"""Deprecated. Disallowed in GraphDef version >= 2.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `float32`, `float64`.
|
||
|
contrast_factor: A `Tensor` of type `float32`.
|
||
|
min_value: A `Tensor` of type `float32`.
|
||
|
max_value: A `Tensor` of type `float32`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "AdjustContrast", name, images, contrast_factor, min_value,
|
||
|
max_value)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return adjust_contrast_eager_fallback(
|
||
|
images, contrast_factor, min_value, max_value, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"AdjustContrast", images=images, contrast_factor=contrast_factor,
|
||
|
min_value=min_value, max_value=max_value, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"AdjustContrast", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
AdjustContrast = tf_export("raw_ops.AdjustContrast")(_ops.to_raw_op(adjust_contrast))
|
||
|
|
||
|
|
||
|
def adjust_contrast_eager_fallback(images: Annotated[Any, TV_AdjustContrast_T], contrast_factor: Annotated[Any, _atypes.Float32], min_value: Annotated[Any, _atypes.Float32], max_value: Annotated[Any, _atypes.Float32], name, ctx) -> Annotated[Any, _atypes.Float32]:
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.uint8, _dtypes.int8, _dtypes.int16, _dtypes.int32, _dtypes.int64, _dtypes.float32, _dtypes.float64, ])
|
||
|
contrast_factor = _ops.convert_to_tensor(contrast_factor, _dtypes.float32)
|
||
|
min_value = _ops.convert_to_tensor(min_value, _dtypes.float32)
|
||
|
max_value = _ops.convert_to_tensor(max_value, _dtypes.float32)
|
||
|
_inputs_flat = [images, contrast_factor, min_value, max_value]
|
||
|
_attrs = ("T", _attr_T)
|
||
|
_result = _execute.execute(b"AdjustContrast", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"AdjustContrast", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_AdjustContrastv2_T = TypeVar("TV_AdjustContrastv2_T", _atypes.Float32, _atypes.Half)
|
||
|
|
||
|
def adjust_contrastv2(images: Annotated[Any, TV_AdjustContrastv2_T], contrast_factor: Annotated[Any, _atypes.Float32], name=None) -> Annotated[Any, TV_AdjustContrastv2_T]:
|
||
|
r"""Adjust the contrast of one or more images.
|
||
|
|
||
|
`images` is a tensor of at least 3 dimensions. The last 3 dimensions are
|
||
|
interpreted as `[height, width, channels]`. The other dimensions only
|
||
|
represent a collection of images, such as `[batch, height, width, channels].`
|
||
|
|
||
|
Contrast is adjusted independently for each channel of each image.
|
||
|
|
||
|
For each channel, the Op first computes the mean of the image pixels in the
|
||
|
channel and then adjusts each component of each pixel to
|
||
|
`(x - mean) * contrast_factor + mean`.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `half`, `float32`.
|
||
|
Images to adjust. At least 3-D.
|
||
|
contrast_factor: A `Tensor` of type `float32`.
|
||
|
A float multiplier for adjusting contrast.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `images`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "AdjustContrastv2", name, images, contrast_factor)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return adjust_contrastv2_eager_fallback(
|
||
|
images, contrast_factor, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"AdjustContrastv2", images=images, contrast_factor=contrast_factor,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"AdjustContrastv2", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
AdjustContrastv2 = tf_export("raw_ops.AdjustContrastv2")(_ops.to_raw_op(adjust_contrastv2))
|
||
|
|
||
|
|
||
|
def adjust_contrastv2_eager_fallback(images: Annotated[Any, TV_AdjustContrastv2_T], contrast_factor: Annotated[Any, _atypes.Float32], name, ctx) -> Annotated[Any, TV_AdjustContrastv2_T]:
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.half, _dtypes.float32, ], _dtypes.float32)
|
||
|
contrast_factor = _ops.convert_to_tensor(contrast_factor, _dtypes.float32)
|
||
|
_inputs_flat = [images, contrast_factor]
|
||
|
_attrs = ("T", _attr_T)
|
||
|
_result = _execute.execute(b"AdjustContrastv2", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"AdjustContrastv2", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_AdjustHue_T = TypeVar("TV_AdjustHue_T", _atypes.Float32, _atypes.Half)
|
||
|
|
||
|
def adjust_hue(images: Annotated[Any, TV_AdjustHue_T], delta: Annotated[Any, _atypes.Float32], name=None) -> Annotated[Any, TV_AdjustHue_T]:
|
||
|
r"""Adjust the hue of one or more images.
|
||
|
|
||
|
`images` is a tensor of at least 3 dimensions. The last dimension is
|
||
|
interpreted as channels, and must be three.
|
||
|
|
||
|
The input image is considered in the RGB colorspace. Conceptually, the RGB
|
||
|
colors are first mapped into HSV. A delta is then applied all the hue values,
|
||
|
and then remapped back to RGB colorspace.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `half`, `float32`.
|
||
|
Images to adjust. At least 3-D.
|
||
|
delta: A `Tensor` of type `float32`. A float delta to add to the hue.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `images`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "AdjustHue", name, images, delta)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return adjust_hue_eager_fallback(
|
||
|
images, delta, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"AdjustHue", images=images, delta=delta, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"AdjustHue", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
AdjustHue = tf_export("raw_ops.AdjustHue")(_ops.to_raw_op(adjust_hue))
|
||
|
|
||
|
|
||
|
def adjust_hue_eager_fallback(images: Annotated[Any, TV_AdjustHue_T], delta: Annotated[Any, _atypes.Float32], name, ctx) -> Annotated[Any, TV_AdjustHue_T]:
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.half, _dtypes.float32, ], _dtypes.float32)
|
||
|
delta = _ops.convert_to_tensor(delta, _dtypes.float32)
|
||
|
_inputs_flat = [images, delta]
|
||
|
_attrs = ("T", _attr_T)
|
||
|
_result = _execute.execute(b"AdjustHue", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"AdjustHue", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_AdjustSaturation_T = TypeVar("TV_AdjustSaturation_T", _atypes.Float32, _atypes.Half)
|
||
|
|
||
|
def adjust_saturation(images: Annotated[Any, TV_AdjustSaturation_T], scale: Annotated[Any, _atypes.Float32], name=None) -> Annotated[Any, TV_AdjustSaturation_T]:
|
||
|
r"""Adjust the saturation of one or more images.
|
||
|
|
||
|
`images` is a tensor of at least 3 dimensions. The last dimension is
|
||
|
interpreted as channels, and must be three.
|
||
|
|
||
|
The input image is considered in the RGB colorspace. Conceptually, the RGB
|
||
|
colors are first mapped into HSV. A scale is then applied all the saturation
|
||
|
values, and then remapped back to RGB colorspace.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `half`, `float32`.
|
||
|
Images to adjust. At least 3-D.
|
||
|
scale: A `Tensor` of type `float32`.
|
||
|
A float scale to add to the saturation.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `images`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "AdjustSaturation", name, images, scale)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return adjust_saturation_eager_fallback(
|
||
|
images, scale, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"AdjustSaturation", images=images, scale=scale, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"AdjustSaturation", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
AdjustSaturation = tf_export("raw_ops.AdjustSaturation")(_ops.to_raw_op(adjust_saturation))
|
||
|
|
||
|
|
||
|
def adjust_saturation_eager_fallback(images: Annotated[Any, TV_AdjustSaturation_T], scale: Annotated[Any, _atypes.Float32], name, ctx) -> Annotated[Any, TV_AdjustSaturation_T]:
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.half, _dtypes.float32, ], _dtypes.float32)
|
||
|
scale = _ops.convert_to_tensor(scale, _dtypes.float32)
|
||
|
_inputs_flat = [images, scale]
|
||
|
_attrs = ("T", _attr_T)
|
||
|
_result = _execute.execute(b"AdjustSaturation", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"AdjustSaturation", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
_CombinedNonMaxSuppressionOutput = collections.namedtuple(
|
||
|
"CombinedNonMaxSuppression",
|
||
|
["nmsed_boxes", "nmsed_scores", "nmsed_classes", "valid_detections"])
|
||
|
|
||
|
|
||
|
def combined_non_max_suppression(boxes: Annotated[Any, _atypes.Float32], scores: Annotated[Any, _atypes.Float32], max_output_size_per_class: Annotated[Any, _atypes.Int32], max_total_size: Annotated[Any, _atypes.Int32], iou_threshold: Annotated[Any, _atypes.Float32], score_threshold: Annotated[Any, _atypes.Float32], pad_per_class:bool=False, clip_boxes:bool=True, name=None):
|
||
|
r"""Greedily selects a subset of bounding boxes in descending order of score,
|
||
|
|
||
|
This operation performs non_max_suppression on the inputs per batch, across
|
||
|
all classes.
|
||
|
Prunes away boxes that have high intersection-over-union (IOU) overlap
|
||
|
with previously selected boxes. Bounding boxes are supplied as
|
||
|
[y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any
|
||
|
diagonal pair of box corners and the coordinates can be provided as normalized
|
||
|
(i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm
|
||
|
is agnostic to where the origin is in the coordinate system. Also note that
|
||
|
this algorithm is invariant to orthogonal transformations and translations
|
||
|
of the coordinate system; thus translating or reflections of the coordinate
|
||
|
system result in the same boxes being selected by the algorithm.
|
||
|
The output of this operation is the final boxes, scores and classes tensor
|
||
|
returned after performing non_max_suppression.
|
||
|
|
||
|
Args:
|
||
|
boxes: A `Tensor` of type `float32`.
|
||
|
A 4-D float tensor of shape `[batch_size, num_boxes, q, 4]`. If `q` is 1 then
|
||
|
same boxes are used for all classes otherwise, if `q` is equal to number of
|
||
|
classes, class-specific boxes are used.
|
||
|
scores: A `Tensor` of type `float32`.
|
||
|
A 3-D float tensor of shape `[batch_size, num_boxes, num_classes]`
|
||
|
representing a single score corresponding to each box (each row of boxes).
|
||
|
max_output_size_per_class: A `Tensor` of type `int32`.
|
||
|
A scalar integer tensor representing the maximum number of
|
||
|
boxes to be selected by non max suppression per class
|
||
|
max_total_size: A `Tensor` of type `int32`.
|
||
|
An int32 scalar representing the maximum number of boxes retained over all
|
||
|
classes. Note that setting this value to a large number may result in OOM error
|
||
|
depending on the system workload.
|
||
|
iou_threshold: A `Tensor` of type `float32`.
|
||
|
A 0-D float tensor representing the threshold for deciding whether
|
||
|
boxes overlap too much with respect to IOU.
|
||
|
score_threshold: A `Tensor` of type `float32`.
|
||
|
A 0-D float tensor representing the threshold for deciding when to remove
|
||
|
boxes based on score.
|
||
|
pad_per_class: An optional `bool`. Defaults to `False`.
|
||
|
If false, the output nmsed boxes, scores and classes
|
||
|
are padded/clipped to `max_total_size`. If true, the
|
||
|
output nmsed boxes, scores and classes are padded to be of length
|
||
|
`max_size_per_class`*`num_classes`, unless it exceeds `max_total_size` in
|
||
|
which case it is clipped to `max_total_size`. Defaults to false.
|
||
|
clip_boxes: An optional `bool`. Defaults to `True`.
|
||
|
If true, assume the box coordinates are between [0, 1] and clip the output boxes
|
||
|
if they fall beyond [0, 1]. If false, do not do clipping and output the box
|
||
|
coordinates as it is.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A tuple of `Tensor` objects (nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections).
|
||
|
|
||
|
nmsed_boxes: A `Tensor` of type `float32`.
|
||
|
nmsed_scores: A `Tensor` of type `float32`.
|
||
|
nmsed_classes: A `Tensor` of type `float32`.
|
||
|
valid_detections: A `Tensor` of type `int32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "CombinedNonMaxSuppression", name, boxes, scores,
|
||
|
max_output_size_per_class, max_total_size, iou_threshold,
|
||
|
score_threshold, "pad_per_class", pad_per_class, "clip_boxes",
|
||
|
clip_boxes)
|
||
|
_result = _CombinedNonMaxSuppressionOutput._make(_result)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return combined_non_max_suppression_eager_fallback(
|
||
|
boxes, scores, max_output_size_per_class, max_total_size,
|
||
|
iou_threshold, score_threshold, pad_per_class=pad_per_class,
|
||
|
clip_boxes=clip_boxes, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if pad_per_class is None:
|
||
|
pad_per_class = False
|
||
|
pad_per_class = _execute.make_bool(pad_per_class, "pad_per_class")
|
||
|
if clip_boxes is None:
|
||
|
clip_boxes = True
|
||
|
clip_boxes = _execute.make_bool(clip_boxes, "clip_boxes")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"CombinedNonMaxSuppression", boxes=boxes, scores=scores,
|
||
|
max_output_size_per_class=max_output_size_per_class,
|
||
|
max_total_size=max_total_size,
|
||
|
iou_threshold=iou_threshold,
|
||
|
score_threshold=score_threshold,
|
||
|
pad_per_class=pad_per_class,
|
||
|
clip_boxes=clip_boxes, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("pad_per_class", _op._get_attr_bool("pad_per_class"),
|
||
|
"clip_boxes", _op._get_attr_bool("clip_boxes"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"CombinedNonMaxSuppression", _inputs_flat, _attrs, _result)
|
||
|
_result = _CombinedNonMaxSuppressionOutput._make(_result)
|
||
|
return _result
|
||
|
|
||
|
CombinedNonMaxSuppression = tf_export("raw_ops.CombinedNonMaxSuppression")(_ops.to_raw_op(combined_non_max_suppression))
|
||
|
|
||
|
|
||
|
def combined_non_max_suppression_eager_fallback(boxes: Annotated[Any, _atypes.Float32], scores: Annotated[Any, _atypes.Float32], max_output_size_per_class: Annotated[Any, _atypes.Int32], max_total_size: Annotated[Any, _atypes.Int32], iou_threshold: Annotated[Any, _atypes.Float32], score_threshold: Annotated[Any, _atypes.Float32], pad_per_class: bool, clip_boxes: bool, name, ctx):
|
||
|
if pad_per_class is None:
|
||
|
pad_per_class = False
|
||
|
pad_per_class = _execute.make_bool(pad_per_class, "pad_per_class")
|
||
|
if clip_boxes is None:
|
||
|
clip_boxes = True
|
||
|
clip_boxes = _execute.make_bool(clip_boxes, "clip_boxes")
|
||
|
boxes = _ops.convert_to_tensor(boxes, _dtypes.float32)
|
||
|
scores = _ops.convert_to_tensor(scores, _dtypes.float32)
|
||
|
max_output_size_per_class = _ops.convert_to_tensor(max_output_size_per_class, _dtypes.int32)
|
||
|
max_total_size = _ops.convert_to_tensor(max_total_size, _dtypes.int32)
|
||
|
iou_threshold = _ops.convert_to_tensor(iou_threshold, _dtypes.float32)
|
||
|
score_threshold = _ops.convert_to_tensor(score_threshold, _dtypes.float32)
|
||
|
_inputs_flat = [boxes, scores, max_output_size_per_class, max_total_size, iou_threshold, score_threshold]
|
||
|
_attrs = ("pad_per_class", pad_per_class, "clip_boxes", clip_boxes)
|
||
|
_result = _execute.execute(b"CombinedNonMaxSuppression", 4,
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"CombinedNonMaxSuppression", _inputs_flat, _attrs, _result)
|
||
|
_result = _CombinedNonMaxSuppressionOutput._make(_result)
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_CropAndResize_T = TypeVar("TV_CropAndResize_T", _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt8)
|
||
|
|
||
|
def crop_and_resize(image: Annotated[Any, TV_CropAndResize_T], boxes: Annotated[Any, _atypes.Float32], box_ind: Annotated[Any, _atypes.Int32], crop_size: Annotated[Any, _atypes.Int32], method:str="bilinear", extrapolation_value:float=0, name=None) -> Annotated[Any, _atypes.Float32]:
|
||
|
r"""Extracts crops from the input image tensor and resizes them.
|
||
|
|
||
|
Extracts crops from the input image tensor and resizes them using bilinear
|
||
|
sampling or nearest neighbor sampling (possibly with aspect ratio change) to a
|
||
|
common output size specified by `crop_size`. This is more general than the
|
||
|
`crop_to_bounding_box` op which extracts a fixed size slice from the input image
|
||
|
and does not allow resizing or aspect ratio change.
|
||
|
|
||
|
Returns a tensor with `crops` from the input `image` at positions defined at the
|
||
|
bounding box locations in `boxes`. The cropped boxes are all resized (with
|
||
|
bilinear or nearest neighbor interpolation) to a fixed
|
||
|
`size = [crop_height, crop_width]`. The result is a 4-D tensor
|
||
|
`[num_boxes, crop_height, crop_width, depth]`. The resizing is corner aligned.
|
||
|
In particular, if `boxes = [[0, 0, 1, 1]]`, the method will give identical
|
||
|
results to using `tf.image.resize_bilinear()` or
|
||
|
`tf.image.resize_nearest_neighbor()`(depends on the `method` argument) with
|
||
|
`align_corners=True`.
|
||
|
|
||
|
Args:
|
||
|
image: A `Tensor`. Must be one of the following types: `uint8`, `uint16`, `int8`, `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
|
||
|
A 4-D tensor of shape `[batch, image_height, image_width, depth]`.
|
||
|
Both `image_height` and `image_width` need to be positive.
|
||
|
boxes: A `Tensor` of type `float32`.
|
||
|
A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensor
|
||
|
specifies the coordinates of a box in the `box_ind[i]` image and is specified
|
||
|
in normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value of
|
||
|
`y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the
|
||
|
`[0, 1]` interval of normalized image height is mapped to
|
||
|
`[0, image_height - 1]` in image height coordinates. We do allow `y1` > `y2`, in
|
||
|
which case the sampled crop is an up-down flipped version of the original
|
||
|
image. The width dimension is treated similarly. Normalized coordinates
|
||
|
outside the `[0, 1]` range are allowed, in which case we use
|
||
|
`extrapolation_value` to extrapolate the input image values.
|
||
|
box_ind: A `Tensor` of type `int32`.
|
||
|
A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`.
|
||
|
The value of `box_ind[i]` specifies the image that the `i`-th box refers to.
|
||
|
crop_size: A `Tensor` of type `int32`.
|
||
|
A 1-D tensor of 2 elements, `size = [crop_height, crop_width]`. All
|
||
|
cropped image patches are resized to this size. The aspect ratio of the image
|
||
|
content is not preserved. Both `crop_height` and `crop_width` need to be
|
||
|
positive.
|
||
|
method: An optional `string` from: `"bilinear", "nearest"`. Defaults to `"bilinear"`.
|
||
|
A string specifying the sampling method for resizing. It can be either
|
||
|
`"bilinear"` or `"nearest"` and default to `"bilinear"`. Currently two sampling
|
||
|
methods are supported: Bilinear and Nearest Neighbor.
|
||
|
extrapolation_value: An optional `float`. Defaults to `0`.
|
||
|
Value used for extrapolation, when applicable.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "CropAndResize", name, image, boxes, box_ind, crop_size,
|
||
|
"method", method, "extrapolation_value", extrapolation_value)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return crop_and_resize_eager_fallback(
|
||
|
image, boxes, box_ind, crop_size, method=method,
|
||
|
extrapolation_value=extrapolation_value, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if method is None:
|
||
|
method = "bilinear"
|
||
|
method = _execute.make_str(method, "method")
|
||
|
if extrapolation_value is None:
|
||
|
extrapolation_value = 0
|
||
|
extrapolation_value = _execute.make_float(extrapolation_value, "extrapolation_value")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"CropAndResize", image=image, boxes=boxes, box_ind=box_ind,
|
||
|
crop_size=crop_size, method=method,
|
||
|
extrapolation_value=extrapolation_value, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "method", _op.get_attr("method"),
|
||
|
"extrapolation_value", _op.get_attr("extrapolation_value"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"CropAndResize", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
CropAndResize = tf_export("raw_ops.CropAndResize")(_ops.to_raw_op(crop_and_resize))
|
||
|
|
||
|
|
||
|
def crop_and_resize_eager_fallback(image: Annotated[Any, TV_CropAndResize_T], boxes: Annotated[Any, _atypes.Float32], box_ind: Annotated[Any, _atypes.Int32], crop_size: Annotated[Any, _atypes.Int32], method: str, extrapolation_value: float, name, ctx) -> Annotated[Any, _atypes.Float32]:
|
||
|
if method is None:
|
||
|
method = "bilinear"
|
||
|
method = _execute.make_str(method, "method")
|
||
|
if extrapolation_value is None:
|
||
|
extrapolation_value = 0
|
||
|
extrapolation_value = _execute.make_float(extrapolation_value, "extrapolation_value")
|
||
|
_attr_T, (image,) = _execute.args_to_matching_eager([image], ctx, [_dtypes.uint8, _dtypes.uint16, _dtypes.int8, _dtypes.int16, _dtypes.int32, _dtypes.int64, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
|
||
|
boxes = _ops.convert_to_tensor(boxes, _dtypes.float32)
|
||
|
box_ind = _ops.convert_to_tensor(box_ind, _dtypes.int32)
|
||
|
crop_size = _ops.convert_to_tensor(crop_size, _dtypes.int32)
|
||
|
_inputs_flat = [image, boxes, box_ind, crop_size]
|
||
|
_attrs = ("T", _attr_T, "method", method, "extrapolation_value",
|
||
|
extrapolation_value)
|
||
|
_result = _execute.execute(b"CropAndResize", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"CropAndResize", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_CropAndResizeGradBoxes_T = TypeVar("TV_CropAndResizeGradBoxes_T", _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt8)
|
||
|
|
||
|
def crop_and_resize_grad_boxes(grads: Annotated[Any, _atypes.Float32], image: Annotated[Any, TV_CropAndResizeGradBoxes_T], boxes: Annotated[Any, _atypes.Float32], box_ind: Annotated[Any, _atypes.Int32], method:str="bilinear", name=None) -> Annotated[Any, _atypes.Float32]:
|
||
|
r"""Computes the gradient of the crop_and_resize op wrt the input boxes tensor.
|
||
|
|
||
|
Args:
|
||
|
grads: A `Tensor` of type `float32`.
|
||
|
A 4-D tensor of shape `[num_boxes, crop_height, crop_width, depth]`.
|
||
|
image: A `Tensor`. Must be one of the following types: `uint8`, `uint16`, `int8`, `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
|
||
|
A 4-D tensor of shape `[batch, image_height, image_width, depth]`.
|
||
|
Both `image_height` and `image_width` need to be positive.
|
||
|
boxes: A `Tensor` of type `float32`.
|
||
|
A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensor
|
||
|
specifies the coordinates of a box in the `box_ind[i]` image and is specified
|
||
|
in normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value of
|
||
|
`y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the
|
||
|
`[0, 1]` interval of normalized image height is mapped to
|
||
|
`[0, image_height - 1] in image height coordinates. We do allow y1 > y2, in
|
||
|
which case the sampled crop is an up-down flipped version of the original
|
||
|
image. The width dimension is treated similarly. Normalized coordinates
|
||
|
outside the `[0, 1]` range are allowed, in which case we use
|
||
|
`extrapolation_value` to extrapolate the input image values.
|
||
|
box_ind: A `Tensor` of type `int32`.
|
||
|
A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`.
|
||
|
The value of `box_ind[i]` specifies the image that the `i`-th box refers to.
|
||
|
method: An optional `string` from: `"bilinear"`. Defaults to `"bilinear"`.
|
||
|
A string specifying the interpolation method. Only 'bilinear' is
|
||
|
supported for now.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "CropAndResizeGradBoxes", name, grads, image, boxes, box_ind,
|
||
|
"method", method)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return crop_and_resize_grad_boxes_eager_fallback(
|
||
|
grads, image, boxes, box_ind, method=method, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if method is None:
|
||
|
method = "bilinear"
|
||
|
method = _execute.make_str(method, "method")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"CropAndResizeGradBoxes", grads=grads, image=image, boxes=boxes,
|
||
|
box_ind=box_ind, method=method, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "method", _op.get_attr("method"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"CropAndResizeGradBoxes", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
CropAndResizeGradBoxes = tf_export("raw_ops.CropAndResizeGradBoxes")(_ops.to_raw_op(crop_and_resize_grad_boxes))
|
||
|
|
||
|
|
||
|
def crop_and_resize_grad_boxes_eager_fallback(grads: Annotated[Any, _atypes.Float32], image: Annotated[Any, TV_CropAndResizeGradBoxes_T], boxes: Annotated[Any, _atypes.Float32], box_ind: Annotated[Any, _atypes.Int32], method: str, name, ctx) -> Annotated[Any, _atypes.Float32]:
|
||
|
if method is None:
|
||
|
method = "bilinear"
|
||
|
method = _execute.make_str(method, "method")
|
||
|
_attr_T, (image,) = _execute.args_to_matching_eager([image], ctx, [_dtypes.uint8, _dtypes.uint16, _dtypes.int8, _dtypes.int16, _dtypes.int32, _dtypes.int64, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
|
||
|
grads = _ops.convert_to_tensor(grads, _dtypes.float32)
|
||
|
boxes = _ops.convert_to_tensor(boxes, _dtypes.float32)
|
||
|
box_ind = _ops.convert_to_tensor(box_ind, _dtypes.int32)
|
||
|
_inputs_flat = [grads, image, boxes, box_ind]
|
||
|
_attrs = ("T", _attr_T, "method", method)
|
||
|
_result = _execute.execute(b"CropAndResizeGradBoxes", 1,
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"CropAndResizeGradBoxes", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_CropAndResizeGradImage_T = TypeVar("TV_CropAndResizeGradImage_T", _atypes.Float32, _atypes.Float64, _atypes.Half)
|
||
|
|
||
|
def crop_and_resize_grad_image(grads: Annotated[Any, _atypes.Float32], boxes: Annotated[Any, _atypes.Float32], box_ind: Annotated[Any, _atypes.Int32], image_size: Annotated[Any, _atypes.Int32], T: TV_CropAndResizeGradImage_T, method:str="bilinear", name=None) -> Annotated[Any, TV_CropAndResizeGradImage_T]:
|
||
|
r"""Computes the gradient of the crop_and_resize op wrt the input image tensor.
|
||
|
|
||
|
Args:
|
||
|
grads: A `Tensor` of type `float32`.
|
||
|
A 4-D tensor of shape `[num_boxes, crop_height, crop_width, depth]`.
|
||
|
boxes: A `Tensor` of type `float32`.
|
||
|
A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensor
|
||
|
specifies the coordinates of a box in the `box_ind[i]` image and is specified
|
||
|
in normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value of
|
||
|
`y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the
|
||
|
`[0, 1]` interval of normalized image height is mapped to
|
||
|
`[0, image_height - 1] in image height coordinates. We do allow y1 > y2, in
|
||
|
which case the sampled crop is an up-down flipped version of the original
|
||
|
image. The width dimension is treated similarly. Normalized coordinates
|
||
|
outside the `[0, 1]` range are allowed, in which case we use
|
||
|
`extrapolation_value` to extrapolate the input image values.
|
||
|
box_ind: A `Tensor` of type `int32`.
|
||
|
A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`.
|
||
|
The value of `box_ind[i]` specifies the image that the `i`-th box refers to.
|
||
|
image_size: A `Tensor` of type `int32`.
|
||
|
A 1-D tensor with value `[batch, image_height, image_width, depth]`
|
||
|
containing the original image size. Both `image_height` and `image_width` need
|
||
|
to be positive.
|
||
|
T: A `tf.DType` from: `tf.float32, tf.half, tf.float64`.
|
||
|
method: An optional `string` from: `"bilinear", "nearest"`. Defaults to `"bilinear"`.
|
||
|
A string specifying the interpolation method. Only 'bilinear' is
|
||
|
supported for now.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `T`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "CropAndResizeGradImage", name, grads, boxes, box_ind,
|
||
|
image_size, "T", T, "method", method)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return crop_and_resize_grad_image_eager_fallback(
|
||
|
grads, boxes, box_ind, image_size, T=T, method=method, name=name,
|
||
|
ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
T = _execute.make_type(T, "T")
|
||
|
if method is None:
|
||
|
method = "bilinear"
|
||
|
method = _execute.make_str(method, "method")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"CropAndResizeGradImage", grads=grads, boxes=boxes, box_ind=box_ind,
|
||
|
image_size=image_size, T=T, method=method,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "method", _op.get_attr("method"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"CropAndResizeGradImage", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
CropAndResizeGradImage = tf_export("raw_ops.CropAndResizeGradImage")(_ops.to_raw_op(crop_and_resize_grad_image))
|
||
|
|
||
|
|
||
|
def crop_and_resize_grad_image_eager_fallback(grads: Annotated[Any, _atypes.Float32], boxes: Annotated[Any, _atypes.Float32], box_ind: Annotated[Any, _atypes.Int32], image_size: Annotated[Any, _atypes.Int32], T: TV_CropAndResizeGradImage_T, method: str, name, ctx) -> Annotated[Any, TV_CropAndResizeGradImage_T]:
|
||
|
T = _execute.make_type(T, "T")
|
||
|
if method is None:
|
||
|
method = "bilinear"
|
||
|
method = _execute.make_str(method, "method")
|
||
|
grads = _ops.convert_to_tensor(grads, _dtypes.float32)
|
||
|
boxes = _ops.convert_to_tensor(boxes, _dtypes.float32)
|
||
|
box_ind = _ops.convert_to_tensor(box_ind, _dtypes.int32)
|
||
|
image_size = _ops.convert_to_tensor(image_size, _dtypes.int32)
|
||
|
_inputs_flat = [grads, boxes, box_ind, image_size]
|
||
|
_attrs = ("T", T, "method", method)
|
||
|
_result = _execute.execute(b"CropAndResizeGradImage", 1,
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"CropAndResizeGradImage", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
def decode_and_crop_jpeg(contents: Annotated[Any, _atypes.String], crop_window: Annotated[Any, _atypes.Int32], channels:int=0, ratio:int=1, fancy_upscaling:bool=True, try_recover_truncated:bool=False, acceptable_fraction:float=1, dct_method:str="", name=None) -> Annotated[Any, _atypes.UInt8]:
|
||
|
r"""Decode and Crop a JPEG-encoded image to a uint8 tensor.
|
||
|
|
||
|
The attr `channels` indicates the desired number of color channels for the
|
||
|
decoded image.
|
||
|
|
||
|
Accepted values are:
|
||
|
|
||
|
* 0: Use the number of channels in the JPEG-encoded image.
|
||
|
* 1: output a grayscale image.
|
||
|
* 3: output an RGB image.
|
||
|
|
||
|
If needed, the JPEG-encoded image is transformed to match the requested number
|
||
|
of color channels.
|
||
|
|
||
|
The attr `ratio` allows downscaling the image by an integer factor during
|
||
|
decoding. Allowed values are: 1, 2, 4, and 8. This is much faster than
|
||
|
downscaling the image later.
|
||
|
|
||
|
|
||
|
It is equivalent to a combination of decode and crop, but much faster by only
|
||
|
decoding partial jpeg image.
|
||
|
|
||
|
Args:
|
||
|
contents: A `Tensor` of type `string`. 0-D. The JPEG-encoded image.
|
||
|
crop_window: A `Tensor` of type `int32`.
|
||
|
1-D. The crop window: [crop_y, crop_x, crop_height, crop_width].
|
||
|
channels: An optional `int`. Defaults to `0`.
|
||
|
Number of color channels for the decoded image.
|
||
|
ratio: An optional `int`. Defaults to `1`. Downscaling ratio.
|
||
|
fancy_upscaling: An optional `bool`. Defaults to `True`.
|
||
|
If true use a slower but nicer upscaling of the
|
||
|
chroma planes (yuv420/422 only).
|
||
|
try_recover_truncated: An optional `bool`. Defaults to `False`.
|
||
|
If true try to recover an image from truncated input.
|
||
|
acceptable_fraction: An optional `float`. Defaults to `1`.
|
||
|
The minimum required fraction of lines before a truncated
|
||
|
input is accepted.
|
||
|
dct_method: An optional `string`. Defaults to `""`.
|
||
|
string specifying a hint about the algorithm used for
|
||
|
decompression. Defaults to "" which maps to a system-specific
|
||
|
default. Currently valid values are ["INTEGER_FAST",
|
||
|
"INTEGER_ACCURATE"]. The hint may be ignored (e.g., the internal
|
||
|
jpeg library changes to a version that does not have that specific
|
||
|
option.)
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `uint8`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "DecodeAndCropJpeg", name, contents, crop_window, "channels",
|
||
|
channels, "ratio", ratio, "fancy_upscaling", fancy_upscaling,
|
||
|
"try_recover_truncated", try_recover_truncated, "acceptable_fraction",
|
||
|
acceptable_fraction, "dct_method", dct_method)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return decode_and_crop_jpeg_eager_fallback(
|
||
|
contents, crop_window, channels=channels, ratio=ratio,
|
||
|
fancy_upscaling=fancy_upscaling,
|
||
|
try_recover_truncated=try_recover_truncated,
|
||
|
acceptable_fraction=acceptable_fraction, dct_method=dct_method,
|
||
|
name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if channels is None:
|
||
|
channels = 0
|
||
|
channels = _execute.make_int(channels, "channels")
|
||
|
if ratio is None:
|
||
|
ratio = 1
|
||
|
ratio = _execute.make_int(ratio, "ratio")
|
||
|
if fancy_upscaling is None:
|
||
|
fancy_upscaling = True
|
||
|
fancy_upscaling = _execute.make_bool(fancy_upscaling, "fancy_upscaling")
|
||
|
if try_recover_truncated is None:
|
||
|
try_recover_truncated = False
|
||
|
try_recover_truncated = _execute.make_bool(try_recover_truncated, "try_recover_truncated")
|
||
|
if acceptable_fraction is None:
|
||
|
acceptable_fraction = 1
|
||
|
acceptable_fraction = _execute.make_float(acceptable_fraction, "acceptable_fraction")
|
||
|
if dct_method is None:
|
||
|
dct_method = ""
|
||
|
dct_method = _execute.make_str(dct_method, "dct_method")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"DecodeAndCropJpeg", contents=contents, crop_window=crop_window,
|
||
|
channels=channels, ratio=ratio,
|
||
|
fancy_upscaling=fancy_upscaling,
|
||
|
try_recover_truncated=try_recover_truncated,
|
||
|
acceptable_fraction=acceptable_fraction,
|
||
|
dct_method=dct_method, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("channels", _op._get_attr_int("channels"), "ratio",
|
||
|
_op._get_attr_int("ratio"), "fancy_upscaling",
|
||
|
_op._get_attr_bool("fancy_upscaling"), "try_recover_truncated",
|
||
|
_op._get_attr_bool("try_recover_truncated"),
|
||
|
"acceptable_fraction", _op.get_attr("acceptable_fraction"),
|
||
|
"dct_method", _op.get_attr("dct_method"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"DecodeAndCropJpeg", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
DecodeAndCropJpeg = tf_export("raw_ops.DecodeAndCropJpeg")(_ops.to_raw_op(decode_and_crop_jpeg))
|
||
|
|
||
|
|
||
|
def decode_and_crop_jpeg_eager_fallback(contents: Annotated[Any, _atypes.String], crop_window: Annotated[Any, _atypes.Int32], channels: int, ratio: int, fancy_upscaling: bool, try_recover_truncated: bool, acceptable_fraction: float, dct_method: str, name, ctx) -> Annotated[Any, _atypes.UInt8]:
|
||
|
if channels is None:
|
||
|
channels = 0
|
||
|
channels = _execute.make_int(channels, "channels")
|
||
|
if ratio is None:
|
||
|
ratio = 1
|
||
|
ratio = _execute.make_int(ratio, "ratio")
|
||
|
if fancy_upscaling is None:
|
||
|
fancy_upscaling = True
|
||
|
fancy_upscaling = _execute.make_bool(fancy_upscaling, "fancy_upscaling")
|
||
|
if try_recover_truncated is None:
|
||
|
try_recover_truncated = False
|
||
|
try_recover_truncated = _execute.make_bool(try_recover_truncated, "try_recover_truncated")
|
||
|
if acceptable_fraction is None:
|
||
|
acceptable_fraction = 1
|
||
|
acceptable_fraction = _execute.make_float(acceptable_fraction, "acceptable_fraction")
|
||
|
if dct_method is None:
|
||
|
dct_method = ""
|
||
|
dct_method = _execute.make_str(dct_method, "dct_method")
|
||
|
contents = _ops.convert_to_tensor(contents, _dtypes.string)
|
||
|
crop_window = _ops.convert_to_tensor(crop_window, _dtypes.int32)
|
||
|
_inputs_flat = [contents, crop_window]
|
||
|
_attrs = ("channels", channels, "ratio", ratio, "fancy_upscaling",
|
||
|
fancy_upscaling, "try_recover_truncated", try_recover_truncated,
|
||
|
"acceptable_fraction", acceptable_fraction, "dct_method", dct_method)
|
||
|
_result = _execute.execute(b"DecodeAndCropJpeg", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"DecodeAndCropJpeg", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
def decode_bmp(contents: Annotated[Any, _atypes.String], channels:int=0, name=None) -> Annotated[Any, _atypes.UInt8]:
|
||
|
r"""Decode the first frame of a BMP-encoded image to a uint8 tensor.
|
||
|
|
||
|
The attr `channels` indicates the desired number of color channels for the
|
||
|
decoded image.
|
||
|
|
||
|
Accepted values are:
|
||
|
|
||
|
* 0: Use the number of channels in the BMP-encoded image.
|
||
|
* 3: output an RGB image.
|
||
|
* 4: output an RGBA image.
|
||
|
|
||
|
Args:
|
||
|
contents: A `Tensor` of type `string`. 0-D. The BMP-encoded image.
|
||
|
channels: An optional `int`. Defaults to `0`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `uint8`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "DecodeBmp", name, contents, "channels", channels)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return decode_bmp_eager_fallback(
|
||
|
contents, channels=channels, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if channels is None:
|
||
|
channels = 0
|
||
|
channels = _execute.make_int(channels, "channels")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"DecodeBmp", contents=contents, channels=channels, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("channels", _op._get_attr_int("channels"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"DecodeBmp", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
DecodeBmp = tf_export("raw_ops.DecodeBmp")(_ops.to_raw_op(decode_bmp))
|
||
|
|
||
|
|
||
|
def decode_bmp_eager_fallback(contents: Annotated[Any, _atypes.String], channels: int, name, ctx) -> Annotated[Any, _atypes.UInt8]:
|
||
|
if channels is None:
|
||
|
channels = 0
|
||
|
channels = _execute.make_int(channels, "channels")
|
||
|
contents = _ops.convert_to_tensor(contents, _dtypes.string)
|
||
|
_inputs_flat = [contents]
|
||
|
_attrs = ("channels", channels)
|
||
|
_result = _execute.execute(b"DecodeBmp", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"DecodeBmp", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
def decode_gif(contents: Annotated[Any, _atypes.String], name=None) -> Annotated[Any, _atypes.UInt8]:
|
||
|
r"""Decode the frame(s) of a GIF-encoded image to a uint8 tensor.
|
||
|
|
||
|
GIF images with frame or transparency compression are not supported.
|
||
|
On Linux and MacOS systems, convert animated GIFs from compressed to
|
||
|
uncompressed by running:
|
||
|
|
||
|
convert $src.gif -coalesce $dst.gif
|
||
|
|
||
|
This op also supports decoding JPEGs and PNGs, though it is cleaner to use
|
||
|
`tf.io.decode_image`.
|
||
|
|
||
|
Args:
|
||
|
contents: A `Tensor` of type `string`. 0-D. The GIF-encoded image.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `uint8`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "DecodeGif", name, contents)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return decode_gif_eager_fallback(
|
||
|
contents, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"DecodeGif", contents=contents, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ()
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"DecodeGif", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
DecodeGif = tf_export("raw_ops.DecodeGif")(_ops.to_raw_op(decode_gif))
|
||
|
|
||
|
|
||
|
def decode_gif_eager_fallback(contents: Annotated[Any, _atypes.String], name, ctx) -> Annotated[Any, _atypes.UInt8]:
|
||
|
contents = _ops.convert_to_tensor(contents, _dtypes.string)
|
||
|
_inputs_flat = [contents]
|
||
|
_attrs = None
|
||
|
_result = _execute.execute(b"DecodeGif", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"DecodeGif", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_DecodeImage_dtype = TypeVar("TV_DecodeImage_dtype", _atypes.Float32, _atypes.UInt16, _atypes.UInt8)
|
||
|
|
||
|
def decode_image(contents: Annotated[Any, _atypes.String], channels:int=0, dtype:TV_DecodeImage_dtype=_dtypes.uint8, expand_animations:bool=True, name=None) -> Annotated[Any, TV_DecodeImage_dtype]:
|
||
|
r"""Function for decode_bmp, decode_gif, decode_jpeg, and decode_png.
|
||
|
|
||
|
Detects whether an image is a BMP, GIF, JPEG, or PNG, and performs the
|
||
|
appropriate operation to convert the input bytes string into a Tensor of type
|
||
|
dtype.
|
||
|
|
||
|
*NOTE*: decode_gif returns a 4-D array [num_frames, height, width, 3], as
|
||
|
opposed to decode_bmp, decode_jpeg and decode_png, which return 3-D arrays
|
||
|
[height, width, num_channels]. Make sure to take this into account when
|
||
|
constructing your graph if you are intermixing GIF files with BMP, JPEG, and/or
|
||
|
PNG files. Alternately, set the expand_animations argument of this function to
|
||
|
False, in which case the op will return 3-dimensional tensors and will truncate
|
||
|
animated GIF files to the first frame.
|
||
|
|
||
|
*NOTE*: If the first frame of an animated GIF does not occupy the entire
|
||
|
canvas (maximum frame width x maximum frame height), then it fills the
|
||
|
unoccupied areas (in the first frame) with zeros (black). For frames after the
|
||
|
first frame that does not occupy the entire canvas, it uses the previous
|
||
|
frame to fill the unoccupied areas.
|
||
|
|
||
|
Args:
|
||
|
contents: A `Tensor` of type `string`. 0-D. The encoded image bytes.
|
||
|
channels: An optional `int`. Defaults to `0`.
|
||
|
Number of color channels for the decoded image.
|
||
|
dtype: An optional `tf.DType` from: `tf.uint8, tf.uint16, tf.float32`. Defaults to `tf.uint8`.
|
||
|
The desired DType of the returned Tensor.
|
||
|
expand_animations: An optional `bool`. Defaults to `True`.
|
||
|
Controls the output shape of the returned op. If True, the returned op will
|
||
|
produce a 3-D tensor for PNG, JPEG, and BMP files; and a 4-D tensor for all
|
||
|
GIFs, whether animated or not. If, False, the returned op will produce a 3-D
|
||
|
tensor for all file types and will truncate animated GIFs to the first frame.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `dtype`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "DecodeImage", name, contents, "channels", channels, "dtype",
|
||
|
dtype, "expand_animations", expand_animations)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return decode_image_eager_fallback(
|
||
|
contents, channels=channels, dtype=dtype,
|
||
|
expand_animations=expand_animations, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if channels is None:
|
||
|
channels = 0
|
||
|
channels = _execute.make_int(channels, "channels")
|
||
|
if dtype is None:
|
||
|
dtype = _dtypes.uint8
|
||
|
dtype = _execute.make_type(dtype, "dtype")
|
||
|
if expand_animations is None:
|
||
|
expand_animations = True
|
||
|
expand_animations = _execute.make_bool(expand_animations, "expand_animations")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"DecodeImage", contents=contents, channels=channels, dtype=dtype,
|
||
|
expand_animations=expand_animations, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("channels", _op._get_attr_int("channels"), "dtype",
|
||
|
_op._get_attr_type("dtype"), "expand_animations",
|
||
|
_op._get_attr_bool("expand_animations"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"DecodeImage", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
DecodeImage = tf_export("raw_ops.DecodeImage")(_ops.to_raw_op(decode_image))
|
||
|
|
||
|
|
||
|
def decode_image_eager_fallback(contents: Annotated[Any, _atypes.String], channels: int, dtype: TV_DecodeImage_dtype, expand_animations: bool, name, ctx) -> Annotated[Any, TV_DecodeImage_dtype]:
|
||
|
if channels is None:
|
||
|
channels = 0
|
||
|
channels = _execute.make_int(channels, "channels")
|
||
|
if dtype is None:
|
||
|
dtype = _dtypes.uint8
|
||
|
dtype = _execute.make_type(dtype, "dtype")
|
||
|
if expand_animations is None:
|
||
|
expand_animations = True
|
||
|
expand_animations = _execute.make_bool(expand_animations, "expand_animations")
|
||
|
contents = _ops.convert_to_tensor(contents, _dtypes.string)
|
||
|
_inputs_flat = [contents]
|
||
|
_attrs = ("channels", channels, "dtype", dtype, "expand_animations",
|
||
|
expand_animations)
|
||
|
_result = _execute.execute(b"DecodeImage", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"DecodeImage", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
def decode_jpeg(contents: Annotated[Any, _atypes.String], channels:int=0, ratio:int=1, fancy_upscaling:bool=True, try_recover_truncated:bool=False, acceptable_fraction:float=1, dct_method:str="", name=None) -> Annotated[Any, _atypes.UInt8]:
|
||
|
r"""Decode a JPEG-encoded image to a uint8 tensor.
|
||
|
|
||
|
The attr `channels` indicates the desired number of color channels for the
|
||
|
decoded image.
|
||
|
|
||
|
Accepted values are:
|
||
|
|
||
|
* 0: Use the number of channels in the JPEG-encoded image.
|
||
|
* 1: output a grayscale image.
|
||
|
* 3: output an RGB image.
|
||
|
|
||
|
If needed, the JPEG-encoded image is transformed to match the requested number
|
||
|
of color channels.
|
||
|
|
||
|
The attr `ratio` allows downscaling the image by an integer factor during
|
||
|
decoding. Allowed values are: 1, 2, 4, and 8. This is much faster than
|
||
|
downscaling the image later.
|
||
|
|
||
|
|
||
|
This op also supports decoding PNGs and non-animated GIFs since the interface is
|
||
|
the same, though it is cleaner to use `tf.io.decode_image`.
|
||
|
|
||
|
Args:
|
||
|
contents: A `Tensor` of type `string`. 0-D. The JPEG-encoded image.
|
||
|
channels: An optional `int`. Defaults to `0`.
|
||
|
Number of color channels for the decoded image.
|
||
|
ratio: An optional `int`. Defaults to `1`. Downscaling ratio.
|
||
|
fancy_upscaling: An optional `bool`. Defaults to `True`.
|
||
|
If true use a slower but nicer upscaling of the
|
||
|
chroma planes (yuv420/422 only).
|
||
|
try_recover_truncated: An optional `bool`. Defaults to `False`.
|
||
|
If true try to recover an image from truncated input.
|
||
|
acceptable_fraction: An optional `float`. Defaults to `1`.
|
||
|
The minimum required fraction of lines before a truncated
|
||
|
input is accepted.
|
||
|
dct_method: An optional `string`. Defaults to `""`.
|
||
|
string specifying a hint about the algorithm used for
|
||
|
decompression. Defaults to "" which maps to a system-specific
|
||
|
default. Currently valid values are ["INTEGER_FAST",
|
||
|
"INTEGER_ACCURATE"]. The hint may be ignored (e.g., the internal
|
||
|
jpeg library changes to a version that does not have that specific
|
||
|
option.)
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `uint8`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "DecodeJpeg", name, contents, "channels", channels, "ratio",
|
||
|
ratio, "fancy_upscaling", fancy_upscaling, "try_recover_truncated",
|
||
|
try_recover_truncated, "acceptable_fraction", acceptable_fraction,
|
||
|
"dct_method", dct_method)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return decode_jpeg_eager_fallback(
|
||
|
contents, channels=channels, ratio=ratio,
|
||
|
fancy_upscaling=fancy_upscaling,
|
||
|
try_recover_truncated=try_recover_truncated,
|
||
|
acceptable_fraction=acceptable_fraction, dct_method=dct_method,
|
||
|
name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if channels is None:
|
||
|
channels = 0
|
||
|
channels = _execute.make_int(channels, "channels")
|
||
|
if ratio is None:
|
||
|
ratio = 1
|
||
|
ratio = _execute.make_int(ratio, "ratio")
|
||
|
if fancy_upscaling is None:
|
||
|
fancy_upscaling = True
|
||
|
fancy_upscaling = _execute.make_bool(fancy_upscaling, "fancy_upscaling")
|
||
|
if try_recover_truncated is None:
|
||
|
try_recover_truncated = False
|
||
|
try_recover_truncated = _execute.make_bool(try_recover_truncated, "try_recover_truncated")
|
||
|
if acceptable_fraction is None:
|
||
|
acceptable_fraction = 1
|
||
|
acceptable_fraction = _execute.make_float(acceptable_fraction, "acceptable_fraction")
|
||
|
if dct_method is None:
|
||
|
dct_method = ""
|
||
|
dct_method = _execute.make_str(dct_method, "dct_method")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"DecodeJpeg", contents=contents, channels=channels, ratio=ratio,
|
||
|
fancy_upscaling=fancy_upscaling,
|
||
|
try_recover_truncated=try_recover_truncated,
|
||
|
acceptable_fraction=acceptable_fraction,
|
||
|
dct_method=dct_method, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("channels", _op._get_attr_int("channels"), "ratio",
|
||
|
_op._get_attr_int("ratio"), "fancy_upscaling",
|
||
|
_op._get_attr_bool("fancy_upscaling"), "try_recover_truncated",
|
||
|
_op._get_attr_bool("try_recover_truncated"),
|
||
|
"acceptable_fraction", _op.get_attr("acceptable_fraction"),
|
||
|
"dct_method", _op.get_attr("dct_method"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"DecodeJpeg", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
DecodeJpeg = tf_export("raw_ops.DecodeJpeg")(_ops.to_raw_op(decode_jpeg))
|
||
|
|
||
|
|
||
|
def decode_jpeg_eager_fallback(contents: Annotated[Any, _atypes.String], channels: int, ratio: int, fancy_upscaling: bool, try_recover_truncated: bool, acceptable_fraction: float, dct_method: str, name, ctx) -> Annotated[Any, _atypes.UInt8]:
|
||
|
if channels is None:
|
||
|
channels = 0
|
||
|
channels = _execute.make_int(channels, "channels")
|
||
|
if ratio is None:
|
||
|
ratio = 1
|
||
|
ratio = _execute.make_int(ratio, "ratio")
|
||
|
if fancy_upscaling is None:
|
||
|
fancy_upscaling = True
|
||
|
fancy_upscaling = _execute.make_bool(fancy_upscaling, "fancy_upscaling")
|
||
|
if try_recover_truncated is None:
|
||
|
try_recover_truncated = False
|
||
|
try_recover_truncated = _execute.make_bool(try_recover_truncated, "try_recover_truncated")
|
||
|
if acceptable_fraction is None:
|
||
|
acceptable_fraction = 1
|
||
|
acceptable_fraction = _execute.make_float(acceptable_fraction, "acceptable_fraction")
|
||
|
if dct_method is None:
|
||
|
dct_method = ""
|
||
|
dct_method = _execute.make_str(dct_method, "dct_method")
|
||
|
contents = _ops.convert_to_tensor(contents, _dtypes.string)
|
||
|
_inputs_flat = [contents]
|
||
|
_attrs = ("channels", channels, "ratio", ratio, "fancy_upscaling",
|
||
|
fancy_upscaling, "try_recover_truncated", try_recover_truncated,
|
||
|
"acceptable_fraction", acceptable_fraction, "dct_method", dct_method)
|
||
|
_result = _execute.execute(b"DecodeJpeg", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"DecodeJpeg", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_DecodePng_dtype = TypeVar("TV_DecodePng_dtype", _atypes.UInt16, _atypes.UInt8)
|
||
|
|
||
|
def decode_png(contents: Annotated[Any, _atypes.String], channels:int=0, dtype:TV_DecodePng_dtype=_dtypes.uint8, name=None) -> Annotated[Any, TV_DecodePng_dtype]:
|
||
|
r"""Decode a PNG-encoded image to a uint8 or uint16 tensor.
|
||
|
|
||
|
The attr `channels` indicates the desired number of color channels for the
|
||
|
decoded image.
|
||
|
|
||
|
Accepted values are:
|
||
|
|
||
|
* 0: Use the number of channels in the PNG-encoded image.
|
||
|
* 1: output a grayscale image.
|
||
|
* 3: output an RGB image.
|
||
|
* 4: output an RGBA image.
|
||
|
|
||
|
If needed, the PNG-encoded image is transformed to match the requested number
|
||
|
of color channels.
|
||
|
|
||
|
This op also supports decoding JPEGs and non-animated GIFs since the interface
|
||
|
is the same, though it is cleaner to use `tf.io.decode_image`.
|
||
|
|
||
|
Args:
|
||
|
contents: A `Tensor` of type `string`. 0-D. The PNG-encoded image.
|
||
|
channels: An optional `int`. Defaults to `0`.
|
||
|
Number of color channels for the decoded image.
|
||
|
dtype: An optional `tf.DType` from: `tf.uint8, tf.uint16`. Defaults to `tf.uint8`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `dtype`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "DecodePng", name, contents, "channels", channels, "dtype",
|
||
|
dtype)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return decode_png_eager_fallback(
|
||
|
contents, channels=channels, dtype=dtype, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if channels is None:
|
||
|
channels = 0
|
||
|
channels = _execute.make_int(channels, "channels")
|
||
|
if dtype is None:
|
||
|
dtype = _dtypes.uint8
|
||
|
dtype = _execute.make_type(dtype, "dtype")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"DecodePng", contents=contents, channels=channels, dtype=dtype,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("channels", _op._get_attr_int("channels"), "dtype",
|
||
|
_op._get_attr_type("dtype"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"DecodePng", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
DecodePng = tf_export("raw_ops.DecodePng")(_ops.to_raw_op(decode_png))
|
||
|
|
||
|
|
||
|
def decode_png_eager_fallback(contents: Annotated[Any, _atypes.String], channels: int, dtype: TV_DecodePng_dtype, name, ctx) -> Annotated[Any, TV_DecodePng_dtype]:
|
||
|
if channels is None:
|
||
|
channels = 0
|
||
|
channels = _execute.make_int(channels, "channels")
|
||
|
if dtype is None:
|
||
|
dtype = _dtypes.uint8
|
||
|
dtype = _execute.make_type(dtype, "dtype")
|
||
|
contents = _ops.convert_to_tensor(contents, _dtypes.string)
|
||
|
_inputs_flat = [contents]
|
||
|
_attrs = ("channels", channels, "dtype", dtype)
|
||
|
_result = _execute.execute(b"DecodePng", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"DecodePng", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_DrawBoundingBoxes_T = TypeVar("TV_DrawBoundingBoxes_T", _atypes.Float32, _atypes.Half)
|
||
|
|
||
|
def draw_bounding_boxes(images: Annotated[Any, TV_DrawBoundingBoxes_T], boxes: Annotated[Any, _atypes.Float32], name=None) -> Annotated[Any, TV_DrawBoundingBoxes_T]:
|
||
|
r"""Draw bounding boxes on a batch of images.
|
||
|
|
||
|
Outputs a copy of `images` but draws on top of the pixels zero or more bounding
|
||
|
boxes specified by the locations in `boxes`. The coordinates of the each
|
||
|
bounding box in `boxes` are encoded as `[y_min, x_min, y_max, x_max]`. The
|
||
|
bounding box coordinates are floats in `[0.0, 1.0]` relative to the width and
|
||
|
height of the underlying image.
|
||
|
|
||
|
For example, if an image is 100 x 200 pixels (height x width) and the bounding
|
||
|
box is `[0.1, 0.2, 0.5, 0.9]`, the upper-left and bottom-right coordinates of
|
||
|
the bounding box will be `(40, 10)` to `(180, 50)` (in (x,y) coordinates).
|
||
|
|
||
|
Parts of the bounding box may fall outside the image.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `float32`, `half`.
|
||
|
4-D with shape `[batch, height, width, depth]`. A batch of images.
|
||
|
boxes: A `Tensor` of type `float32`.
|
||
|
3-D with shape `[batch, num_bounding_boxes, 4]` containing bounding
|
||
|
boxes.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `images`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "DrawBoundingBoxes", name, images, boxes)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return draw_bounding_boxes_eager_fallback(
|
||
|
images, boxes, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"DrawBoundingBoxes", images=images, boxes=boxes, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"DrawBoundingBoxes", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
DrawBoundingBoxes = tf_export("raw_ops.DrawBoundingBoxes")(_ops.to_raw_op(draw_bounding_boxes))
|
||
|
|
||
|
|
||
|
def draw_bounding_boxes_eager_fallback(images: Annotated[Any, TV_DrawBoundingBoxes_T], boxes: Annotated[Any, _atypes.Float32], name, ctx) -> Annotated[Any, TV_DrawBoundingBoxes_T]:
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.float32, _dtypes.half, ], _dtypes.float32)
|
||
|
boxes = _ops.convert_to_tensor(boxes, _dtypes.float32)
|
||
|
_inputs_flat = [images, boxes]
|
||
|
_attrs = ("T", _attr_T)
|
||
|
_result = _execute.execute(b"DrawBoundingBoxes", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"DrawBoundingBoxes", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_DrawBoundingBoxesV2_T = TypeVar("TV_DrawBoundingBoxesV2_T", _atypes.Float32, _atypes.Half)
|
||
|
|
||
|
def draw_bounding_boxes_v2(images: Annotated[Any, TV_DrawBoundingBoxesV2_T], boxes: Annotated[Any, _atypes.Float32], colors: Annotated[Any, _atypes.Float32], name=None) -> Annotated[Any, TV_DrawBoundingBoxesV2_T]:
|
||
|
r"""Draw bounding boxes on a batch of images.
|
||
|
|
||
|
Outputs a copy of `images` but draws on top of the pixels zero or more bounding
|
||
|
boxes specified by the locations in `boxes`. The coordinates of the each
|
||
|
bounding box in `boxes` are encoded as `[y_min, x_min, y_max, x_max]`. The
|
||
|
bounding box coordinates are floats in `[0.0, 1.0]` relative to the width and
|
||
|
height of the underlying image.
|
||
|
|
||
|
For example, if an image is 100 x 200 pixels (height x width) and the bounding
|
||
|
box is `[0.1, 0.2, 0.5, 0.9]`, the upper-left and bottom-right coordinates of
|
||
|
the bounding box will be `(40, 10)` to `(100, 50)` (in (x,y) coordinates).
|
||
|
|
||
|
Parts of the bounding box may fall outside the image.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `float32`, `half`.
|
||
|
4-D with shape `[batch, height, width, depth]`. A batch of images.
|
||
|
boxes: A `Tensor` of type `float32`.
|
||
|
3-D with shape `[batch, num_bounding_boxes, 4]` containing bounding
|
||
|
boxes.
|
||
|
colors: A `Tensor` of type `float32`.
|
||
|
2-D. A list of RGBA colors to cycle through for the boxes.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `images`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "DrawBoundingBoxesV2", name, images, boxes, colors)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return draw_bounding_boxes_v2_eager_fallback(
|
||
|
images, boxes, colors, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"DrawBoundingBoxesV2", images=images, boxes=boxes, colors=colors,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"DrawBoundingBoxesV2", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
DrawBoundingBoxesV2 = tf_export("raw_ops.DrawBoundingBoxesV2")(_ops.to_raw_op(draw_bounding_boxes_v2))
|
||
|
|
||
|
|
||
|
def draw_bounding_boxes_v2_eager_fallback(images: Annotated[Any, TV_DrawBoundingBoxesV2_T], boxes: Annotated[Any, _atypes.Float32], colors: Annotated[Any, _atypes.Float32], name, ctx) -> Annotated[Any, TV_DrawBoundingBoxesV2_T]:
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.float32, _dtypes.half, ], _dtypes.float32)
|
||
|
boxes = _ops.convert_to_tensor(boxes, _dtypes.float32)
|
||
|
colors = _ops.convert_to_tensor(colors, _dtypes.float32)
|
||
|
_inputs_flat = [images, boxes, colors]
|
||
|
_attrs = ("T", _attr_T)
|
||
|
_result = _execute.execute(b"DrawBoundingBoxesV2", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"DrawBoundingBoxesV2", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
def encode_jpeg(image: Annotated[Any, _atypes.UInt8], format:str="", quality:int=95, progressive:bool=False, optimize_size:bool=False, chroma_downsampling:bool=True, density_unit:str="in", x_density:int=300, y_density:int=300, xmp_metadata:str="", name=None) -> Annotated[Any, _atypes.String]:
|
||
|
r"""JPEG-encode an image.
|
||
|
|
||
|
`image` is a 3-D uint8 Tensor of shape `[height, width, channels]`.
|
||
|
|
||
|
The attr `format` can be used to override the color format of the encoded
|
||
|
output. Values can be:
|
||
|
|
||
|
* `''`: Use a default format based on the number of channels in the image.
|
||
|
* `grayscale`: Output a grayscale JPEG image. The `channels` dimension
|
||
|
of `image` must be 1.
|
||
|
* `rgb`: Output an RGB JPEG image. The `channels` dimension
|
||
|
of `image` must be 3.
|
||
|
|
||
|
If `format` is not specified or is the empty string, a default format is picked
|
||
|
in function of the number of channels in `image`:
|
||
|
|
||
|
* 1: Output a grayscale image.
|
||
|
* 3: Output an RGB image.
|
||
|
|
||
|
Args:
|
||
|
image: A `Tensor` of type `uint8`.
|
||
|
3-D with shape `[height, width, channels]`.
|
||
|
format: An optional `string` from: `"", "grayscale", "rgb"`. Defaults to `""`.
|
||
|
Per pixel image format.
|
||
|
quality: An optional `int`. Defaults to `95`.
|
||
|
Quality of the compression from 0 to 100 (higher is better and slower).
|
||
|
progressive: An optional `bool`. Defaults to `False`.
|
||
|
If True, create a JPEG that loads progressively (coarse to fine).
|
||
|
optimize_size: An optional `bool`. Defaults to `False`.
|
||
|
If True, spend CPU/RAM to reduce size with no quality change.
|
||
|
chroma_downsampling: An optional `bool`. Defaults to `True`.
|
||
|
See http://en.wikipedia.org/wiki/Chroma_subsampling.
|
||
|
density_unit: An optional `string` from: `"in", "cm"`. Defaults to `"in"`.
|
||
|
Unit used to specify `x_density` and `y_density`:
|
||
|
pixels per inch (`'in'`) or centimeter (`'cm'`).
|
||
|
x_density: An optional `int`. Defaults to `300`.
|
||
|
Horizontal pixels per density unit.
|
||
|
y_density: An optional `int`. Defaults to `300`.
|
||
|
Vertical pixels per density unit.
|
||
|
xmp_metadata: An optional `string`. Defaults to `""`.
|
||
|
If not empty, embed this XMP metadata in the image header.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `string`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "EncodeJpeg", name, image, "format", format, "quality", quality,
|
||
|
"progressive", progressive, "optimize_size", optimize_size,
|
||
|
"chroma_downsampling", chroma_downsampling, "density_unit",
|
||
|
density_unit, "x_density", x_density, "y_density", y_density,
|
||
|
"xmp_metadata", xmp_metadata)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return encode_jpeg_eager_fallback(
|
||
|
image, format=format, quality=quality, progressive=progressive,
|
||
|
optimize_size=optimize_size,
|
||
|
chroma_downsampling=chroma_downsampling, density_unit=density_unit,
|
||
|
x_density=x_density, y_density=y_density, xmp_metadata=xmp_metadata,
|
||
|
name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if format is None:
|
||
|
format = ""
|
||
|
format = _execute.make_str(format, "format")
|
||
|
if quality is None:
|
||
|
quality = 95
|
||
|
quality = _execute.make_int(quality, "quality")
|
||
|
if progressive is None:
|
||
|
progressive = False
|
||
|
progressive = _execute.make_bool(progressive, "progressive")
|
||
|
if optimize_size is None:
|
||
|
optimize_size = False
|
||
|
optimize_size = _execute.make_bool(optimize_size, "optimize_size")
|
||
|
if chroma_downsampling is None:
|
||
|
chroma_downsampling = True
|
||
|
chroma_downsampling = _execute.make_bool(chroma_downsampling, "chroma_downsampling")
|
||
|
if density_unit is None:
|
||
|
density_unit = "in"
|
||
|
density_unit = _execute.make_str(density_unit, "density_unit")
|
||
|
if x_density is None:
|
||
|
x_density = 300
|
||
|
x_density = _execute.make_int(x_density, "x_density")
|
||
|
if y_density is None:
|
||
|
y_density = 300
|
||
|
y_density = _execute.make_int(y_density, "y_density")
|
||
|
if xmp_metadata is None:
|
||
|
xmp_metadata = ""
|
||
|
xmp_metadata = _execute.make_str(xmp_metadata, "xmp_metadata")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"EncodeJpeg", image=image, format=format, quality=quality,
|
||
|
progressive=progressive, optimize_size=optimize_size,
|
||
|
chroma_downsampling=chroma_downsampling,
|
||
|
density_unit=density_unit, x_density=x_density,
|
||
|
y_density=y_density, xmp_metadata=xmp_metadata,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("format", _op.get_attr("format"), "quality",
|
||
|
_op._get_attr_int("quality"), "progressive",
|
||
|
_op._get_attr_bool("progressive"), "optimize_size",
|
||
|
_op._get_attr_bool("optimize_size"), "chroma_downsampling",
|
||
|
_op._get_attr_bool("chroma_downsampling"), "density_unit",
|
||
|
_op.get_attr("density_unit"), "x_density",
|
||
|
_op._get_attr_int("x_density"), "y_density",
|
||
|
_op._get_attr_int("y_density"), "xmp_metadata",
|
||
|
_op.get_attr("xmp_metadata"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"EncodeJpeg", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
EncodeJpeg = tf_export("raw_ops.EncodeJpeg")(_ops.to_raw_op(encode_jpeg))
|
||
|
|
||
|
|
||
|
def encode_jpeg_eager_fallback(image: Annotated[Any, _atypes.UInt8], format: str, quality: int, progressive: bool, optimize_size: bool, chroma_downsampling: bool, density_unit: str, x_density: int, y_density: int, xmp_metadata: str, name, ctx) -> Annotated[Any, _atypes.String]:
|
||
|
if format is None:
|
||
|
format = ""
|
||
|
format = _execute.make_str(format, "format")
|
||
|
if quality is None:
|
||
|
quality = 95
|
||
|
quality = _execute.make_int(quality, "quality")
|
||
|
if progressive is None:
|
||
|
progressive = False
|
||
|
progressive = _execute.make_bool(progressive, "progressive")
|
||
|
if optimize_size is None:
|
||
|
optimize_size = False
|
||
|
optimize_size = _execute.make_bool(optimize_size, "optimize_size")
|
||
|
if chroma_downsampling is None:
|
||
|
chroma_downsampling = True
|
||
|
chroma_downsampling = _execute.make_bool(chroma_downsampling, "chroma_downsampling")
|
||
|
if density_unit is None:
|
||
|
density_unit = "in"
|
||
|
density_unit = _execute.make_str(density_unit, "density_unit")
|
||
|
if x_density is None:
|
||
|
x_density = 300
|
||
|
x_density = _execute.make_int(x_density, "x_density")
|
||
|
if y_density is None:
|
||
|
y_density = 300
|
||
|
y_density = _execute.make_int(y_density, "y_density")
|
||
|
if xmp_metadata is None:
|
||
|
xmp_metadata = ""
|
||
|
xmp_metadata = _execute.make_str(xmp_metadata, "xmp_metadata")
|
||
|
image = _ops.convert_to_tensor(image, _dtypes.uint8)
|
||
|
_inputs_flat = [image]
|
||
|
_attrs = ("format", format, "quality", quality, "progressive", progressive,
|
||
|
"optimize_size", optimize_size, "chroma_downsampling", chroma_downsampling,
|
||
|
"density_unit", density_unit, "x_density", x_density, "y_density",
|
||
|
y_density, "xmp_metadata", xmp_metadata)
|
||
|
_result = _execute.execute(b"EncodeJpeg", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"EncodeJpeg", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
def encode_jpeg_variable_quality(images: Annotated[Any, _atypes.UInt8], quality: Annotated[Any, _atypes.Int32], name=None) -> Annotated[Any, _atypes.String]:
|
||
|
r"""JPEG encode input image with provided compression quality.
|
||
|
|
||
|
`image` is a 3-D uint8 Tensor of shape `[height, width, channels]`.
|
||
|
`quality` is an int32 jpeg compression quality value between 0 and 100.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor` of type `uint8`. Images to adjust. At least 3-D.
|
||
|
quality: A `Tensor` of type `int32`. An int quality to encode to.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `string`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "EncodeJpegVariableQuality", name, images, quality)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return encode_jpeg_variable_quality_eager_fallback(
|
||
|
images, quality, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"EncodeJpegVariableQuality", images=images, quality=quality,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ()
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"EncodeJpegVariableQuality", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
EncodeJpegVariableQuality = tf_export("raw_ops.EncodeJpegVariableQuality")(_ops.to_raw_op(encode_jpeg_variable_quality))
|
||
|
|
||
|
|
||
|
def encode_jpeg_variable_quality_eager_fallback(images: Annotated[Any, _atypes.UInt8], quality: Annotated[Any, _atypes.Int32], name, ctx) -> Annotated[Any, _atypes.String]:
|
||
|
images = _ops.convert_to_tensor(images, _dtypes.uint8)
|
||
|
quality = _ops.convert_to_tensor(quality, _dtypes.int32)
|
||
|
_inputs_flat = [images, quality]
|
||
|
_attrs = None
|
||
|
_result = _execute.execute(b"EncodeJpegVariableQuality", 1,
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"EncodeJpegVariableQuality", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_EncodePng_T = TypeVar("TV_EncodePng_T", _atypes.UInt16, _atypes.UInt8)
|
||
|
|
||
|
def encode_png(image: Annotated[Any, TV_EncodePng_T], compression:int=-1, name=None) -> Annotated[Any, _atypes.String]:
|
||
|
r"""PNG-encode an image.
|
||
|
|
||
|
`image` is a 3-D uint8 or uint16 Tensor of shape `[height, width, channels]`
|
||
|
where `channels` is:
|
||
|
|
||
|
* 1: for grayscale.
|
||
|
* 2: for grayscale + alpha.
|
||
|
* 3: for RGB.
|
||
|
* 4: for RGBA.
|
||
|
|
||
|
The ZLIB compression level, `compression`, can be -1 for the PNG-encoder
|
||
|
default or a value from 0 to 9. 9 is the highest compression level, generating
|
||
|
the smallest output, but is slower.
|
||
|
|
||
|
Args:
|
||
|
image: A `Tensor`. Must be one of the following types: `uint8`, `uint16`.
|
||
|
3-D with shape `[height, width, channels]`.
|
||
|
compression: An optional `int`. Defaults to `-1`. Compression level.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `string`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "EncodePng", name, image, "compression", compression)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return encode_png_eager_fallback(
|
||
|
image, compression=compression, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if compression is None:
|
||
|
compression = -1
|
||
|
compression = _execute.make_int(compression, "compression")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"EncodePng", image=image, compression=compression, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("compression", _op._get_attr_int("compression"), "T",
|
||
|
_op._get_attr_type("T"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"EncodePng", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
EncodePng = tf_export("raw_ops.EncodePng")(_ops.to_raw_op(encode_png))
|
||
|
|
||
|
|
||
|
def encode_png_eager_fallback(image: Annotated[Any, TV_EncodePng_T], compression: int, name, ctx) -> Annotated[Any, _atypes.String]:
|
||
|
if compression is None:
|
||
|
compression = -1
|
||
|
compression = _execute.make_int(compression, "compression")
|
||
|
_attr_T, (image,) = _execute.args_to_matching_eager([image], ctx, [_dtypes.uint8, _dtypes.uint16, ], _dtypes.uint8)
|
||
|
_inputs_flat = [image]
|
||
|
_attrs = ("compression", compression, "T", _attr_T)
|
||
|
_result = _execute.execute(b"EncodePng", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"EncodePng", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
def extract_glimpse(input: Annotated[Any, _atypes.Float32], size: Annotated[Any, _atypes.Int32], offsets: Annotated[Any, _atypes.Float32], centered:bool=True, normalized:bool=True, uniform_noise:bool=True, noise:str="uniform", name=None) -> Annotated[Any, _atypes.Float32]:
|
||
|
r"""Extracts a glimpse from the input tensor.
|
||
|
|
||
|
Returns a set of windows called glimpses extracted at location
|
||
|
`offsets` from the input tensor. If the windows only partially
|
||
|
overlaps the inputs, the non overlapping areas will be filled with
|
||
|
random noise.
|
||
|
|
||
|
The result is a 4-D tensor of shape `[batch_size, glimpse_height,
|
||
|
glimpse_width, channels]`. The channels and batch dimensions are the
|
||
|
same as that of the input tensor. The height and width of the output
|
||
|
windows are specified in the `size` parameter.
|
||
|
|
||
|
The argument `normalized` and `centered` controls how the windows are built:
|
||
|
|
||
|
* If the coordinates are normalized but not centered, 0.0 and 1.0
|
||
|
correspond to the minimum and maximum of each height and width
|
||
|
dimension.
|
||
|
* If the coordinates are both normalized and centered, they range from
|
||
|
-1.0 to 1.0. The coordinates (-1.0, -1.0) correspond to the upper
|
||
|
left corner, the lower right corner is located at (1.0, 1.0) and the
|
||
|
center is at (0, 0).
|
||
|
* If the coordinates are not normalized they are interpreted as
|
||
|
numbers of pixels.
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor` of type `float32`.
|
||
|
A 4-D float tensor of shape `[batch_size, height, width, channels]`.
|
||
|
size: A `Tensor` of type `int32`.
|
||
|
A 1-D tensor of 2 elements containing the size of the glimpses
|
||
|
to extract. The glimpse height must be specified first, following
|
||
|
by the glimpse width.
|
||
|
offsets: A `Tensor` of type `float32`.
|
||
|
A 2-D integer tensor of shape `[batch_size, 2]` containing
|
||
|
the y, x locations of the center of each window.
|
||
|
centered: An optional `bool`. Defaults to `True`.
|
||
|
indicates if the offset coordinates are centered relative to
|
||
|
the image, in which case the (0, 0) offset is relative to the center
|
||
|
of the input images. If false, the (0,0) offset corresponds to the
|
||
|
upper left corner of the input images.
|
||
|
normalized: An optional `bool`. Defaults to `True`.
|
||
|
indicates if the offset coordinates are normalized.
|
||
|
uniform_noise: An optional `bool`. Defaults to `True`.
|
||
|
indicates if the noise should be generated using a
|
||
|
uniform distribution or a Gaussian distribution.
|
||
|
noise: An optional `string`. Defaults to `"uniform"`.
|
||
|
indicates if the noise should `uniform`, `gaussian`, or
|
||
|
`zero`. The default is `uniform` which means the noise type
|
||
|
will be decided by `uniform_noise`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ExtractGlimpse", name, input, size, offsets, "centered",
|
||
|
centered, "normalized", normalized, "uniform_noise", uniform_noise,
|
||
|
"noise", noise)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return extract_glimpse_eager_fallback(
|
||
|
input, size, offsets, centered=centered, normalized=normalized,
|
||
|
uniform_noise=uniform_noise, noise=noise, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if centered is None:
|
||
|
centered = True
|
||
|
centered = _execute.make_bool(centered, "centered")
|
||
|
if normalized is None:
|
||
|
normalized = True
|
||
|
normalized = _execute.make_bool(normalized, "normalized")
|
||
|
if uniform_noise is None:
|
||
|
uniform_noise = True
|
||
|
uniform_noise = _execute.make_bool(uniform_noise, "uniform_noise")
|
||
|
if noise is None:
|
||
|
noise = "uniform"
|
||
|
noise = _execute.make_str(noise, "noise")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ExtractGlimpse", input=input, size=size, offsets=offsets,
|
||
|
centered=centered, normalized=normalized,
|
||
|
uniform_noise=uniform_noise, noise=noise, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("centered", _op._get_attr_bool("centered"), "normalized",
|
||
|
_op._get_attr_bool("normalized"), "uniform_noise",
|
||
|
_op._get_attr_bool("uniform_noise"), "noise",
|
||
|
_op.get_attr("noise"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ExtractGlimpse", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ExtractGlimpse = tf_export("raw_ops.ExtractGlimpse")(_ops.to_raw_op(extract_glimpse))
|
||
|
|
||
|
|
||
|
def extract_glimpse_eager_fallback(input: Annotated[Any, _atypes.Float32], size: Annotated[Any, _atypes.Int32], offsets: Annotated[Any, _atypes.Float32], centered: bool, normalized: bool, uniform_noise: bool, noise: str, name, ctx) -> Annotated[Any, _atypes.Float32]:
|
||
|
if centered is None:
|
||
|
centered = True
|
||
|
centered = _execute.make_bool(centered, "centered")
|
||
|
if normalized is None:
|
||
|
normalized = True
|
||
|
normalized = _execute.make_bool(normalized, "normalized")
|
||
|
if uniform_noise is None:
|
||
|
uniform_noise = True
|
||
|
uniform_noise = _execute.make_bool(uniform_noise, "uniform_noise")
|
||
|
if noise is None:
|
||
|
noise = "uniform"
|
||
|
noise = _execute.make_str(noise, "noise")
|
||
|
input = _ops.convert_to_tensor(input, _dtypes.float32)
|
||
|
size = _ops.convert_to_tensor(size, _dtypes.int32)
|
||
|
offsets = _ops.convert_to_tensor(offsets, _dtypes.float32)
|
||
|
_inputs_flat = [input, size, offsets]
|
||
|
_attrs = ("centered", centered, "normalized", normalized, "uniform_noise",
|
||
|
uniform_noise, "noise", noise)
|
||
|
_result = _execute.execute(b"ExtractGlimpse", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ExtractGlimpse", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
def extract_glimpse_v2(input: Annotated[Any, _atypes.Float32], size: Annotated[Any, _atypes.Int32], offsets: Annotated[Any, _atypes.Float32], centered:bool=True, normalized:bool=True, uniform_noise:bool=True, noise:str="uniform", name=None) -> Annotated[Any, _atypes.Float32]:
|
||
|
r"""Extracts a glimpse from the input tensor.
|
||
|
|
||
|
Returns a set of windows called glimpses extracted at location
|
||
|
`offsets` from the input tensor. If the windows only partially
|
||
|
overlaps the inputs, the non overlapping areas will be filled with
|
||
|
random noise.
|
||
|
|
||
|
The result is a 4-D tensor of shape `[batch_size, glimpse_height,
|
||
|
glimpse_width, channels]`. The channels and batch dimensions are the
|
||
|
same as that of the input tensor. The height and width of the output
|
||
|
windows are specified in the `size` parameter.
|
||
|
|
||
|
The argument `normalized` and `centered` controls how the windows are built:
|
||
|
|
||
|
* If the coordinates are normalized but not centered, 0.0 and 1.0
|
||
|
correspond to the minimum and maximum of each height and width
|
||
|
dimension.
|
||
|
* If the coordinates are both normalized and centered, they range from
|
||
|
-1.0 to 1.0. The coordinates (-1.0, -1.0) correspond to the upper
|
||
|
left corner, the lower right corner is located at (1.0, 1.0) and the
|
||
|
center is at (0, 0).
|
||
|
* If the coordinates are not normalized they are interpreted as
|
||
|
numbers of pixels.
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor` of type `float32`.
|
||
|
A 4-D float tensor of shape `[batch_size, height, width, channels]`.
|
||
|
size: A `Tensor` of type `int32`.
|
||
|
A 1-D tensor of 2 elements containing the size of the glimpses
|
||
|
to extract. The glimpse height must be specified first, following
|
||
|
by the glimpse width.
|
||
|
offsets: A `Tensor` of type `float32`.
|
||
|
A 2-D integer tensor of shape `[batch_size, 2]` containing
|
||
|
the y, x locations of the center of each window.
|
||
|
centered: An optional `bool`. Defaults to `True`.
|
||
|
indicates if the offset coordinates are centered relative to
|
||
|
the image, in which case the (0, 0) offset is relative to the center
|
||
|
of the input images. If false, the (0,0) offset corresponds to the
|
||
|
upper left corner of the input images.
|
||
|
normalized: An optional `bool`. Defaults to `True`.
|
||
|
indicates if the offset coordinates are normalized.
|
||
|
uniform_noise: An optional `bool`. Defaults to `True`.
|
||
|
indicates if the noise should be generated using a
|
||
|
uniform distribution or a Gaussian distribution.
|
||
|
noise: An optional `string`. Defaults to `"uniform"`.
|
||
|
indicates if the noise should `uniform`, `gaussian`, or
|
||
|
`zero`. The default is `uniform` which means the noise type
|
||
|
will be decided by `uniform_noise`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ExtractGlimpseV2", name, input, size, offsets, "centered",
|
||
|
centered, "normalized", normalized, "uniform_noise", uniform_noise,
|
||
|
"noise", noise)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return extract_glimpse_v2_eager_fallback(
|
||
|
input, size, offsets, centered=centered, normalized=normalized,
|
||
|
uniform_noise=uniform_noise, noise=noise, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if centered is None:
|
||
|
centered = True
|
||
|
centered = _execute.make_bool(centered, "centered")
|
||
|
if normalized is None:
|
||
|
normalized = True
|
||
|
normalized = _execute.make_bool(normalized, "normalized")
|
||
|
if uniform_noise is None:
|
||
|
uniform_noise = True
|
||
|
uniform_noise = _execute.make_bool(uniform_noise, "uniform_noise")
|
||
|
if noise is None:
|
||
|
noise = "uniform"
|
||
|
noise = _execute.make_str(noise, "noise")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ExtractGlimpseV2", input=input, size=size, offsets=offsets,
|
||
|
centered=centered, normalized=normalized,
|
||
|
uniform_noise=uniform_noise, noise=noise,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("centered", _op._get_attr_bool("centered"), "normalized",
|
||
|
_op._get_attr_bool("normalized"), "uniform_noise",
|
||
|
_op._get_attr_bool("uniform_noise"), "noise",
|
||
|
_op.get_attr("noise"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ExtractGlimpseV2", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ExtractGlimpseV2 = tf_export("raw_ops.ExtractGlimpseV2")(_ops.to_raw_op(extract_glimpse_v2))
|
||
|
|
||
|
|
||
|
def extract_glimpse_v2_eager_fallback(input: Annotated[Any, _atypes.Float32], size: Annotated[Any, _atypes.Int32], offsets: Annotated[Any, _atypes.Float32], centered: bool, normalized: bool, uniform_noise: bool, noise: str, name, ctx) -> Annotated[Any, _atypes.Float32]:
|
||
|
if centered is None:
|
||
|
centered = True
|
||
|
centered = _execute.make_bool(centered, "centered")
|
||
|
if normalized is None:
|
||
|
normalized = True
|
||
|
normalized = _execute.make_bool(normalized, "normalized")
|
||
|
if uniform_noise is None:
|
||
|
uniform_noise = True
|
||
|
uniform_noise = _execute.make_bool(uniform_noise, "uniform_noise")
|
||
|
if noise is None:
|
||
|
noise = "uniform"
|
||
|
noise = _execute.make_str(noise, "noise")
|
||
|
input = _ops.convert_to_tensor(input, _dtypes.float32)
|
||
|
size = _ops.convert_to_tensor(size, _dtypes.int32)
|
||
|
offsets = _ops.convert_to_tensor(offsets, _dtypes.float32)
|
||
|
_inputs_flat = [input, size, offsets]
|
||
|
_attrs = ("centered", centered, "normalized", normalized, "uniform_noise",
|
||
|
uniform_noise, "noise", noise)
|
||
|
_result = _execute.execute(b"ExtractGlimpseV2", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ExtractGlimpseV2", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_ExtractJpegShape_output_type = TypeVar("TV_ExtractJpegShape_output_type", _atypes.Int32, _atypes.Int64)
|
||
|
|
||
|
def extract_jpeg_shape(contents: Annotated[Any, _atypes.String], output_type:TV_ExtractJpegShape_output_type=_dtypes.int32, name=None) -> Annotated[Any, TV_ExtractJpegShape_output_type]:
|
||
|
r"""Extract the shape information of a JPEG-encoded image.
|
||
|
|
||
|
This op only parses the image header, so it is much faster than DecodeJpeg.
|
||
|
|
||
|
Args:
|
||
|
contents: A `Tensor` of type `string`. 0-D. The JPEG-encoded image.
|
||
|
output_type: An optional `tf.DType` from: `tf.int32, tf.int64`. Defaults to `tf.int32`.
|
||
|
(Optional) The output type of the operation (int32 or int64).
|
||
|
Defaults to int32.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `output_type`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ExtractJpegShape", name, contents, "output_type", output_type)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return extract_jpeg_shape_eager_fallback(
|
||
|
contents, output_type=output_type, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if output_type is None:
|
||
|
output_type = _dtypes.int32
|
||
|
output_type = _execute.make_type(output_type, "output_type")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ExtractJpegShape", contents=contents, output_type=output_type,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("output_type", _op._get_attr_type("output_type"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ExtractJpegShape", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ExtractJpegShape = tf_export("raw_ops.ExtractJpegShape")(_ops.to_raw_op(extract_jpeg_shape))
|
||
|
|
||
|
|
||
|
def extract_jpeg_shape_eager_fallback(contents: Annotated[Any, _atypes.String], output_type: TV_ExtractJpegShape_output_type, name, ctx) -> Annotated[Any, TV_ExtractJpegShape_output_type]:
|
||
|
if output_type is None:
|
||
|
output_type = _dtypes.int32
|
||
|
output_type = _execute.make_type(output_type, "output_type")
|
||
|
contents = _ops.convert_to_tensor(contents, _dtypes.string)
|
||
|
_inputs_flat = [contents]
|
||
|
_attrs = ("output_type", output_type)
|
||
|
_result = _execute.execute(b"ExtractJpegShape", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ExtractJpegShape", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
_GenerateBoundingBoxProposalsOutput = collections.namedtuple(
|
||
|
"GenerateBoundingBoxProposals",
|
||
|
["rois", "roi_probabilities"])
|
||
|
|
||
|
|
||
|
def generate_bounding_box_proposals(scores: Annotated[Any, _atypes.Float32], bbox_deltas: Annotated[Any, _atypes.Float32], image_info: Annotated[Any, _atypes.Float32], anchors: Annotated[Any, _atypes.Float32], nms_threshold: Annotated[Any, _atypes.Float32], pre_nms_topn: Annotated[Any, _atypes.Int32], min_size: Annotated[Any, _atypes.Float32], post_nms_topn:int=300, name=None):
|
||
|
r"""This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497
|
||
|
|
||
|
The op selects top `pre_nms_topn` scoring boxes, decodes them with respect to anchors,
|
||
|
applies non-maximal suppression on overlapping boxes with higher than
|
||
|
`nms_threshold` intersection-over-union (iou) value, discarding boxes where shorter
|
||
|
side is less than `min_size`.
|
||
|
Inputs:
|
||
|
`scores`: A 4D tensor of shape [Batch, Height, Width, Num Anchors] containing the scores per anchor at given position
|
||
|
`bbox_deltas`: is a tensor of shape [Batch, Height, Width, 4 x Num Anchors] boxes encoded to each anchor
|
||
|
`anchors`: A 1D tensor of shape [4 x Num Anchors], representing the anchors.
|
||
|
Outputs:
|
||
|
`rois`: output RoIs, a 3D tensor of shape [Batch, post_nms_topn, 4], padded by 0 if less than post_nms_topn candidates found.
|
||
|
`roi_probabilities`: probability scores of each roi in 'rois', a 2D tensor of shape [Batch,post_nms_topn], padded with 0 if needed, sorted by scores.
|
||
|
|
||
|
Args:
|
||
|
scores: A `Tensor` of type `float32`.
|
||
|
A 4-D float tensor of shape `[num_images, height, width, num_achors]` containing scores of the boxes for given anchors, can be unsorted.
|
||
|
bbox_deltas: A `Tensor` of type `float32`.
|
||
|
A 4-D float tensor of shape `[num_images, height, width, 4 x num_anchors]`. encoding boxes with respec to each anchor.
|
||
|
Coordinates are given in the form [dy, dx, dh, dw].
|
||
|
image_info: A `Tensor` of type `float32`.
|
||
|
A 2-D float tensor of shape `[num_images, 5]` containing image information Height, Width, Scale.
|
||
|
anchors: A `Tensor` of type `float32`.
|
||
|
A 2-D float tensor of shape `[num_anchors, 4]` describing the anchor boxes. Boxes are formatted in the form [y1, x1, y2, x2].
|
||
|
nms_threshold: A `Tensor` of type `float32`.
|
||
|
A scalar float tensor for non-maximal-suppression threshold.
|
||
|
pre_nms_topn: A `Tensor` of type `int32`.
|
||
|
A scalar int tensor for the number of top scoring boxes to be used as input.
|
||
|
min_size: A `Tensor` of type `float32`.
|
||
|
A scalar float tensor. Any box that has a smaller size than min_size will be discarded.
|
||
|
post_nms_topn: An optional `int`. Defaults to `300`.
|
||
|
An integer. Maximum number of rois in the output.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A tuple of `Tensor` objects (rois, roi_probabilities).
|
||
|
|
||
|
rois: A `Tensor` of type `float32`.
|
||
|
roi_probabilities: A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "GenerateBoundingBoxProposals", name, scores, bbox_deltas,
|
||
|
image_info, anchors, nms_threshold, pre_nms_topn, min_size,
|
||
|
"post_nms_topn", post_nms_topn)
|
||
|
_result = _GenerateBoundingBoxProposalsOutput._make(_result)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return generate_bounding_box_proposals_eager_fallback(
|
||
|
scores, bbox_deltas, image_info, anchors, nms_threshold,
|
||
|
pre_nms_topn, min_size, post_nms_topn=post_nms_topn, name=name,
|
||
|
ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if post_nms_topn is None:
|
||
|
post_nms_topn = 300
|
||
|
post_nms_topn = _execute.make_int(post_nms_topn, "post_nms_topn")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"GenerateBoundingBoxProposals", scores=scores,
|
||
|
bbox_deltas=bbox_deltas,
|
||
|
image_info=image_info,
|
||
|
anchors=anchors,
|
||
|
nms_threshold=nms_threshold,
|
||
|
pre_nms_topn=pre_nms_topn,
|
||
|
min_size=min_size,
|
||
|
post_nms_topn=post_nms_topn,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("post_nms_topn", _op._get_attr_int("post_nms_topn"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"GenerateBoundingBoxProposals", _inputs_flat, _attrs, _result)
|
||
|
_result = _GenerateBoundingBoxProposalsOutput._make(_result)
|
||
|
return _result
|
||
|
|
||
|
GenerateBoundingBoxProposals = tf_export("raw_ops.GenerateBoundingBoxProposals")(_ops.to_raw_op(generate_bounding_box_proposals))
|
||
|
|
||
|
|
||
|
def generate_bounding_box_proposals_eager_fallback(scores: Annotated[Any, _atypes.Float32], bbox_deltas: Annotated[Any, _atypes.Float32], image_info: Annotated[Any, _atypes.Float32], anchors: Annotated[Any, _atypes.Float32], nms_threshold: Annotated[Any, _atypes.Float32], pre_nms_topn: Annotated[Any, _atypes.Int32], min_size: Annotated[Any, _atypes.Float32], post_nms_topn: int, name, ctx):
|
||
|
if post_nms_topn is None:
|
||
|
post_nms_topn = 300
|
||
|
post_nms_topn = _execute.make_int(post_nms_topn, "post_nms_topn")
|
||
|
scores = _ops.convert_to_tensor(scores, _dtypes.float32)
|
||
|
bbox_deltas = _ops.convert_to_tensor(bbox_deltas, _dtypes.float32)
|
||
|
image_info = _ops.convert_to_tensor(image_info, _dtypes.float32)
|
||
|
anchors = _ops.convert_to_tensor(anchors, _dtypes.float32)
|
||
|
nms_threshold = _ops.convert_to_tensor(nms_threshold, _dtypes.float32)
|
||
|
pre_nms_topn = _ops.convert_to_tensor(pre_nms_topn, _dtypes.int32)
|
||
|
min_size = _ops.convert_to_tensor(min_size, _dtypes.float32)
|
||
|
_inputs_flat = [scores, bbox_deltas, image_info, anchors, nms_threshold, pre_nms_topn, min_size]
|
||
|
_attrs = ("post_nms_topn", post_nms_topn)
|
||
|
_result = _execute.execute(b"GenerateBoundingBoxProposals", 2,
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"GenerateBoundingBoxProposals", _inputs_flat, _attrs, _result)
|
||
|
_result = _GenerateBoundingBoxProposalsOutput._make(_result)
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_HSVToRGB_T = TypeVar("TV_HSVToRGB_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half)
|
||
|
|
||
|
@_dispatch.add_fallback_dispatch_list
|
||
|
@_dispatch.add_type_based_api_dispatcher
|
||
|
@tf_export('image.hsv_to_rgb')
|
||
|
def hsv_to_rgb(images: Annotated[Any, TV_HSVToRGB_T], name=None) -> Annotated[Any, TV_HSVToRGB_T]:
|
||
|
r"""Convert one or more images from HSV to RGB.
|
||
|
|
||
|
Outputs a tensor of the same shape as the `images` tensor, containing the RGB
|
||
|
value of the pixels. The output is only well defined if the value in `images`
|
||
|
are in `[0,1]`.
|
||
|
|
||
|
See `rgb_to_hsv` for a description of the HSV encoding.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`.
|
||
|
1-D or higher rank. HSV data to convert. Last dimension must be size 3.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `images`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "HSVToRGB", name, images)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
_result = _dispatcher_for_hsv_to_rgb(
|
||
|
(images, name,), None)
|
||
|
if _result is not NotImplemented:
|
||
|
return _result
|
||
|
return hsv_to_rgb_eager_fallback(
|
||
|
images, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
except (TypeError, ValueError):
|
||
|
_result = _dispatch.dispatch(
|
||
|
hsv_to_rgb, (), dict(images=images, name=name)
|
||
|
)
|
||
|
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
|
||
|
return _result
|
||
|
raise
|
||
|
else:
|
||
|
_result = _dispatcher_for_hsv_to_rgb(
|
||
|
(images, name,), None)
|
||
|
if _result is not NotImplemented:
|
||
|
return _result
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
try:
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"HSVToRGB", images=images, name=name)
|
||
|
except (TypeError, ValueError):
|
||
|
_result = _dispatch.dispatch(
|
||
|
hsv_to_rgb, (), dict(images=images, name=name)
|
||
|
)
|
||
|
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
|
||
|
return _result
|
||
|
raise
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"HSVToRGB", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
HSVToRGB = tf_export("raw_ops.HSVToRGB")(_ops.to_raw_op(hsv_to_rgb))
|
||
|
_dispatcher_for_hsv_to_rgb = hsv_to_rgb._tf_type_based_dispatcher.Dispatch
|
||
|
|
||
|
|
||
|
def hsv_to_rgb_eager_fallback(images: Annotated[Any, TV_HSVToRGB_T], name, ctx) -> Annotated[Any, TV_HSVToRGB_T]:
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ], _dtypes.float32)
|
||
|
_inputs_flat = [images]
|
||
|
_attrs = ("T", _attr_T)
|
||
|
_result = _execute.execute(b"HSVToRGB", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"HSVToRGB", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_ImageProjectiveTransformV2_dtype = TypeVar("TV_ImageProjectiveTransformV2_dtype", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32, _atypes.Int64, _atypes.UInt8)
|
||
|
|
||
|
def image_projective_transform_v2(images: Annotated[Any, TV_ImageProjectiveTransformV2_dtype], transforms: Annotated[Any, _atypes.Float32], output_shape: Annotated[Any, _atypes.Int32], interpolation: str, fill_mode:str="CONSTANT", name=None) -> Annotated[Any, TV_ImageProjectiveTransformV2_dtype]:
|
||
|
r"""Applies the given transform to each of the images.
|
||
|
|
||
|
If one row of `transforms` is `[a0, a1, a2, b0, b1, b2, c0, c1]`, then it maps
|
||
|
the *output* point `(x, y)` to a transformed *input* point
|
||
|
`(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k)`, where
|
||
|
`k = c0 x + c1 y + 1`. If the transformed point lays outside of the input
|
||
|
image, the output pixel is set to 0.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `uint8`, `int32`, `int64`, `half`, `bfloat16`, `float32`, `float64`.
|
||
|
4-D with shape `[batch, height, width, channels]`.
|
||
|
transforms: A `Tensor` of type `float32`.
|
||
|
2-D Tensor, `[batch, 8]` or `[1, 8]` matrix, where each row corresponds to a 3 x 3
|
||
|
projective transformation matrix, with the last entry assumed to be 1. If there
|
||
|
is one row, the same transformation will be applied to all images.
|
||
|
output_shape: A `Tensor` of type `int32`.
|
||
|
1-D Tensor [new_height, new_width].
|
||
|
interpolation: A `string`. Interpolation method, "NEAREST" or "BILINEAR".
|
||
|
fill_mode: An optional `string`. Defaults to `"CONSTANT"`.
|
||
|
Fill mode, "REFLECT", "WRAP", or "CONSTANT".
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `images`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ImageProjectiveTransformV2", name, images, transforms,
|
||
|
output_shape, "interpolation", interpolation, "fill_mode", fill_mode)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return image_projective_transform_v2_eager_fallback(
|
||
|
images, transforms, output_shape, interpolation=interpolation,
|
||
|
fill_mode=fill_mode, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
interpolation = _execute.make_str(interpolation, "interpolation")
|
||
|
if fill_mode is None:
|
||
|
fill_mode = "CONSTANT"
|
||
|
fill_mode = _execute.make_str(fill_mode, "fill_mode")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ImageProjectiveTransformV2", images=images, transforms=transforms,
|
||
|
output_shape=output_shape,
|
||
|
interpolation=interpolation,
|
||
|
fill_mode=fill_mode, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("dtype", _op._get_attr_type("dtype"), "interpolation",
|
||
|
_op.get_attr("interpolation"), "fill_mode",
|
||
|
_op.get_attr("fill_mode"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ImageProjectiveTransformV2", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ImageProjectiveTransformV2 = tf_export("raw_ops.ImageProjectiveTransformV2")(_ops.to_raw_op(image_projective_transform_v2))
|
||
|
|
||
|
|
||
|
def image_projective_transform_v2_eager_fallback(images: Annotated[Any, TV_ImageProjectiveTransformV2_dtype], transforms: Annotated[Any, _atypes.Float32], output_shape: Annotated[Any, _atypes.Int32], interpolation: str, fill_mode: str, name, ctx) -> Annotated[Any, TV_ImageProjectiveTransformV2_dtype]:
|
||
|
interpolation = _execute.make_str(interpolation, "interpolation")
|
||
|
if fill_mode is None:
|
||
|
fill_mode = "CONSTANT"
|
||
|
fill_mode = _execute.make_str(fill_mode, "fill_mode")
|
||
|
_attr_dtype, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.uint8, _dtypes.int32, _dtypes.int64, _dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ])
|
||
|
transforms = _ops.convert_to_tensor(transforms, _dtypes.float32)
|
||
|
output_shape = _ops.convert_to_tensor(output_shape, _dtypes.int32)
|
||
|
_inputs_flat = [images, transforms, output_shape]
|
||
|
_attrs = ("dtype", _attr_dtype, "interpolation", interpolation, "fill_mode",
|
||
|
fill_mode)
|
||
|
_result = _execute.execute(b"ImageProjectiveTransformV2", 1,
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ImageProjectiveTransformV2", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_ImageProjectiveTransformV3_dtype = TypeVar("TV_ImageProjectiveTransformV3_dtype", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32, _atypes.Int64, _atypes.UInt8)
|
||
|
|
||
|
def image_projective_transform_v3(images: Annotated[Any, TV_ImageProjectiveTransformV3_dtype], transforms: Annotated[Any, _atypes.Float32], output_shape: Annotated[Any, _atypes.Int32], fill_value: Annotated[Any, _atypes.Float32], interpolation: str, fill_mode:str="CONSTANT", name=None) -> Annotated[Any, TV_ImageProjectiveTransformV3_dtype]:
|
||
|
r"""Applies the given transform to each of the images.
|
||
|
|
||
|
If one row of `transforms` is `[a0, a1, a2, b0, b1, b2, c0, c1]`, then it maps
|
||
|
the *output* point `(x, y)` to a transformed *input* point
|
||
|
`(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k)`, where
|
||
|
`k = c0 x + c1 y + 1`. If the transformed point lays outside of the input
|
||
|
image, the output pixel is set to fill_value.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `uint8`, `int32`, `int64`, `half`, `bfloat16`, `float32`, `float64`.
|
||
|
4-D with shape `[batch, height, width, channels]`.
|
||
|
transforms: A `Tensor` of type `float32`.
|
||
|
2-D Tensor, `[batch, 8]` or `[1, 8]` matrix, where each row corresponds to a 3 x 3
|
||
|
projective transformation matrix, with the last entry assumed to be 1. If there
|
||
|
is one row, the same transformation will be applied to all images.
|
||
|
output_shape: A `Tensor` of type `int32`.
|
||
|
1-D Tensor [new_height, new_width].
|
||
|
fill_value: A `Tensor` of type `float32`.
|
||
|
float, the value to be filled when fill_mode is constant".
|
||
|
END
|
||
|
}
|
||
|
out_arg {
|
||
|
name: "transformed_images"
|
||
|
description: <<END
|
||
|
4-D with shape
|
||
|
`[batch, new_height, new_width, channels]`.
|
||
|
interpolation: A `string`. Interpolation method, "NEAREST" or "BILINEAR".
|
||
|
fill_mode: An optional `string`. Defaults to `"CONSTANT"`.
|
||
|
Fill mode, "REFLECT", "WRAP", "CONSTANT", or "NEAREST".
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `images`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ImageProjectiveTransformV3", name, images, transforms,
|
||
|
output_shape, fill_value, "interpolation", interpolation, "fill_mode",
|
||
|
fill_mode)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return image_projective_transform_v3_eager_fallback(
|
||
|
images, transforms, output_shape, fill_value,
|
||
|
interpolation=interpolation, fill_mode=fill_mode, name=name,
|
||
|
ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
interpolation = _execute.make_str(interpolation, "interpolation")
|
||
|
if fill_mode is None:
|
||
|
fill_mode = "CONSTANT"
|
||
|
fill_mode = _execute.make_str(fill_mode, "fill_mode")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ImageProjectiveTransformV3", images=images, transforms=transforms,
|
||
|
output_shape=output_shape,
|
||
|
fill_value=fill_value,
|
||
|
interpolation=interpolation,
|
||
|
fill_mode=fill_mode, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("dtype", _op._get_attr_type("dtype"), "interpolation",
|
||
|
_op.get_attr("interpolation"), "fill_mode",
|
||
|
_op.get_attr("fill_mode"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ImageProjectiveTransformV3", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ImageProjectiveTransformV3 = tf_export("raw_ops.ImageProjectiveTransformV3")(_ops.to_raw_op(image_projective_transform_v3))
|
||
|
|
||
|
|
||
|
def image_projective_transform_v3_eager_fallback(images: Annotated[Any, TV_ImageProjectiveTransformV3_dtype], transforms: Annotated[Any, _atypes.Float32], output_shape: Annotated[Any, _atypes.Int32], fill_value: Annotated[Any, _atypes.Float32], interpolation: str, fill_mode: str, name, ctx) -> Annotated[Any, TV_ImageProjectiveTransformV3_dtype]:
|
||
|
interpolation = _execute.make_str(interpolation, "interpolation")
|
||
|
if fill_mode is None:
|
||
|
fill_mode = "CONSTANT"
|
||
|
fill_mode = _execute.make_str(fill_mode, "fill_mode")
|
||
|
_attr_dtype, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.uint8, _dtypes.int32, _dtypes.int64, _dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ])
|
||
|
transforms = _ops.convert_to_tensor(transforms, _dtypes.float32)
|
||
|
output_shape = _ops.convert_to_tensor(output_shape, _dtypes.int32)
|
||
|
fill_value = _ops.convert_to_tensor(fill_value, _dtypes.float32)
|
||
|
_inputs_flat = [images, transforms, output_shape, fill_value]
|
||
|
_attrs = ("dtype", _attr_dtype, "interpolation", interpolation, "fill_mode",
|
||
|
fill_mode)
|
||
|
_result = _execute.execute(b"ImageProjectiveTransformV3", 1,
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ImageProjectiveTransformV3", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
def non_max_suppression(boxes: Annotated[Any, _atypes.Float32], scores: Annotated[Any, _atypes.Float32], max_output_size: Annotated[Any, _atypes.Int32], iou_threshold:float=0.5, name=None) -> Annotated[Any, _atypes.Int32]:
|
||
|
r"""Greedily selects a subset of bounding boxes in descending order of score,
|
||
|
|
||
|
pruning away boxes that have high intersection-over-union (IOU) overlap
|
||
|
with previously selected boxes. Bounding boxes are supplied as
|
||
|
[y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any
|
||
|
diagonal pair of box corners and the coordinates can be provided as normalized
|
||
|
(i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm
|
||
|
is agnostic to where the origin is in the coordinate system. Note that this
|
||
|
algorithm is invariant to orthogonal transformations and translations
|
||
|
of the coordinate system; thus translating or reflections of the coordinate
|
||
|
system result in the same boxes being selected by the algorithm.
|
||
|
The output of this operation is a set of integers indexing into the input
|
||
|
collection of bounding boxes representing the selected boxes. The bounding
|
||
|
box coordinates corresponding to the selected indices can then be obtained
|
||
|
using the `tf.gather operation`. For example:
|
||
|
selected_indices = tf.image.non_max_suppression(
|
||
|
boxes, scores, max_output_size, iou_threshold)
|
||
|
selected_boxes = tf.gather(boxes, selected_indices)
|
||
|
|
||
|
Args:
|
||
|
boxes: A `Tensor` of type `float32`.
|
||
|
A 2-D float tensor of shape `[num_boxes, 4]`.
|
||
|
scores: A `Tensor` of type `float32`.
|
||
|
A 1-D float tensor of shape `[num_boxes]` representing a single
|
||
|
score corresponding to each box (each row of boxes).
|
||
|
max_output_size: A `Tensor` of type `int32`.
|
||
|
A scalar integer tensor representing the maximum number of
|
||
|
boxes to be selected by non max suppression.
|
||
|
iou_threshold: An optional `float`. Defaults to `0.5`.
|
||
|
A float representing the threshold for deciding whether boxes
|
||
|
overlap too much with respect to IOU.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `int32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "NonMaxSuppression", name, boxes, scores, max_output_size,
|
||
|
"iou_threshold", iou_threshold)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return non_max_suppression_eager_fallback(
|
||
|
boxes, scores, max_output_size, iou_threshold=iou_threshold,
|
||
|
name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if iou_threshold is None:
|
||
|
iou_threshold = 0.5
|
||
|
iou_threshold = _execute.make_float(iou_threshold, "iou_threshold")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"NonMaxSuppression", boxes=boxes, scores=scores,
|
||
|
max_output_size=max_output_size,
|
||
|
iou_threshold=iou_threshold, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("iou_threshold", _op.get_attr("iou_threshold"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"NonMaxSuppression", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
NonMaxSuppression = tf_export("raw_ops.NonMaxSuppression")(_ops.to_raw_op(non_max_suppression))
|
||
|
|
||
|
|
||
|
def non_max_suppression_eager_fallback(boxes: Annotated[Any, _atypes.Float32], scores: Annotated[Any, _atypes.Float32], max_output_size: Annotated[Any, _atypes.Int32], iou_threshold: float, name, ctx) -> Annotated[Any, _atypes.Int32]:
|
||
|
if iou_threshold is None:
|
||
|
iou_threshold = 0.5
|
||
|
iou_threshold = _execute.make_float(iou_threshold, "iou_threshold")
|
||
|
boxes = _ops.convert_to_tensor(boxes, _dtypes.float32)
|
||
|
scores = _ops.convert_to_tensor(scores, _dtypes.float32)
|
||
|
max_output_size = _ops.convert_to_tensor(max_output_size, _dtypes.int32)
|
||
|
_inputs_flat = [boxes, scores, max_output_size]
|
||
|
_attrs = ("iou_threshold", iou_threshold)
|
||
|
_result = _execute.execute(b"NonMaxSuppression", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"NonMaxSuppression", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_NonMaxSuppressionV2_T = TypeVar("TV_NonMaxSuppressionV2_T", _atypes.Float32, _atypes.Half)
|
||
|
TV_NonMaxSuppressionV2_T_threshold = TypeVar("TV_NonMaxSuppressionV2_T_threshold", _atypes.Float32, _atypes.Half)
|
||
|
|
||
|
def non_max_suppression_v2(boxes: Annotated[Any, TV_NonMaxSuppressionV2_T], scores: Annotated[Any, TV_NonMaxSuppressionV2_T], max_output_size: Annotated[Any, _atypes.Int32], iou_threshold: Annotated[Any, TV_NonMaxSuppressionV2_T_threshold], name=None) -> Annotated[Any, _atypes.Int32]:
|
||
|
r"""Greedily selects a subset of bounding boxes in descending order of score,
|
||
|
|
||
|
pruning away boxes that have high intersection-over-union (IOU) overlap
|
||
|
with previously selected boxes. Bounding boxes are supplied as
|
||
|
[y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any
|
||
|
diagonal pair of box corners and the coordinates can be provided as normalized
|
||
|
(i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm
|
||
|
is agnostic to where the origin is in the coordinate system. Note that this
|
||
|
algorithm is invariant to orthogonal transformations and translations
|
||
|
of the coordinate system; thus translating or reflections of the coordinate
|
||
|
system result in the same boxes being selected by the algorithm.
|
||
|
|
||
|
The output of this operation is a set of integers indexing into the input
|
||
|
collection of bounding boxes representing the selected boxes. The bounding
|
||
|
box coordinates corresponding to the selected indices can then be obtained
|
||
|
using the `tf.gather operation`. For example:
|
||
|
|
||
|
selected_indices = tf.image.non_max_suppression_v2(
|
||
|
boxes, scores, max_output_size, iou_threshold)
|
||
|
selected_boxes = tf.gather(boxes, selected_indices)
|
||
|
|
||
|
Args:
|
||
|
boxes: A `Tensor`. Must be one of the following types: `half`, `float32`.
|
||
|
A 2-D float tensor of shape `[num_boxes, 4]`.
|
||
|
scores: A `Tensor`. Must have the same type as `boxes`.
|
||
|
A 1-D float tensor of shape `[num_boxes]` representing a single
|
||
|
score corresponding to each box (each row of boxes).
|
||
|
max_output_size: A `Tensor` of type `int32`.
|
||
|
A scalar integer tensor representing the maximum number of
|
||
|
boxes to be selected by non max suppression.
|
||
|
iou_threshold: A `Tensor`. Must be one of the following types: `half`, `float32`.
|
||
|
A 0-D float tensor representing the threshold for deciding whether
|
||
|
boxes overlap too much with respect to IOU.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `int32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "NonMaxSuppressionV2", name, boxes, scores, max_output_size,
|
||
|
iou_threshold)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return non_max_suppression_v2_eager_fallback(
|
||
|
boxes, scores, max_output_size, iou_threshold, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"NonMaxSuppressionV2", boxes=boxes, scores=scores,
|
||
|
max_output_size=max_output_size,
|
||
|
iou_threshold=iou_threshold, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "T_threshold",
|
||
|
_op._get_attr_type("T_threshold"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"NonMaxSuppressionV2", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
NonMaxSuppressionV2 = tf_export("raw_ops.NonMaxSuppressionV2")(_ops.to_raw_op(non_max_suppression_v2))
|
||
|
|
||
|
|
||
|
def non_max_suppression_v2_eager_fallback(boxes: Annotated[Any, TV_NonMaxSuppressionV2_T], scores: Annotated[Any, TV_NonMaxSuppressionV2_T], max_output_size: Annotated[Any, _atypes.Int32], iou_threshold: Annotated[Any, TV_NonMaxSuppressionV2_T_threshold], name, ctx) -> Annotated[Any, _atypes.Int32]:
|
||
|
_attr_T, _inputs_T = _execute.args_to_matching_eager([boxes, scores], ctx, [_dtypes.half, _dtypes.float32, ], _dtypes.float32)
|
||
|
(boxes, scores) = _inputs_T
|
||
|
_attr_T_threshold, (iou_threshold,) = _execute.args_to_matching_eager([iou_threshold], ctx, [_dtypes.half, _dtypes.float32, ], _dtypes.float32)
|
||
|
max_output_size = _ops.convert_to_tensor(max_output_size, _dtypes.int32)
|
||
|
_inputs_flat = [boxes, scores, max_output_size, iou_threshold]
|
||
|
_attrs = ("T", _attr_T, "T_threshold", _attr_T_threshold)
|
||
|
_result = _execute.execute(b"NonMaxSuppressionV2", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"NonMaxSuppressionV2", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_NonMaxSuppressionV3_T = TypeVar("TV_NonMaxSuppressionV3_T", _atypes.Float32, _atypes.Half)
|
||
|
TV_NonMaxSuppressionV3_T_threshold = TypeVar("TV_NonMaxSuppressionV3_T_threshold", _atypes.Float32, _atypes.Half)
|
||
|
|
||
|
def non_max_suppression_v3(boxes: Annotated[Any, TV_NonMaxSuppressionV3_T], scores: Annotated[Any, TV_NonMaxSuppressionV3_T], max_output_size: Annotated[Any, _atypes.Int32], iou_threshold: Annotated[Any, TV_NonMaxSuppressionV3_T_threshold], score_threshold: Annotated[Any, TV_NonMaxSuppressionV3_T_threshold], name=None) -> Annotated[Any, _atypes.Int32]:
|
||
|
r"""Greedily selects a subset of bounding boxes in descending order of score,
|
||
|
|
||
|
pruning away boxes that have high intersection-over-union (IOU) overlap
|
||
|
with previously selected boxes. Bounding boxes with score less than
|
||
|
`score_threshold` are removed. Bounding boxes are supplied as
|
||
|
[y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any
|
||
|
diagonal pair of box corners and the coordinates can be provided as normalized
|
||
|
(i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm
|
||
|
is agnostic to where the origin is in the coordinate system and more
|
||
|
generally is invariant to orthogonal transformations and translations
|
||
|
of the coordinate system; thus translating or reflections of the coordinate
|
||
|
system result in the same boxes being selected by the algorithm.
|
||
|
The output of this operation is a set of integers indexing into the input
|
||
|
collection of bounding boxes representing the selected boxes. The bounding
|
||
|
box coordinates corresponding to the selected indices can then be obtained
|
||
|
using the `tf.gather operation`. For example:
|
||
|
selected_indices = tf.image.non_max_suppression_v2(
|
||
|
boxes, scores, max_output_size, iou_threshold, score_threshold)
|
||
|
selected_boxes = tf.gather(boxes, selected_indices)
|
||
|
|
||
|
Args:
|
||
|
boxes: A `Tensor`. Must be one of the following types: `half`, `float32`.
|
||
|
A 2-D float tensor of shape `[num_boxes, 4]`.
|
||
|
scores: A `Tensor`. Must have the same type as `boxes`.
|
||
|
A 1-D float tensor of shape `[num_boxes]` representing a single
|
||
|
score corresponding to each box (each row of boxes).
|
||
|
max_output_size: A `Tensor` of type `int32`.
|
||
|
A scalar integer tensor representing the maximum number of
|
||
|
boxes to be selected by non max suppression.
|
||
|
iou_threshold: A `Tensor`. Must be one of the following types: `half`, `float32`.
|
||
|
A 0-D float tensor representing the threshold for deciding whether
|
||
|
boxes overlap too much with respect to IOU.
|
||
|
score_threshold: A `Tensor`. Must have the same type as `iou_threshold`.
|
||
|
A 0-D float tensor representing the threshold for deciding when to remove
|
||
|
boxes based on score.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `int32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "NonMaxSuppressionV3", name, boxes, scores, max_output_size,
|
||
|
iou_threshold, score_threshold)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return non_max_suppression_v3_eager_fallback(
|
||
|
boxes, scores, max_output_size, iou_threshold, score_threshold,
|
||
|
name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"NonMaxSuppressionV3", boxes=boxes, scores=scores,
|
||
|
max_output_size=max_output_size,
|
||
|
iou_threshold=iou_threshold,
|
||
|
score_threshold=score_threshold, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "T_threshold",
|
||
|
_op._get_attr_type("T_threshold"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"NonMaxSuppressionV3", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
NonMaxSuppressionV3 = tf_export("raw_ops.NonMaxSuppressionV3")(_ops.to_raw_op(non_max_suppression_v3))
|
||
|
|
||
|
|
||
|
def non_max_suppression_v3_eager_fallback(boxes: Annotated[Any, TV_NonMaxSuppressionV3_T], scores: Annotated[Any, TV_NonMaxSuppressionV3_T], max_output_size: Annotated[Any, _atypes.Int32], iou_threshold: Annotated[Any, TV_NonMaxSuppressionV3_T_threshold], score_threshold: Annotated[Any, TV_NonMaxSuppressionV3_T_threshold], name, ctx) -> Annotated[Any, _atypes.Int32]:
|
||
|
_attr_T, _inputs_T = _execute.args_to_matching_eager([boxes, scores], ctx, [_dtypes.half, _dtypes.float32, ], _dtypes.float32)
|
||
|
(boxes, scores) = _inputs_T
|
||
|
_attr_T_threshold, _inputs_T_threshold = _execute.args_to_matching_eager([iou_threshold, score_threshold], ctx, [_dtypes.half, _dtypes.float32, ], _dtypes.float32)
|
||
|
(iou_threshold, score_threshold) = _inputs_T_threshold
|
||
|
max_output_size = _ops.convert_to_tensor(max_output_size, _dtypes.int32)
|
||
|
_inputs_flat = [boxes, scores, max_output_size, iou_threshold, score_threshold]
|
||
|
_attrs = ("T", _attr_T, "T_threshold", _attr_T_threshold)
|
||
|
_result = _execute.execute(b"NonMaxSuppressionV3", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"NonMaxSuppressionV3", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
_NonMaxSuppressionV4Output = collections.namedtuple(
|
||
|
"NonMaxSuppressionV4",
|
||
|
["selected_indices", "valid_outputs"])
|
||
|
|
||
|
|
||
|
TV_NonMaxSuppressionV4_T = TypeVar("TV_NonMaxSuppressionV4_T", _atypes.Float32, _atypes.Half)
|
||
|
TV_NonMaxSuppressionV4_T_threshold = TypeVar("TV_NonMaxSuppressionV4_T_threshold", _atypes.Float32, _atypes.Half)
|
||
|
|
||
|
def non_max_suppression_v4(boxes: Annotated[Any, TV_NonMaxSuppressionV4_T], scores: Annotated[Any, TV_NonMaxSuppressionV4_T], max_output_size: Annotated[Any, _atypes.Int32], iou_threshold: Annotated[Any, TV_NonMaxSuppressionV4_T_threshold], score_threshold: Annotated[Any, TV_NonMaxSuppressionV4_T_threshold], pad_to_max_output_size:bool=False, name=None):
|
||
|
r"""Greedily selects a subset of bounding boxes in descending order of score,
|
||
|
|
||
|
pruning away boxes that have high intersection-over-union (IOU) overlap
|
||
|
with previously selected boxes. Bounding boxes with score less than
|
||
|
`score_threshold` are removed. Bounding boxes are supplied as
|
||
|
[y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any
|
||
|
diagonal pair of box corners and the coordinates can be provided as normalized
|
||
|
(i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm
|
||
|
is agnostic to where the origin is in the coordinate system and more
|
||
|
generally is invariant to orthogonal transformations and translations
|
||
|
of the coordinate system; thus translating or reflections of the coordinate
|
||
|
system result in the same boxes being selected by the algorithm.
|
||
|
The output of this operation is a set of integers indexing into the input
|
||
|
collection of bounding boxes representing the selected boxes. The bounding
|
||
|
box coordinates corresponding to the selected indices can then be obtained
|
||
|
using the `tf.gather operation`. For example:
|
||
|
selected_indices = tf.image.non_max_suppression_v2(
|
||
|
boxes, scores, max_output_size, iou_threshold, score_threshold)
|
||
|
selected_boxes = tf.gather(boxes, selected_indices)
|
||
|
|
||
|
Args:
|
||
|
boxes: A `Tensor`. Must be one of the following types: `half`, `float32`.
|
||
|
A 2-D float tensor of shape `[num_boxes, 4]`.
|
||
|
scores: A `Tensor`. Must have the same type as `boxes`.
|
||
|
A 1-D float tensor of shape `[num_boxes]` representing a single
|
||
|
score corresponding to each box (each row of boxes).
|
||
|
max_output_size: A `Tensor` of type `int32`.
|
||
|
A scalar integer tensor representing the maximum number of
|
||
|
boxes to be selected by non max suppression.
|
||
|
iou_threshold: A `Tensor`. Must be one of the following types: `half`, `float32`.
|
||
|
A 0-D float tensor representing the threshold for deciding whether
|
||
|
boxes overlap too much with respect to IOU.
|
||
|
score_threshold: A `Tensor`. Must have the same type as `iou_threshold`.
|
||
|
A 0-D float tensor representing the threshold for deciding when to remove
|
||
|
boxes based on score.
|
||
|
pad_to_max_output_size: An optional `bool`. Defaults to `False`.
|
||
|
If true, the output `selected_indices` is padded to be of length
|
||
|
`max_output_size`. Defaults to false.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A tuple of `Tensor` objects (selected_indices, valid_outputs).
|
||
|
|
||
|
selected_indices: A `Tensor` of type `int32`.
|
||
|
valid_outputs: A `Tensor` of type `int32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "NonMaxSuppressionV4", name, boxes, scores, max_output_size,
|
||
|
iou_threshold, score_threshold, "pad_to_max_output_size",
|
||
|
pad_to_max_output_size)
|
||
|
_result = _NonMaxSuppressionV4Output._make(_result)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return non_max_suppression_v4_eager_fallback(
|
||
|
boxes, scores, max_output_size, iou_threshold, score_threshold,
|
||
|
pad_to_max_output_size=pad_to_max_output_size, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if pad_to_max_output_size is None:
|
||
|
pad_to_max_output_size = False
|
||
|
pad_to_max_output_size = _execute.make_bool(pad_to_max_output_size, "pad_to_max_output_size")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"NonMaxSuppressionV4", boxes=boxes, scores=scores,
|
||
|
max_output_size=max_output_size,
|
||
|
iou_threshold=iou_threshold,
|
||
|
score_threshold=score_threshold,
|
||
|
pad_to_max_output_size=pad_to_max_output_size,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "T_threshold",
|
||
|
_op._get_attr_type("T_threshold"), "pad_to_max_output_size",
|
||
|
_op._get_attr_bool("pad_to_max_output_size"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"NonMaxSuppressionV4", _inputs_flat, _attrs, _result)
|
||
|
_result = _NonMaxSuppressionV4Output._make(_result)
|
||
|
return _result
|
||
|
|
||
|
NonMaxSuppressionV4 = tf_export("raw_ops.NonMaxSuppressionV4")(_ops.to_raw_op(non_max_suppression_v4))
|
||
|
|
||
|
|
||
|
def non_max_suppression_v4_eager_fallback(boxes: Annotated[Any, TV_NonMaxSuppressionV4_T], scores: Annotated[Any, TV_NonMaxSuppressionV4_T], max_output_size: Annotated[Any, _atypes.Int32], iou_threshold: Annotated[Any, TV_NonMaxSuppressionV4_T_threshold], score_threshold: Annotated[Any, TV_NonMaxSuppressionV4_T_threshold], pad_to_max_output_size: bool, name, ctx):
|
||
|
if pad_to_max_output_size is None:
|
||
|
pad_to_max_output_size = False
|
||
|
pad_to_max_output_size = _execute.make_bool(pad_to_max_output_size, "pad_to_max_output_size")
|
||
|
_attr_T, _inputs_T = _execute.args_to_matching_eager([boxes, scores], ctx, [_dtypes.half, _dtypes.float32, ], _dtypes.float32)
|
||
|
(boxes, scores) = _inputs_T
|
||
|
_attr_T_threshold, _inputs_T_threshold = _execute.args_to_matching_eager([iou_threshold, score_threshold], ctx, [_dtypes.half, _dtypes.float32, ], _dtypes.float32)
|
||
|
(iou_threshold, score_threshold) = _inputs_T_threshold
|
||
|
max_output_size = _ops.convert_to_tensor(max_output_size, _dtypes.int32)
|
||
|
_inputs_flat = [boxes, scores, max_output_size, iou_threshold, score_threshold]
|
||
|
_attrs = ("T", _attr_T, "T_threshold", _attr_T_threshold,
|
||
|
"pad_to_max_output_size", pad_to_max_output_size)
|
||
|
_result = _execute.execute(b"NonMaxSuppressionV4", 2, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"NonMaxSuppressionV4", _inputs_flat, _attrs, _result)
|
||
|
_result = _NonMaxSuppressionV4Output._make(_result)
|
||
|
return _result
|
||
|
|
||
|
_NonMaxSuppressionV5Output = collections.namedtuple(
|
||
|
"NonMaxSuppressionV5",
|
||
|
["selected_indices", "selected_scores", "valid_outputs"])
|
||
|
|
||
|
|
||
|
TV_NonMaxSuppressionV5_T = TypeVar("TV_NonMaxSuppressionV5_T", _atypes.Float32, _atypes.Half)
|
||
|
|
||
|
def non_max_suppression_v5(boxes: Annotated[Any, TV_NonMaxSuppressionV5_T], scores: Annotated[Any, TV_NonMaxSuppressionV5_T], max_output_size: Annotated[Any, _atypes.Int32], iou_threshold: Annotated[Any, TV_NonMaxSuppressionV5_T], score_threshold: Annotated[Any, TV_NonMaxSuppressionV5_T], soft_nms_sigma: Annotated[Any, TV_NonMaxSuppressionV5_T], pad_to_max_output_size:bool=False, name=None):
|
||
|
r"""Greedily selects a subset of bounding boxes in descending order of score,
|
||
|
|
||
|
pruning away boxes that have high intersection-over-union (IOU) overlap
|
||
|
with previously selected boxes. Bounding boxes with score less than
|
||
|
`score_threshold` are removed. Bounding boxes are supplied as
|
||
|
[y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any
|
||
|
diagonal pair of box corners and the coordinates can be provided as normalized
|
||
|
(i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm
|
||
|
is agnostic to where the origin is in the coordinate system and more
|
||
|
generally is invariant to orthogonal transformations and translations
|
||
|
of the coordinate system; thus translating or reflections of the coordinate
|
||
|
system result in the same boxes being selected by the algorithm.
|
||
|
The output of this operation is a set of integers indexing into the input
|
||
|
collection of bounding boxes representing the selected boxes. The bounding
|
||
|
box coordinates corresponding to the selected indices can then be obtained
|
||
|
using the `tf.gather operation`. For example:
|
||
|
selected_indices = tf.image.non_max_suppression_v2(
|
||
|
boxes, scores, max_output_size, iou_threshold, score_threshold)
|
||
|
selected_boxes = tf.gather(boxes, selected_indices)
|
||
|
This op also supports a Soft-NMS (with Gaussian weighting) mode (c.f.
|
||
|
Bodla et al, https://arxiv.org/abs/1704.04503) where boxes reduce the score
|
||
|
of other overlapping boxes instead of directly causing them to be pruned.
|
||
|
To enable this Soft-NMS mode, set the `soft_nms_sigma` parameter to be
|
||
|
larger than 0.
|
||
|
|
||
|
Args:
|
||
|
boxes: A `Tensor`. Must be one of the following types: `half`, `float32`.
|
||
|
A 2-D float tensor of shape `[num_boxes, 4]`.
|
||
|
scores: A `Tensor`. Must have the same type as `boxes`.
|
||
|
A 1-D float tensor of shape `[num_boxes]` representing a single
|
||
|
score corresponding to each box (each row of boxes).
|
||
|
max_output_size: A `Tensor` of type `int32`.
|
||
|
A scalar integer tensor representing the maximum number of
|
||
|
boxes to be selected by non max suppression.
|
||
|
iou_threshold: A `Tensor`. Must have the same type as `boxes`.
|
||
|
A 0-D float tensor representing the threshold for deciding whether
|
||
|
boxes overlap too much with respect to IOU.
|
||
|
score_threshold: A `Tensor`. Must have the same type as `boxes`.
|
||
|
A 0-D float tensor representing the threshold for deciding when to remove
|
||
|
boxes based on score.
|
||
|
soft_nms_sigma: A `Tensor`. Must have the same type as `boxes`.
|
||
|
A 0-D float tensor representing the sigma parameter for Soft NMS; see Bodla et
|
||
|
al (c.f. https://arxiv.org/abs/1704.04503). When `soft_nms_sigma=0.0` (which
|
||
|
is default), we fall back to standard (hard) NMS.
|
||
|
pad_to_max_output_size: An optional `bool`. Defaults to `False`.
|
||
|
If true, the output `selected_indices` is padded to be of length
|
||
|
`max_output_size`. Defaults to false.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A tuple of `Tensor` objects (selected_indices, selected_scores, valid_outputs).
|
||
|
|
||
|
selected_indices: A `Tensor` of type `int32`.
|
||
|
selected_scores: A `Tensor`. Has the same type as `boxes`.
|
||
|
valid_outputs: A `Tensor` of type `int32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "NonMaxSuppressionV5", name, boxes, scores, max_output_size,
|
||
|
iou_threshold, score_threshold, soft_nms_sigma,
|
||
|
"pad_to_max_output_size", pad_to_max_output_size)
|
||
|
_result = _NonMaxSuppressionV5Output._make(_result)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return non_max_suppression_v5_eager_fallback(
|
||
|
boxes, scores, max_output_size, iou_threshold, score_threshold,
|
||
|
soft_nms_sigma, pad_to_max_output_size=pad_to_max_output_size,
|
||
|
name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if pad_to_max_output_size is None:
|
||
|
pad_to_max_output_size = False
|
||
|
pad_to_max_output_size = _execute.make_bool(pad_to_max_output_size, "pad_to_max_output_size")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"NonMaxSuppressionV5", boxes=boxes, scores=scores,
|
||
|
max_output_size=max_output_size,
|
||
|
iou_threshold=iou_threshold,
|
||
|
score_threshold=score_threshold,
|
||
|
soft_nms_sigma=soft_nms_sigma,
|
||
|
pad_to_max_output_size=pad_to_max_output_size,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "pad_to_max_output_size",
|
||
|
_op._get_attr_bool("pad_to_max_output_size"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"NonMaxSuppressionV5", _inputs_flat, _attrs, _result)
|
||
|
_result = _NonMaxSuppressionV5Output._make(_result)
|
||
|
return _result
|
||
|
|
||
|
NonMaxSuppressionV5 = tf_export("raw_ops.NonMaxSuppressionV5")(_ops.to_raw_op(non_max_suppression_v5))
|
||
|
|
||
|
|
||
|
def non_max_suppression_v5_eager_fallback(boxes: Annotated[Any, TV_NonMaxSuppressionV5_T], scores: Annotated[Any, TV_NonMaxSuppressionV5_T], max_output_size: Annotated[Any, _atypes.Int32], iou_threshold: Annotated[Any, TV_NonMaxSuppressionV5_T], score_threshold: Annotated[Any, TV_NonMaxSuppressionV5_T], soft_nms_sigma: Annotated[Any, TV_NonMaxSuppressionV5_T], pad_to_max_output_size: bool, name, ctx):
|
||
|
if pad_to_max_output_size is None:
|
||
|
pad_to_max_output_size = False
|
||
|
pad_to_max_output_size = _execute.make_bool(pad_to_max_output_size, "pad_to_max_output_size")
|
||
|
_attr_T, _inputs_T = _execute.args_to_matching_eager([boxes, scores, iou_threshold, score_threshold, soft_nms_sigma], ctx, [_dtypes.half, _dtypes.float32, ], _dtypes.float32)
|
||
|
(boxes, scores, iou_threshold, score_threshold, soft_nms_sigma) = _inputs_T
|
||
|
max_output_size = _ops.convert_to_tensor(max_output_size, _dtypes.int32)
|
||
|
_inputs_flat = [boxes, scores, max_output_size, iou_threshold, score_threshold, soft_nms_sigma]
|
||
|
_attrs = ("T", _attr_T, "pad_to_max_output_size", pad_to_max_output_size)
|
||
|
_result = _execute.execute(b"NonMaxSuppressionV5", 3, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"NonMaxSuppressionV5", _inputs_flat, _attrs, _result)
|
||
|
_result = _NonMaxSuppressionV5Output._make(_result)
|
||
|
return _result
|
||
|
|
||
|
|
||
|
def non_max_suppression_with_overlaps(overlaps: Annotated[Any, _atypes.Float32], scores: Annotated[Any, _atypes.Float32], max_output_size: Annotated[Any, _atypes.Int32], overlap_threshold: Annotated[Any, _atypes.Float32], score_threshold: Annotated[Any, _atypes.Float32], name=None) -> Annotated[Any, _atypes.Int32]:
|
||
|
r"""Greedily selects a subset of bounding boxes in descending order of score,
|
||
|
|
||
|
pruning away boxes that have high overlaps
|
||
|
with previously selected boxes. Bounding boxes with score less than
|
||
|
`score_threshold` are removed. N-by-n overlap values are supplied as square matrix,
|
||
|
which allows for defining a custom overlap criterium (eg. intersection over union,
|
||
|
intersection over area, etc.).
|
||
|
|
||
|
The output of this operation is a set of integers indexing into the input
|
||
|
collection of bounding boxes representing the selected boxes. The bounding
|
||
|
box coordinates corresponding to the selected indices can then be obtained
|
||
|
using the `tf.gather operation`. For example:
|
||
|
|
||
|
selected_indices = tf.image.non_max_suppression_with_overlaps(
|
||
|
overlaps, scores, max_output_size, overlap_threshold, score_threshold)
|
||
|
selected_boxes = tf.gather(boxes, selected_indices)
|
||
|
|
||
|
Args:
|
||
|
overlaps: A `Tensor` of type `float32`.
|
||
|
A 2-D float tensor of shape `[num_boxes, num_boxes]` representing
|
||
|
the n-by-n box overlap values.
|
||
|
scores: A `Tensor` of type `float32`.
|
||
|
A 1-D float tensor of shape `[num_boxes]` representing a single
|
||
|
score corresponding to each box (each row of boxes).
|
||
|
max_output_size: A `Tensor` of type `int32`.
|
||
|
A scalar integer tensor representing the maximum number of
|
||
|
boxes to be selected by non max suppression.
|
||
|
overlap_threshold: A `Tensor` of type `float32`.
|
||
|
A 0-D float tensor representing the threshold for deciding whether
|
||
|
boxes overlap too.
|
||
|
score_threshold: A `Tensor` of type `float32`.
|
||
|
A 0-D float tensor representing the threshold for deciding when to remove
|
||
|
boxes based on score.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `int32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "NonMaxSuppressionWithOverlaps", name, overlaps, scores,
|
||
|
max_output_size, overlap_threshold, score_threshold)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return non_max_suppression_with_overlaps_eager_fallback(
|
||
|
overlaps, scores, max_output_size, overlap_threshold,
|
||
|
score_threshold, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"NonMaxSuppressionWithOverlaps", overlaps=overlaps, scores=scores,
|
||
|
max_output_size=max_output_size,
|
||
|
overlap_threshold=overlap_threshold,
|
||
|
score_threshold=score_threshold,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ()
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"NonMaxSuppressionWithOverlaps", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
NonMaxSuppressionWithOverlaps = tf_export("raw_ops.NonMaxSuppressionWithOverlaps")(_ops.to_raw_op(non_max_suppression_with_overlaps))
|
||
|
|
||
|
|
||
|
def non_max_suppression_with_overlaps_eager_fallback(overlaps: Annotated[Any, _atypes.Float32], scores: Annotated[Any, _atypes.Float32], max_output_size: Annotated[Any, _atypes.Int32], overlap_threshold: Annotated[Any, _atypes.Float32], score_threshold: Annotated[Any, _atypes.Float32], name, ctx) -> Annotated[Any, _atypes.Int32]:
|
||
|
overlaps = _ops.convert_to_tensor(overlaps, _dtypes.float32)
|
||
|
scores = _ops.convert_to_tensor(scores, _dtypes.float32)
|
||
|
max_output_size = _ops.convert_to_tensor(max_output_size, _dtypes.int32)
|
||
|
overlap_threshold = _ops.convert_to_tensor(overlap_threshold, _dtypes.float32)
|
||
|
score_threshold = _ops.convert_to_tensor(score_threshold, _dtypes.float32)
|
||
|
_inputs_flat = [overlaps, scores, max_output_size, overlap_threshold, score_threshold]
|
||
|
_attrs = None
|
||
|
_result = _execute.execute(b"NonMaxSuppressionWithOverlaps", 1,
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"NonMaxSuppressionWithOverlaps", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
_QuantizedResizeBilinearOutput = collections.namedtuple(
|
||
|
"QuantizedResizeBilinear",
|
||
|
["resized_images", "out_min", "out_max"])
|
||
|
|
||
|
|
||
|
TV_QuantizedResizeBilinear_T = TypeVar("TV_QuantizedResizeBilinear_T", _atypes.Float32, _atypes.QInt32, _atypes.QUInt8)
|
||
|
|
||
|
def quantized_resize_bilinear(images: Annotated[Any, TV_QuantizedResizeBilinear_T], size: Annotated[Any, _atypes.Int32], min: Annotated[Any, _atypes.Float32], max: Annotated[Any, _atypes.Float32], align_corners:bool=False, half_pixel_centers:bool=False, name=None):
|
||
|
r"""Resize quantized `images` to `size` using quantized bilinear interpolation.
|
||
|
|
||
|
Input images and output images must be quantized types.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `quint8`, `qint32`, `float32`.
|
||
|
4-D with shape `[batch, height, width, channels]`.
|
||
|
size: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
|
||
|
new size for the images.
|
||
|
min: A `Tensor` of type `float32`.
|
||
|
max: A `Tensor` of type `float32`.
|
||
|
align_corners: An optional `bool`. Defaults to `False`.
|
||
|
If true, the centers of the 4 corner pixels of the input and output tensors are
|
||
|
aligned, preserving the values at the corner pixels. Defaults to false.
|
||
|
half_pixel_centers: An optional `bool`. Defaults to `False`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A tuple of `Tensor` objects (resized_images, out_min, out_max).
|
||
|
|
||
|
resized_images: A `Tensor`. Has the same type as `images`.
|
||
|
out_min: A `Tensor` of type `float32`.
|
||
|
out_max: A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "QuantizedResizeBilinear", name, images, size, min, max,
|
||
|
"align_corners", align_corners, "half_pixel_centers",
|
||
|
half_pixel_centers)
|
||
|
_result = _QuantizedResizeBilinearOutput._make(_result)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return quantized_resize_bilinear_eager_fallback(
|
||
|
images, size, min, max, align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"QuantizedResizeBilinear", images=images, size=size, min=min, max=max,
|
||
|
align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "align_corners",
|
||
|
_op._get_attr_bool("align_corners"), "half_pixel_centers",
|
||
|
_op._get_attr_bool("half_pixel_centers"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"QuantizedResizeBilinear", _inputs_flat, _attrs, _result)
|
||
|
_result = _QuantizedResizeBilinearOutput._make(_result)
|
||
|
return _result
|
||
|
|
||
|
QuantizedResizeBilinear = tf_export("raw_ops.QuantizedResizeBilinear")(_ops.to_raw_op(quantized_resize_bilinear))
|
||
|
|
||
|
|
||
|
def quantized_resize_bilinear_eager_fallback(images: Annotated[Any, TV_QuantizedResizeBilinear_T], size: Annotated[Any, _atypes.Int32], min: Annotated[Any, _atypes.Float32], max: Annotated[Any, _atypes.Float32], align_corners: bool, half_pixel_centers: bool, name, ctx):
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.quint8, _dtypes.qint32, _dtypes.float32, ])
|
||
|
size = _ops.convert_to_tensor(size, _dtypes.int32)
|
||
|
min = _ops.convert_to_tensor(min, _dtypes.float32)
|
||
|
max = _ops.convert_to_tensor(max, _dtypes.float32)
|
||
|
_inputs_flat = [images, size, min, max]
|
||
|
_attrs = ("T", _attr_T, "align_corners", align_corners,
|
||
|
"half_pixel_centers", half_pixel_centers)
|
||
|
_result = _execute.execute(b"QuantizedResizeBilinear", 3,
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"QuantizedResizeBilinear", _inputs_flat, _attrs, _result)
|
||
|
_result = _QuantizedResizeBilinearOutput._make(_result)
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_RGBToHSV_T = TypeVar("TV_RGBToHSV_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half)
|
||
|
|
||
|
@_dispatch.add_fallback_dispatch_list
|
||
|
@_dispatch.add_type_based_api_dispatcher
|
||
|
@tf_export('image.rgb_to_hsv')
|
||
|
def rgb_to_hsv(images: Annotated[Any, TV_RGBToHSV_T], name=None) -> Annotated[Any, TV_RGBToHSV_T]:
|
||
|
r"""Converts one or more images from RGB to HSV.
|
||
|
|
||
|
Outputs a tensor of the same shape as the `images` tensor, containing the HSV
|
||
|
value of the pixels. The output is only well defined if the value in `images`
|
||
|
are in `[0,1]`.
|
||
|
|
||
|
`output[..., 0]` contains hue, `output[..., 1]` contains saturation, and
|
||
|
`output[..., 2]` contains value. All HSV values are in `[0,1]`. A hue of 0
|
||
|
corresponds to pure red, hue 1/3 is pure green, and 2/3 is pure blue.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> blue_image = tf.stack([
|
||
|
... tf.zeros([5,5]),
|
||
|
... tf.zeros([5,5]),
|
||
|
... tf.ones([5,5])],
|
||
|
... axis=-1)
|
||
|
>>> blue_hsv_image = tf.image.rgb_to_hsv(blue_image)
|
||
|
>>> blue_hsv_image[0,0].numpy()
|
||
|
array([0.6666667, 1. , 1. ], dtype=float32)
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`.
|
||
|
1-D or higher rank. RGB data to convert. Last dimension must be size 3.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `images`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "RGBToHSV", name, images)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
_result = _dispatcher_for_rgb_to_hsv(
|
||
|
(images, name,), None)
|
||
|
if _result is not NotImplemented:
|
||
|
return _result
|
||
|
return rgb_to_hsv_eager_fallback(
|
||
|
images, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
except (TypeError, ValueError):
|
||
|
_result = _dispatch.dispatch(
|
||
|
rgb_to_hsv, (), dict(images=images, name=name)
|
||
|
)
|
||
|
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
|
||
|
return _result
|
||
|
raise
|
||
|
else:
|
||
|
_result = _dispatcher_for_rgb_to_hsv(
|
||
|
(images, name,), None)
|
||
|
if _result is not NotImplemented:
|
||
|
return _result
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
try:
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"RGBToHSV", images=images, name=name)
|
||
|
except (TypeError, ValueError):
|
||
|
_result = _dispatch.dispatch(
|
||
|
rgb_to_hsv, (), dict(images=images, name=name)
|
||
|
)
|
||
|
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
|
||
|
return _result
|
||
|
raise
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"RGBToHSV", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
RGBToHSV = tf_export("raw_ops.RGBToHSV")(_ops.to_raw_op(rgb_to_hsv))
|
||
|
_dispatcher_for_rgb_to_hsv = rgb_to_hsv._tf_type_based_dispatcher.Dispatch
|
||
|
|
||
|
|
||
|
def rgb_to_hsv_eager_fallback(images: Annotated[Any, TV_RGBToHSV_T], name, ctx) -> Annotated[Any, TV_RGBToHSV_T]:
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.half, _dtypes.bfloat16, _dtypes.float32, _dtypes.float64, ], _dtypes.float32)
|
||
|
_inputs_flat = [images]
|
||
|
_attrs = ("T", _attr_T)
|
||
|
_result = _execute.execute(b"RGBToHSV", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"RGBToHSV", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_RandomCrop_T = TypeVar("TV_RandomCrop_T", _atypes.Float32, _atypes.Float64, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt8)
|
||
|
|
||
|
def random_crop(image: Annotated[Any, TV_RandomCrop_T], size: Annotated[Any, _atypes.Int64], seed:int=0, seed2:int=0, name=None) -> Annotated[Any, TV_RandomCrop_T]:
|
||
|
r"""Randomly crop `image`.
|
||
|
|
||
|
`size` is a 1-D int64 tensor with 2 elements representing the crop height and
|
||
|
width. The values must be non negative.
|
||
|
|
||
|
This Op picks a random location in `image` and crops a `height` by `width`
|
||
|
rectangle from that location. The random location is picked so the cropped
|
||
|
area will fit inside the original image.
|
||
|
|
||
|
Args:
|
||
|
image: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `float32`, `float64`.
|
||
|
3-D of shape `[height, width, channels]`.
|
||
|
size: A `Tensor` of type `int64`.
|
||
|
1-D of length 2 containing: `crop_height`, `crop_width`..
|
||
|
seed: An optional `int`. Defaults to `0`.
|
||
|
If either seed or seed2 are set to be non-zero, the random number
|
||
|
generator is seeded by the given seed. Otherwise, it is seeded by a
|
||
|
random seed.
|
||
|
seed2: An optional `int`. Defaults to `0`.
|
||
|
An second seed to avoid seed collision.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `image`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "RandomCrop", name, image, size, "seed", seed, "seed2", seed2)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return random_crop_eager_fallback(
|
||
|
image, size, seed=seed, seed2=seed2, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if seed is None:
|
||
|
seed = 0
|
||
|
seed = _execute.make_int(seed, "seed")
|
||
|
if seed2 is None:
|
||
|
seed2 = 0
|
||
|
seed2 = _execute.make_int(seed2, "seed2")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"RandomCrop", image=image, size=size, seed=seed, seed2=seed2,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "seed", _op._get_attr_int("seed"),
|
||
|
"seed2", _op._get_attr_int("seed2"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"RandomCrop", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
RandomCrop = tf_export("raw_ops.RandomCrop")(_ops.to_raw_op(random_crop))
|
||
|
|
||
|
|
||
|
def random_crop_eager_fallback(image: Annotated[Any, TV_RandomCrop_T], size: Annotated[Any, _atypes.Int64], seed: int, seed2: int, name, ctx) -> Annotated[Any, TV_RandomCrop_T]:
|
||
|
if seed is None:
|
||
|
seed = 0
|
||
|
seed = _execute.make_int(seed, "seed")
|
||
|
if seed2 is None:
|
||
|
seed2 = 0
|
||
|
seed2 = _execute.make_int(seed2, "seed2")
|
||
|
_attr_T, (image,) = _execute.args_to_matching_eager([image], ctx, [_dtypes.uint8, _dtypes.int8, _dtypes.int16, _dtypes.int32, _dtypes.int64, _dtypes.float32, _dtypes.float64, ])
|
||
|
size = _ops.convert_to_tensor(size, _dtypes.int64)
|
||
|
_inputs_flat = [image, size]
|
||
|
_attrs = ("T", _attr_T, "seed", seed, "seed2", seed2)
|
||
|
_result = _execute.execute(b"RandomCrop", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"RandomCrop", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_ResizeArea_T = TypeVar("TV_ResizeArea_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt8)
|
||
|
|
||
|
def resize_area(images: Annotated[Any, TV_ResizeArea_T], size: Annotated[Any, _atypes.Int32], align_corners:bool=False, name=None) -> Annotated[Any, _atypes.Float32]:
|
||
|
r"""Resize `images` to `size` using area interpolation.
|
||
|
|
||
|
Input images can be of different types but output images are always float.
|
||
|
|
||
|
The range of pixel values for the output image might be slightly different
|
||
|
from the range for the input image because of limited numerical precision.
|
||
|
To guarantee an output range, for example `[0.0, 1.0]`, apply
|
||
|
`tf.clip_by_value` to the output.
|
||
|
|
||
|
Each output pixel is computed by first transforming the pixel's footprint into
|
||
|
the input tensor and then averaging the pixels that intersect the footprint. An
|
||
|
input pixel's contribution to the average is weighted by the fraction of its
|
||
|
area that intersects the footprint. This is the same as OpenCV's INTER_AREA.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `half`, `float32`, `float64`, `bfloat16`.
|
||
|
4-D with shape `[batch, height, width, channels]`.
|
||
|
size: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
|
||
|
new size for the images.
|
||
|
align_corners: An optional `bool`. Defaults to `False`.
|
||
|
If true, the centers of the 4 corner pixels of the input and output tensors are
|
||
|
aligned, preserving the values at the corner pixels. Defaults to false.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ResizeArea", name, images, size, "align_corners",
|
||
|
align_corners)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return resize_area_eager_fallback(
|
||
|
images, size, align_corners=align_corners, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ResizeArea", images=images, size=size, align_corners=align_corners,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "align_corners",
|
||
|
_op._get_attr_bool("align_corners"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ResizeArea", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ResizeArea = tf_export("raw_ops.ResizeArea")(_ops.to_raw_op(resize_area))
|
||
|
|
||
|
|
||
|
def resize_area_eager_fallback(images: Annotated[Any, TV_ResizeArea_T], size: Annotated[Any, _atypes.Int32], align_corners: bool, name, ctx) -> Annotated[Any, _atypes.Float32]:
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.int8, _dtypes.uint8, _dtypes.int16, _dtypes.uint16, _dtypes.int32, _dtypes.int64, _dtypes.half, _dtypes.float32, _dtypes.float64, _dtypes.bfloat16, ])
|
||
|
size = _ops.convert_to_tensor(size, _dtypes.int32)
|
||
|
_inputs_flat = [images, size]
|
||
|
_attrs = ("T", _attr_T, "align_corners", align_corners)
|
||
|
_result = _execute.execute(b"ResizeArea", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ResizeArea", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_ResizeBicubic_T = TypeVar("TV_ResizeBicubic_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt8)
|
||
|
|
||
|
def resize_bicubic(images: Annotated[Any, TV_ResizeBicubic_T], size: Annotated[Any, _atypes.Int32], align_corners:bool=False, half_pixel_centers:bool=False, name=None) -> Annotated[Any, _atypes.Float32]:
|
||
|
r"""Resize `images` to `size` using bicubic interpolation.
|
||
|
|
||
|
Input images can be of different types but output images are always float.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `half`, `float32`, `float64`, `bfloat16`.
|
||
|
4-D with shape `[batch, height, width, channels]`.
|
||
|
size: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
|
||
|
new size for the images.
|
||
|
align_corners: An optional `bool`. Defaults to `False`.
|
||
|
If true, the centers of the 4 corner pixels of the input and output tensors are
|
||
|
aligned, preserving the values at the corner pixels. Defaults to false.
|
||
|
half_pixel_centers: An optional `bool`. Defaults to `False`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ResizeBicubic", name, images, size, "align_corners",
|
||
|
align_corners, "half_pixel_centers", half_pixel_centers)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return resize_bicubic_eager_fallback(
|
||
|
images, size, align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ResizeBicubic", images=images, size=size,
|
||
|
align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "align_corners",
|
||
|
_op._get_attr_bool("align_corners"), "half_pixel_centers",
|
||
|
_op._get_attr_bool("half_pixel_centers"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ResizeBicubic", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ResizeBicubic = tf_export("raw_ops.ResizeBicubic")(_ops.to_raw_op(resize_bicubic))
|
||
|
|
||
|
|
||
|
def resize_bicubic_eager_fallback(images: Annotated[Any, TV_ResizeBicubic_T], size: Annotated[Any, _atypes.Int32], align_corners: bool, half_pixel_centers: bool, name, ctx) -> Annotated[Any, _atypes.Float32]:
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.int8, _dtypes.uint8, _dtypes.int16, _dtypes.uint16, _dtypes.int32, _dtypes.int64, _dtypes.half, _dtypes.float32, _dtypes.float64, _dtypes.bfloat16, ])
|
||
|
size = _ops.convert_to_tensor(size, _dtypes.int32)
|
||
|
_inputs_flat = [images, size]
|
||
|
_attrs = ("T", _attr_T, "align_corners", align_corners,
|
||
|
"half_pixel_centers", half_pixel_centers)
|
||
|
_result = _execute.execute(b"ResizeBicubic", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ResizeBicubic", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_ResizeBicubicGrad_T = TypeVar("TV_ResizeBicubicGrad_T", _atypes.Float32, _atypes.Float64)
|
||
|
|
||
|
def resize_bicubic_grad(grads: Annotated[Any, _atypes.Float32], original_image: Annotated[Any, TV_ResizeBicubicGrad_T], align_corners:bool=False, half_pixel_centers:bool=False, name=None) -> Annotated[Any, TV_ResizeBicubicGrad_T]:
|
||
|
r"""Computes the gradient of bicubic interpolation.
|
||
|
|
||
|
Args:
|
||
|
grads: A `Tensor` of type `float32`.
|
||
|
4-D with shape `[batch, height, width, channels]`.
|
||
|
original_image: A `Tensor`. Must be one of the following types: `float32`, `float64`.
|
||
|
4-D with shape `[batch, orig_height, orig_width, channels]`,
|
||
|
The image tensor that was resized.
|
||
|
align_corners: An optional `bool`. Defaults to `False`.
|
||
|
If true, the centers of the 4 corner pixels of the input and grad tensors are
|
||
|
aligned. Defaults to false.
|
||
|
half_pixel_centers: An optional `bool`. Defaults to `False`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `original_image`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ResizeBicubicGrad", name, grads, original_image,
|
||
|
"align_corners", align_corners, "half_pixel_centers",
|
||
|
half_pixel_centers)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return resize_bicubic_grad_eager_fallback(
|
||
|
grads, original_image, align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ResizeBicubicGrad", grads=grads, original_image=original_image,
|
||
|
align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "align_corners",
|
||
|
_op._get_attr_bool("align_corners"), "half_pixel_centers",
|
||
|
_op._get_attr_bool("half_pixel_centers"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ResizeBicubicGrad", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ResizeBicubicGrad = tf_export("raw_ops.ResizeBicubicGrad")(_ops.to_raw_op(resize_bicubic_grad))
|
||
|
|
||
|
|
||
|
def resize_bicubic_grad_eager_fallback(grads: Annotated[Any, _atypes.Float32], original_image: Annotated[Any, TV_ResizeBicubicGrad_T], align_corners: bool, half_pixel_centers: bool, name, ctx) -> Annotated[Any, TV_ResizeBicubicGrad_T]:
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_attr_T, (original_image,) = _execute.args_to_matching_eager([original_image], ctx, [_dtypes.float32, _dtypes.float64, ])
|
||
|
grads = _ops.convert_to_tensor(grads, _dtypes.float32)
|
||
|
_inputs_flat = [grads, original_image]
|
||
|
_attrs = ("T", _attr_T, "align_corners", align_corners,
|
||
|
"half_pixel_centers", half_pixel_centers)
|
||
|
_result = _execute.execute(b"ResizeBicubicGrad", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ResizeBicubicGrad", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_ResizeBilinear_T = TypeVar("TV_ResizeBilinear_T", _atypes.BFloat16, _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt8)
|
||
|
|
||
|
def resize_bilinear(images: Annotated[Any, TV_ResizeBilinear_T], size: Annotated[Any, _atypes.Int32], align_corners:bool=False, half_pixel_centers:bool=False, name=None) -> Annotated[Any, _atypes.Float32]:
|
||
|
r"""Resize `images` to `size` using bilinear interpolation.
|
||
|
|
||
|
Input images can be of different types but output images are always float.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `bfloat16`, `half`, `float32`, `float64`, `bfloat16`.
|
||
|
4-D with shape `[batch, height, width, channels]`.
|
||
|
size: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
|
||
|
new size for the images.
|
||
|
align_corners: An optional `bool`. Defaults to `False`.
|
||
|
If true, the centers of the 4 corner pixels of the input and output tensors are
|
||
|
aligned, preserving the values at the corner pixels. Defaults to false.
|
||
|
half_pixel_centers: An optional `bool`. Defaults to `False`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ResizeBilinear", name, images, size, "align_corners",
|
||
|
align_corners, "half_pixel_centers", half_pixel_centers)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return resize_bilinear_eager_fallback(
|
||
|
images, size, align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ResizeBilinear", images=images, size=size,
|
||
|
align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "align_corners",
|
||
|
_op._get_attr_bool("align_corners"), "half_pixel_centers",
|
||
|
_op._get_attr_bool("half_pixel_centers"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ResizeBilinear", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ResizeBilinear = tf_export("raw_ops.ResizeBilinear")(_ops.to_raw_op(resize_bilinear))
|
||
|
|
||
|
|
||
|
def resize_bilinear_eager_fallback(images: Annotated[Any, TV_ResizeBilinear_T], size: Annotated[Any, _atypes.Int32], align_corners: bool, half_pixel_centers: bool, name, ctx) -> Annotated[Any, _atypes.Float32]:
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.int8, _dtypes.uint8, _dtypes.int16, _dtypes.uint16, _dtypes.int32, _dtypes.int64, _dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, _dtypes.bfloat16, ])
|
||
|
size = _ops.convert_to_tensor(size, _dtypes.int32)
|
||
|
_inputs_flat = [images, size]
|
||
|
_attrs = ("T", _attr_T, "align_corners", align_corners,
|
||
|
"half_pixel_centers", half_pixel_centers)
|
||
|
_result = _execute.execute(b"ResizeBilinear", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ResizeBilinear", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_ResizeBilinearGrad_T = TypeVar("TV_ResizeBilinearGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half)
|
||
|
|
||
|
def resize_bilinear_grad(grads: Annotated[Any, _atypes.Float32], original_image: Annotated[Any, TV_ResizeBilinearGrad_T], align_corners:bool=False, half_pixel_centers:bool=False, name=None) -> Annotated[Any, TV_ResizeBilinearGrad_T]:
|
||
|
r"""Computes the gradient of bilinear interpolation.
|
||
|
|
||
|
Args:
|
||
|
grads: A `Tensor` of type `float32`.
|
||
|
4-D with shape `[batch, height, width, channels]`.
|
||
|
original_image: A `Tensor`. Must be one of the following types: `float32`, `bfloat16`, `half`, `float64`.
|
||
|
4-D with shape `[batch, orig_height, orig_width, channels]`,
|
||
|
The image tensor that was resized.
|
||
|
align_corners: An optional `bool`. Defaults to `False`.
|
||
|
If true, the centers of the 4 corner pixels of the input and grad tensors are
|
||
|
aligned. Defaults to false.
|
||
|
half_pixel_centers: An optional `bool`. Defaults to `False`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `original_image`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ResizeBilinearGrad", name, grads, original_image,
|
||
|
"align_corners", align_corners, "half_pixel_centers",
|
||
|
half_pixel_centers)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return resize_bilinear_grad_eager_fallback(
|
||
|
grads, original_image, align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ResizeBilinearGrad", grads=grads, original_image=original_image,
|
||
|
align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "align_corners",
|
||
|
_op._get_attr_bool("align_corners"), "half_pixel_centers",
|
||
|
_op._get_attr_bool("half_pixel_centers"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ResizeBilinearGrad", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ResizeBilinearGrad = tf_export("raw_ops.ResizeBilinearGrad")(_ops.to_raw_op(resize_bilinear_grad))
|
||
|
|
||
|
|
||
|
def resize_bilinear_grad_eager_fallback(grads: Annotated[Any, _atypes.Float32], original_image: Annotated[Any, TV_ResizeBilinearGrad_T], align_corners: bool, half_pixel_centers: bool, name, ctx) -> Annotated[Any, TV_ResizeBilinearGrad_T]:
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_attr_T, (original_image,) = _execute.args_to_matching_eager([original_image], ctx, [_dtypes.float32, _dtypes.bfloat16, _dtypes.half, _dtypes.float64, ])
|
||
|
grads = _ops.convert_to_tensor(grads, _dtypes.float32)
|
||
|
_inputs_flat = [grads, original_image]
|
||
|
_attrs = ("T", _attr_T, "align_corners", align_corners,
|
||
|
"half_pixel_centers", half_pixel_centers)
|
||
|
_result = _execute.execute(b"ResizeBilinearGrad", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ResizeBilinearGrad", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_ResizeNearestNeighbor_T = TypeVar("TV_ResizeNearestNeighbor_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt8)
|
||
|
|
||
|
def resize_nearest_neighbor(images: Annotated[Any, TV_ResizeNearestNeighbor_T], size: Annotated[Any, _atypes.Int32], align_corners:bool=False, half_pixel_centers:bool=False, name=None) -> Annotated[Any, TV_ResizeNearestNeighbor_T]:
|
||
|
r"""Resize `images` to `size` using nearest neighbor interpolation.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `half`, `float32`, `float64`, `bfloat16`.
|
||
|
4-D with shape `[batch, height, width, channels]`.
|
||
|
size: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
|
||
|
new size for the images.
|
||
|
align_corners: An optional `bool`. Defaults to `False`.
|
||
|
If true, the centers of the 4 corner pixels of the input and output tensors are
|
||
|
aligned, preserving the values at the corner pixels. Defaults to false.
|
||
|
half_pixel_centers: An optional `bool`. Defaults to `False`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `images`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ResizeNearestNeighbor", name, images, size, "align_corners",
|
||
|
align_corners, "half_pixel_centers", half_pixel_centers)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return resize_nearest_neighbor_eager_fallback(
|
||
|
images, size, align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ResizeNearestNeighbor", images=images, size=size,
|
||
|
align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "align_corners",
|
||
|
_op._get_attr_bool("align_corners"), "half_pixel_centers",
|
||
|
_op._get_attr_bool("half_pixel_centers"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ResizeNearestNeighbor", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ResizeNearestNeighbor = tf_export("raw_ops.ResizeNearestNeighbor")(_ops.to_raw_op(resize_nearest_neighbor))
|
||
|
|
||
|
|
||
|
def resize_nearest_neighbor_eager_fallback(images: Annotated[Any, TV_ResizeNearestNeighbor_T], size: Annotated[Any, _atypes.Int32], align_corners: bool, half_pixel_centers: bool, name, ctx) -> Annotated[Any, TV_ResizeNearestNeighbor_T]:
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.int8, _dtypes.uint8, _dtypes.int16, _dtypes.uint16, _dtypes.int32, _dtypes.int64, _dtypes.half, _dtypes.float32, _dtypes.float64, _dtypes.bfloat16, ])
|
||
|
size = _ops.convert_to_tensor(size, _dtypes.int32)
|
||
|
_inputs_flat = [images, size]
|
||
|
_attrs = ("T", _attr_T, "align_corners", align_corners,
|
||
|
"half_pixel_centers", half_pixel_centers)
|
||
|
_result = _execute.execute(b"ResizeNearestNeighbor", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ResizeNearestNeighbor", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_ResizeNearestNeighborGrad_T = TypeVar("TV_ResizeNearestNeighborGrad_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32, _atypes.Int8, _atypes.UInt8)
|
||
|
|
||
|
def resize_nearest_neighbor_grad(grads: Annotated[Any, TV_ResizeNearestNeighborGrad_T], size: Annotated[Any, _atypes.Int32], align_corners:bool=False, half_pixel_centers:bool=False, name=None) -> Annotated[Any, TV_ResizeNearestNeighborGrad_T]:
|
||
|
r"""Computes the gradient of nearest neighbor interpolation.
|
||
|
|
||
|
Args:
|
||
|
grads: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int32`, `half`, `float32`, `float64`, `bfloat16`.
|
||
|
4-D with shape `[batch, height, width, channels]`.
|
||
|
size: A 1-D int32 Tensor of 2 elements: `orig_height, orig_width`. The
|
||
|
original input size.
|
||
|
align_corners: An optional `bool`. Defaults to `False`.
|
||
|
If true, the centers of the 4 corner pixels of the input and grad tensors are
|
||
|
aligned. Defaults to false.
|
||
|
half_pixel_centers: An optional `bool`. Defaults to `False`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `grads`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ResizeNearestNeighborGrad", name, grads, size, "align_corners",
|
||
|
align_corners, "half_pixel_centers", half_pixel_centers)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return resize_nearest_neighbor_grad_eager_fallback(
|
||
|
grads, size, align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ResizeNearestNeighborGrad", grads=grads, size=size,
|
||
|
align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "align_corners",
|
||
|
_op._get_attr_bool("align_corners"), "half_pixel_centers",
|
||
|
_op._get_attr_bool("half_pixel_centers"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ResizeNearestNeighborGrad", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ResizeNearestNeighborGrad = tf_export("raw_ops.ResizeNearestNeighborGrad")(_ops.to_raw_op(resize_nearest_neighbor_grad))
|
||
|
|
||
|
|
||
|
def resize_nearest_neighbor_grad_eager_fallback(grads: Annotated[Any, TV_ResizeNearestNeighborGrad_T], size: Annotated[Any, _atypes.Int32], align_corners: bool, half_pixel_centers: bool, name, ctx) -> Annotated[Any, TV_ResizeNearestNeighborGrad_T]:
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
align_corners = _execute.make_bool(align_corners, "align_corners")
|
||
|
if half_pixel_centers is None:
|
||
|
half_pixel_centers = False
|
||
|
half_pixel_centers = _execute.make_bool(half_pixel_centers, "half_pixel_centers")
|
||
|
_attr_T, (grads,) = _execute.args_to_matching_eager([grads], ctx, [_dtypes.uint8, _dtypes.int8, _dtypes.int32, _dtypes.half, _dtypes.float32, _dtypes.float64, _dtypes.bfloat16, ])
|
||
|
size = _ops.convert_to_tensor(size, _dtypes.int32)
|
||
|
_inputs_flat = [grads, size]
|
||
|
_attrs = ("T", _attr_T, "align_corners", align_corners,
|
||
|
"half_pixel_centers", half_pixel_centers)
|
||
|
_result = _execute.execute(b"ResizeNearestNeighborGrad", 1,
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ResizeNearestNeighborGrad", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
_SampleDistortedBoundingBoxOutput = collections.namedtuple(
|
||
|
"SampleDistortedBoundingBox",
|
||
|
["begin", "size", "bboxes"])
|
||
|
|
||
|
|
||
|
TV_SampleDistortedBoundingBox_T = TypeVar("TV_SampleDistortedBoundingBox_T", _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt8)
|
||
|
|
||
|
def sample_distorted_bounding_box(image_size: Annotated[Any, TV_SampleDistortedBoundingBox_T], bounding_boxes: Annotated[Any, _atypes.Float32], seed:int=0, seed2:int=0, min_object_covered:float=0.1, aspect_ratio_range=[0.75, 1.33], area_range=[0.05, 1], max_attempts:int=100, use_image_if_no_bounding_boxes:bool=False, name=None):
|
||
|
r"""Generate a single randomly distorted bounding box for an image.
|
||
|
|
||
|
Bounding box annotations are often supplied in addition to ground-truth labels
|
||
|
in image recognition or object localization tasks. A common technique for
|
||
|
training such a system is to randomly distort an image while preserving
|
||
|
its content, i.e. *data augmentation*. This Op outputs a randomly distorted
|
||
|
localization of an object, i.e. bounding box, given an `image_size`,
|
||
|
`bounding_boxes` and a series of constraints.
|
||
|
|
||
|
The output of this Op is a single bounding box that may be used to crop the
|
||
|
original image. The output is returned as 3 tensors: `begin`, `size` and
|
||
|
`bboxes`. The first 2 tensors can be fed directly into `tf.slice` to crop the
|
||
|
image. The latter may be supplied to `tf.image.draw_bounding_boxes` to visualize
|
||
|
what the bounding box looks like.
|
||
|
|
||
|
Bounding boxes are supplied and returned as `[y_min, x_min, y_max, x_max]`. The
|
||
|
bounding box coordinates are floats in `[0.0, 1.0]` relative to the width and
|
||
|
height of the underlying image.
|
||
|
|
||
|
For example,
|
||
|
|
||
|
```python
|
||
|
# Generate a single distorted bounding box.
|
||
|
begin, size, bbox_for_draw = tf.image.sample_distorted_bounding_box(
|
||
|
tf.shape(image),
|
||
|
bounding_boxes=bounding_boxes)
|
||
|
|
||
|
# Draw the bounding box in an image summary.
|
||
|
image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0),
|
||
|
bbox_for_draw)
|
||
|
tf.summary.image('images_with_box', image_with_box)
|
||
|
|
||
|
# Employ the bounding box to distort the image.
|
||
|
distorted_image = tf.slice(image, begin, size)
|
||
|
```
|
||
|
|
||
|
Note that if no bounding box information is available, setting
|
||
|
`use_image_if_no_bounding_boxes = true` will assume there is a single implicit
|
||
|
bounding box covering the whole image. If `use_image_if_no_bounding_boxes` is
|
||
|
false and no bounding boxes are supplied, an error is raised.
|
||
|
|
||
|
Args:
|
||
|
image_size: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`.
|
||
|
1-D, containing `[height, width, channels]`.
|
||
|
bounding_boxes: A `Tensor` of type `float32`.
|
||
|
3-D with shape `[batch, N, 4]` describing the N bounding boxes
|
||
|
associated with the image.
|
||
|
seed: An optional `int`. Defaults to `0`.
|
||
|
If either `seed` or `seed2` are set to non-zero, the random number
|
||
|
generator is seeded by the given `seed`. Otherwise, it is seeded by a random
|
||
|
seed.
|
||
|
seed2: An optional `int`. Defaults to `0`.
|
||
|
A second seed to avoid seed collision.
|
||
|
min_object_covered: An optional `float`. Defaults to `0.1`.
|
||
|
The cropped area of the image must contain at least this
|
||
|
fraction of any bounding box supplied. The value of this parameter should be
|
||
|
non-negative. In the case of 0, the cropped area does not need to overlap
|
||
|
any of the bounding boxes supplied.
|
||
|
aspect_ratio_range: An optional list of `floats`. Defaults to `[0.75, 1.33]`.
|
||
|
The cropped area of the image must have an aspect ratio =
|
||
|
width / height within this range.
|
||
|
area_range: An optional list of `floats`. Defaults to `[0.05, 1]`.
|
||
|
The cropped area of the image must contain a fraction of the
|
||
|
supplied image within this range.
|
||
|
max_attempts: An optional `int`. Defaults to `100`.
|
||
|
Number of attempts at generating a cropped region of the image
|
||
|
of the specified constraints. After `max_attempts` failures, return the entire
|
||
|
image.
|
||
|
use_image_if_no_bounding_boxes: An optional `bool`. Defaults to `False`.
|
||
|
Controls behavior if no bounding boxes supplied.
|
||
|
If true, assume an implicit bounding box covering the whole input. If false,
|
||
|
raise an error.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A tuple of `Tensor` objects (begin, size, bboxes).
|
||
|
|
||
|
begin: A `Tensor`. Has the same type as `image_size`.
|
||
|
size: A `Tensor`. Has the same type as `image_size`.
|
||
|
bboxes: A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "SampleDistortedBoundingBox", name, image_size, bounding_boxes,
|
||
|
"seed", seed, "seed2", seed2, "min_object_covered",
|
||
|
min_object_covered, "aspect_ratio_range", aspect_ratio_range,
|
||
|
"area_range", area_range, "max_attempts", max_attempts,
|
||
|
"use_image_if_no_bounding_boxes", use_image_if_no_bounding_boxes)
|
||
|
_result = _SampleDistortedBoundingBoxOutput._make(_result)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return sample_distorted_bounding_box_eager_fallback(
|
||
|
image_size, bounding_boxes, seed=seed, seed2=seed2,
|
||
|
min_object_covered=min_object_covered,
|
||
|
aspect_ratio_range=aspect_ratio_range, area_range=area_range,
|
||
|
max_attempts=max_attempts,
|
||
|
use_image_if_no_bounding_boxes=use_image_if_no_bounding_boxes,
|
||
|
name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if seed is None:
|
||
|
seed = 0
|
||
|
seed = _execute.make_int(seed, "seed")
|
||
|
if seed2 is None:
|
||
|
seed2 = 0
|
||
|
seed2 = _execute.make_int(seed2, "seed2")
|
||
|
if min_object_covered is None:
|
||
|
min_object_covered = 0.1
|
||
|
min_object_covered = _execute.make_float(min_object_covered, "min_object_covered")
|
||
|
if aspect_ratio_range is None:
|
||
|
aspect_ratio_range = [0.75, 1.33]
|
||
|
if not isinstance(aspect_ratio_range, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'aspect_ratio_range' argument to "
|
||
|
"'sample_distorted_bounding_box' Op, not %r." % aspect_ratio_range)
|
||
|
aspect_ratio_range = [_execute.make_float(_f, "aspect_ratio_range") for _f in aspect_ratio_range]
|
||
|
if area_range is None:
|
||
|
area_range = [0.05, 1]
|
||
|
if not isinstance(area_range, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'area_range' argument to "
|
||
|
"'sample_distorted_bounding_box' Op, not %r." % area_range)
|
||
|
area_range = [_execute.make_float(_f, "area_range") for _f in area_range]
|
||
|
if max_attempts is None:
|
||
|
max_attempts = 100
|
||
|
max_attempts = _execute.make_int(max_attempts, "max_attempts")
|
||
|
if use_image_if_no_bounding_boxes is None:
|
||
|
use_image_if_no_bounding_boxes = False
|
||
|
use_image_if_no_bounding_boxes = _execute.make_bool(use_image_if_no_bounding_boxes, "use_image_if_no_bounding_boxes")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"SampleDistortedBoundingBox", image_size=image_size,
|
||
|
bounding_boxes=bounding_boxes,
|
||
|
seed=seed, seed2=seed2,
|
||
|
min_object_covered=min_object_covered,
|
||
|
aspect_ratio_range=aspect_ratio_range,
|
||
|
area_range=area_range,
|
||
|
max_attempts=max_attempts,
|
||
|
use_image_if_no_bounding_boxes=use_image_if_no_bounding_boxes,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "seed", _op._get_attr_int("seed"),
|
||
|
"seed2", _op._get_attr_int("seed2"), "min_object_covered",
|
||
|
_op.get_attr("min_object_covered"), "aspect_ratio_range",
|
||
|
_op.get_attr("aspect_ratio_range"), "area_range",
|
||
|
_op.get_attr("area_range"), "max_attempts",
|
||
|
_op._get_attr_int("max_attempts"),
|
||
|
"use_image_if_no_bounding_boxes",
|
||
|
_op._get_attr_bool("use_image_if_no_bounding_boxes"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"SampleDistortedBoundingBox", _inputs_flat, _attrs, _result)
|
||
|
_result = _SampleDistortedBoundingBoxOutput._make(_result)
|
||
|
return _result
|
||
|
|
||
|
SampleDistortedBoundingBox = tf_export("raw_ops.SampleDistortedBoundingBox")(_ops.to_raw_op(sample_distorted_bounding_box))
|
||
|
|
||
|
|
||
|
def sample_distorted_bounding_box_eager_fallback(image_size: Annotated[Any, TV_SampleDistortedBoundingBox_T], bounding_boxes: Annotated[Any, _atypes.Float32], seed: int, seed2: int, min_object_covered: float, aspect_ratio_range, area_range, max_attempts: int, use_image_if_no_bounding_boxes: bool, name, ctx):
|
||
|
if seed is None:
|
||
|
seed = 0
|
||
|
seed = _execute.make_int(seed, "seed")
|
||
|
if seed2 is None:
|
||
|
seed2 = 0
|
||
|
seed2 = _execute.make_int(seed2, "seed2")
|
||
|
if min_object_covered is None:
|
||
|
min_object_covered = 0.1
|
||
|
min_object_covered = _execute.make_float(min_object_covered, "min_object_covered")
|
||
|
if aspect_ratio_range is None:
|
||
|
aspect_ratio_range = [0.75, 1.33]
|
||
|
if not isinstance(aspect_ratio_range, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'aspect_ratio_range' argument to "
|
||
|
"'sample_distorted_bounding_box' Op, not %r." % aspect_ratio_range)
|
||
|
aspect_ratio_range = [_execute.make_float(_f, "aspect_ratio_range") for _f in aspect_ratio_range]
|
||
|
if area_range is None:
|
||
|
area_range = [0.05, 1]
|
||
|
if not isinstance(area_range, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'area_range' argument to "
|
||
|
"'sample_distorted_bounding_box' Op, not %r." % area_range)
|
||
|
area_range = [_execute.make_float(_f, "area_range") for _f in area_range]
|
||
|
if max_attempts is None:
|
||
|
max_attempts = 100
|
||
|
max_attempts = _execute.make_int(max_attempts, "max_attempts")
|
||
|
if use_image_if_no_bounding_boxes is None:
|
||
|
use_image_if_no_bounding_boxes = False
|
||
|
use_image_if_no_bounding_boxes = _execute.make_bool(use_image_if_no_bounding_boxes, "use_image_if_no_bounding_boxes")
|
||
|
_attr_T, (image_size,) = _execute.args_to_matching_eager([image_size], ctx, [_dtypes.uint8, _dtypes.int8, _dtypes.int16, _dtypes.int32, _dtypes.int64, ])
|
||
|
bounding_boxes = _ops.convert_to_tensor(bounding_boxes, _dtypes.float32)
|
||
|
_inputs_flat = [image_size, bounding_boxes]
|
||
|
_attrs = ("T", _attr_T, "seed", seed, "seed2", seed2, "min_object_covered",
|
||
|
min_object_covered, "aspect_ratio_range", aspect_ratio_range, "area_range",
|
||
|
area_range, "max_attempts", max_attempts, "use_image_if_no_bounding_boxes",
|
||
|
use_image_if_no_bounding_boxes)
|
||
|
_result = _execute.execute(b"SampleDistortedBoundingBox", 3,
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"SampleDistortedBoundingBox", _inputs_flat, _attrs, _result)
|
||
|
_result = _SampleDistortedBoundingBoxOutput._make(_result)
|
||
|
return _result
|
||
|
|
||
|
_SampleDistortedBoundingBoxV2Output = collections.namedtuple(
|
||
|
"SampleDistortedBoundingBoxV2",
|
||
|
["begin", "size", "bboxes"])
|
||
|
|
||
|
|
||
|
TV_SampleDistortedBoundingBoxV2_T = TypeVar("TV_SampleDistortedBoundingBoxV2_T", _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt8)
|
||
|
|
||
|
def sample_distorted_bounding_box_v2(image_size: Annotated[Any, TV_SampleDistortedBoundingBoxV2_T], bounding_boxes: Annotated[Any, _atypes.Float32], min_object_covered: Annotated[Any, _atypes.Float32], seed:int=0, seed2:int=0, aspect_ratio_range=[0.75, 1.33], area_range=[0.05, 1], max_attempts:int=100, use_image_if_no_bounding_boxes:bool=False, name=None):
|
||
|
r"""Generate a single randomly distorted bounding box for an image.
|
||
|
|
||
|
Bounding box annotations are often supplied in addition to ground-truth labels
|
||
|
in image recognition or object localization tasks. A common technique for
|
||
|
training such a system is to randomly distort an image while preserving
|
||
|
its content, i.e. *data augmentation*. This Op outputs a randomly distorted
|
||
|
localization of an object, i.e. bounding box, given an `image_size`,
|
||
|
`bounding_boxes` and a series of constraints.
|
||
|
|
||
|
The output of this Op is a single bounding box that may be used to crop the
|
||
|
original image. The output is returned as 3 tensors: `begin`, `size` and
|
||
|
`bboxes`. The first 2 tensors can be fed directly into `tf.slice` to crop the
|
||
|
image. The latter may be supplied to `tf.image.draw_bounding_boxes` to visualize
|
||
|
what the bounding box looks like.
|
||
|
|
||
|
Bounding boxes are supplied and returned as `[y_min, x_min, y_max, x_max]`. The
|
||
|
bounding box coordinates are floats in `[0.0, 1.0]` relative to the width and
|
||
|
height of the underlying image.
|
||
|
|
||
|
For example,
|
||
|
|
||
|
```python
|
||
|
# Generate a single distorted bounding box.
|
||
|
begin, size, bbox_for_draw = tf.image.sample_distorted_bounding_box(
|
||
|
tf.shape(image),
|
||
|
bounding_boxes=bounding_boxes)
|
||
|
|
||
|
# Draw the bounding box in an image summary.
|
||
|
image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0),
|
||
|
bbox_for_draw)
|
||
|
tf.summary.image('images_with_box', image_with_box)
|
||
|
|
||
|
# Employ the bounding box to distort the image.
|
||
|
distorted_image = tf.slice(image, begin, size)
|
||
|
```
|
||
|
|
||
|
Note that if no bounding box information is available, setting
|
||
|
`use_image_if_no_bounding_boxes = true` will assume there is a single implicit
|
||
|
bounding box covering the whole image. If `use_image_if_no_bounding_boxes` is
|
||
|
false and no bounding boxes are supplied, an error is raised.
|
||
|
|
||
|
Args:
|
||
|
image_size: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`.
|
||
|
1-D, containing `[height, width, channels]`.
|
||
|
bounding_boxes: A `Tensor` of type `float32`.
|
||
|
3-D with shape `[batch, N, 4]` describing the N bounding boxes
|
||
|
associated with the image.
|
||
|
min_object_covered: A `Tensor` of type `float32`.
|
||
|
The cropped area of the image must contain at least this
|
||
|
fraction of any bounding box supplied. The value of this parameter should be
|
||
|
non-negative. In the case of 0, the cropped area does not need to overlap
|
||
|
any of the bounding boxes supplied.
|
||
|
seed: An optional `int`. Defaults to `0`.
|
||
|
If either `seed` or `seed2` are set to non-zero, the random number
|
||
|
generator is seeded by the given `seed`. Otherwise, it is seeded by a random
|
||
|
seed.
|
||
|
seed2: An optional `int`. Defaults to `0`.
|
||
|
A second seed to avoid seed collision.
|
||
|
aspect_ratio_range: An optional list of `floats`. Defaults to `[0.75, 1.33]`.
|
||
|
The cropped area of the image must have an aspect ratio =
|
||
|
width / height within this range.
|
||
|
area_range: An optional list of `floats`. Defaults to `[0.05, 1]`.
|
||
|
The cropped area of the image must contain a fraction of the
|
||
|
supplied image within this range.
|
||
|
max_attempts: An optional `int`. Defaults to `100`.
|
||
|
Number of attempts at generating a cropped region of the image
|
||
|
of the specified constraints. After `max_attempts` failures, return the entire
|
||
|
image.
|
||
|
use_image_if_no_bounding_boxes: An optional `bool`. Defaults to `False`.
|
||
|
Controls behavior if no bounding boxes supplied.
|
||
|
If true, assume an implicit bounding box covering the whole input. If false,
|
||
|
raise an error.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A tuple of `Tensor` objects (begin, size, bboxes).
|
||
|
|
||
|
begin: A `Tensor`. Has the same type as `image_size`.
|
||
|
size: A `Tensor`. Has the same type as `image_size`.
|
||
|
bboxes: A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "SampleDistortedBoundingBoxV2", name, image_size,
|
||
|
bounding_boxes, min_object_covered, "seed", seed, "seed2", seed2,
|
||
|
"aspect_ratio_range", aspect_ratio_range, "area_range", area_range,
|
||
|
"max_attempts", max_attempts, "use_image_if_no_bounding_boxes",
|
||
|
use_image_if_no_bounding_boxes)
|
||
|
_result = _SampleDistortedBoundingBoxV2Output._make(_result)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return sample_distorted_bounding_box_v2_eager_fallback(
|
||
|
image_size, bounding_boxes, min_object_covered, seed=seed,
|
||
|
seed2=seed2, aspect_ratio_range=aspect_ratio_range,
|
||
|
area_range=area_range, max_attempts=max_attempts,
|
||
|
use_image_if_no_bounding_boxes=use_image_if_no_bounding_boxes,
|
||
|
name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if seed is None:
|
||
|
seed = 0
|
||
|
seed = _execute.make_int(seed, "seed")
|
||
|
if seed2 is None:
|
||
|
seed2 = 0
|
||
|
seed2 = _execute.make_int(seed2, "seed2")
|
||
|
if aspect_ratio_range is None:
|
||
|
aspect_ratio_range = [0.75, 1.33]
|
||
|
if not isinstance(aspect_ratio_range, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'aspect_ratio_range' argument to "
|
||
|
"'sample_distorted_bounding_box_v2' Op, not %r." % aspect_ratio_range)
|
||
|
aspect_ratio_range = [_execute.make_float(_f, "aspect_ratio_range") for _f in aspect_ratio_range]
|
||
|
if area_range is None:
|
||
|
area_range = [0.05, 1]
|
||
|
if not isinstance(area_range, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'area_range' argument to "
|
||
|
"'sample_distorted_bounding_box_v2' Op, not %r." % area_range)
|
||
|
area_range = [_execute.make_float(_f, "area_range") for _f in area_range]
|
||
|
if max_attempts is None:
|
||
|
max_attempts = 100
|
||
|
max_attempts = _execute.make_int(max_attempts, "max_attempts")
|
||
|
if use_image_if_no_bounding_boxes is None:
|
||
|
use_image_if_no_bounding_boxes = False
|
||
|
use_image_if_no_bounding_boxes = _execute.make_bool(use_image_if_no_bounding_boxes, "use_image_if_no_bounding_boxes")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"SampleDistortedBoundingBoxV2", image_size=image_size,
|
||
|
bounding_boxes=bounding_boxes,
|
||
|
min_object_covered=min_object_covered,
|
||
|
seed=seed, seed2=seed2,
|
||
|
aspect_ratio_range=aspect_ratio_range,
|
||
|
area_range=area_range,
|
||
|
max_attempts=max_attempts,
|
||
|
use_image_if_no_bounding_boxes=use_image_if_no_bounding_boxes,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "seed", _op._get_attr_int("seed"),
|
||
|
"seed2", _op._get_attr_int("seed2"), "aspect_ratio_range",
|
||
|
_op.get_attr("aspect_ratio_range"), "area_range",
|
||
|
_op.get_attr("area_range"), "max_attempts",
|
||
|
_op._get_attr_int("max_attempts"),
|
||
|
"use_image_if_no_bounding_boxes",
|
||
|
_op._get_attr_bool("use_image_if_no_bounding_boxes"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"SampleDistortedBoundingBoxV2", _inputs_flat, _attrs, _result)
|
||
|
_result = _SampleDistortedBoundingBoxV2Output._make(_result)
|
||
|
return _result
|
||
|
|
||
|
SampleDistortedBoundingBoxV2 = tf_export("raw_ops.SampleDistortedBoundingBoxV2")(_ops.to_raw_op(sample_distorted_bounding_box_v2))
|
||
|
|
||
|
|
||
|
def sample_distorted_bounding_box_v2_eager_fallback(image_size: Annotated[Any, TV_SampleDistortedBoundingBoxV2_T], bounding_boxes: Annotated[Any, _atypes.Float32], min_object_covered: Annotated[Any, _atypes.Float32], seed: int, seed2: int, aspect_ratio_range, area_range, max_attempts: int, use_image_if_no_bounding_boxes: bool, name, ctx):
|
||
|
if seed is None:
|
||
|
seed = 0
|
||
|
seed = _execute.make_int(seed, "seed")
|
||
|
if seed2 is None:
|
||
|
seed2 = 0
|
||
|
seed2 = _execute.make_int(seed2, "seed2")
|
||
|
if aspect_ratio_range is None:
|
||
|
aspect_ratio_range = [0.75, 1.33]
|
||
|
if not isinstance(aspect_ratio_range, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'aspect_ratio_range' argument to "
|
||
|
"'sample_distorted_bounding_box_v2' Op, not %r." % aspect_ratio_range)
|
||
|
aspect_ratio_range = [_execute.make_float(_f, "aspect_ratio_range") for _f in aspect_ratio_range]
|
||
|
if area_range is None:
|
||
|
area_range = [0.05, 1]
|
||
|
if not isinstance(area_range, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'area_range' argument to "
|
||
|
"'sample_distorted_bounding_box_v2' Op, not %r." % area_range)
|
||
|
area_range = [_execute.make_float(_f, "area_range") for _f in area_range]
|
||
|
if max_attempts is None:
|
||
|
max_attempts = 100
|
||
|
max_attempts = _execute.make_int(max_attempts, "max_attempts")
|
||
|
if use_image_if_no_bounding_boxes is None:
|
||
|
use_image_if_no_bounding_boxes = False
|
||
|
use_image_if_no_bounding_boxes = _execute.make_bool(use_image_if_no_bounding_boxes, "use_image_if_no_bounding_boxes")
|
||
|
_attr_T, (image_size,) = _execute.args_to_matching_eager([image_size], ctx, [_dtypes.uint8, _dtypes.int8, _dtypes.int16, _dtypes.int32, _dtypes.int64, ])
|
||
|
bounding_boxes = _ops.convert_to_tensor(bounding_boxes, _dtypes.float32)
|
||
|
min_object_covered = _ops.convert_to_tensor(min_object_covered, _dtypes.float32)
|
||
|
_inputs_flat = [image_size, bounding_boxes, min_object_covered]
|
||
|
_attrs = ("T", _attr_T, "seed", seed, "seed2", seed2, "aspect_ratio_range",
|
||
|
aspect_ratio_range, "area_range", area_range, "max_attempts", max_attempts,
|
||
|
"use_image_if_no_bounding_boxes", use_image_if_no_bounding_boxes)
|
||
|
_result = _execute.execute(b"SampleDistortedBoundingBoxV2", 3,
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"SampleDistortedBoundingBoxV2", _inputs_flat, _attrs, _result)
|
||
|
_result = _SampleDistortedBoundingBoxV2Output._make(_result)
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_ScaleAndTranslate_T = TypeVar("TV_ScaleAndTranslate_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt8)
|
||
|
|
||
|
def scale_and_translate(images: Annotated[Any, TV_ScaleAndTranslate_T], size: Annotated[Any, _atypes.Int32], scale: Annotated[Any, _atypes.Float32], translation: Annotated[Any, _atypes.Float32], kernel_type:str="lanczos3", antialias:bool=True, name=None) -> Annotated[Any, _atypes.Float32]:
|
||
|
r"""TODO: add doc.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `bfloat16`, `half`, `float32`, `float64`.
|
||
|
size: A `Tensor` of type `int32`.
|
||
|
scale: A `Tensor` of type `float32`.
|
||
|
translation: A `Tensor` of type `float32`.
|
||
|
kernel_type: An optional `string`. Defaults to `"lanczos3"`.
|
||
|
antialias: An optional `bool`. Defaults to `True`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ScaleAndTranslate", name, images, size, scale, translation,
|
||
|
"kernel_type", kernel_type, "antialias", antialias)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return scale_and_translate_eager_fallback(
|
||
|
images, size, scale, translation, kernel_type=kernel_type,
|
||
|
antialias=antialias, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if kernel_type is None:
|
||
|
kernel_type = "lanczos3"
|
||
|
kernel_type = _execute.make_str(kernel_type, "kernel_type")
|
||
|
if antialias is None:
|
||
|
antialias = True
|
||
|
antialias = _execute.make_bool(antialias, "antialias")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ScaleAndTranslate", images=images, size=size, scale=scale,
|
||
|
translation=translation, kernel_type=kernel_type,
|
||
|
antialias=antialias, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "kernel_type",
|
||
|
_op.get_attr("kernel_type"), "antialias",
|
||
|
_op._get_attr_bool("antialias"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ScaleAndTranslate", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ScaleAndTranslate = tf_export("raw_ops.ScaleAndTranslate")(_ops.to_raw_op(scale_and_translate))
|
||
|
|
||
|
|
||
|
def scale_and_translate_eager_fallback(images: Annotated[Any, TV_ScaleAndTranslate_T], size: Annotated[Any, _atypes.Int32], scale: Annotated[Any, _atypes.Float32], translation: Annotated[Any, _atypes.Float32], kernel_type: str, antialias: bool, name, ctx) -> Annotated[Any, _atypes.Float32]:
|
||
|
if kernel_type is None:
|
||
|
kernel_type = "lanczos3"
|
||
|
kernel_type = _execute.make_str(kernel_type, "kernel_type")
|
||
|
if antialias is None:
|
||
|
antialias = True
|
||
|
antialias = _execute.make_bool(antialias, "antialias")
|
||
|
_attr_T, (images,) = _execute.args_to_matching_eager([images], ctx, [_dtypes.int8, _dtypes.uint8, _dtypes.int16, _dtypes.uint16, _dtypes.int32, _dtypes.int64, _dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
|
||
|
size = _ops.convert_to_tensor(size, _dtypes.int32)
|
||
|
scale = _ops.convert_to_tensor(scale, _dtypes.float32)
|
||
|
translation = _ops.convert_to_tensor(translation, _dtypes.float32)
|
||
|
_inputs_flat = [images, size, scale, translation]
|
||
|
_attrs = ("T", _attr_T, "kernel_type", kernel_type, "antialias", antialias)
|
||
|
_result = _execute.execute(b"ScaleAndTranslate", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ScaleAndTranslate", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_ScaleAndTranslateGrad_T = TypeVar("TV_ScaleAndTranslateGrad_T", bound=_atypes.Float32)
|
||
|
|
||
|
def scale_and_translate_grad(grads: Annotated[Any, TV_ScaleAndTranslateGrad_T], original_image: Annotated[Any, TV_ScaleAndTranslateGrad_T], scale: Annotated[Any, _atypes.Float32], translation: Annotated[Any, _atypes.Float32], kernel_type:str="lanczos3", antialias:bool=True, name=None) -> Annotated[Any, TV_ScaleAndTranslateGrad_T]:
|
||
|
r"""TODO: add doc.
|
||
|
|
||
|
Args:
|
||
|
grads: A `Tensor`. Must be one of the following types: `float32`.
|
||
|
original_image: A `Tensor`. Must have the same type as `grads`.
|
||
|
scale: A `Tensor` of type `float32`.
|
||
|
translation: A `Tensor` of type `float32`.
|
||
|
kernel_type: An optional `string`. Defaults to `"lanczos3"`.
|
||
|
antialias: An optional `bool`. Defaults to `True`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `grads`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "ScaleAndTranslateGrad", name, grads, original_image, scale,
|
||
|
translation, "kernel_type", kernel_type, "antialias", antialias)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return scale_and_translate_grad_eager_fallback(
|
||
|
grads, original_image, scale, translation, kernel_type=kernel_type,
|
||
|
antialias=antialias, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if kernel_type is None:
|
||
|
kernel_type = "lanczos3"
|
||
|
kernel_type = _execute.make_str(kernel_type, "kernel_type")
|
||
|
if antialias is None:
|
||
|
antialias = True
|
||
|
antialias = _execute.make_bool(antialias, "antialias")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"ScaleAndTranslateGrad", grads=grads, original_image=original_image,
|
||
|
scale=scale, translation=translation,
|
||
|
kernel_type=kernel_type, antialias=antialias,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "kernel_type",
|
||
|
_op.get_attr("kernel_type"), "antialias",
|
||
|
_op._get_attr_bool("antialias"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"ScaleAndTranslateGrad", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
ScaleAndTranslateGrad = tf_export("raw_ops.ScaleAndTranslateGrad")(_ops.to_raw_op(scale_and_translate_grad))
|
||
|
|
||
|
|
||
|
def scale_and_translate_grad_eager_fallback(grads: Annotated[Any, TV_ScaleAndTranslateGrad_T], original_image: Annotated[Any, TV_ScaleAndTranslateGrad_T], scale: Annotated[Any, _atypes.Float32], translation: Annotated[Any, _atypes.Float32], kernel_type: str, antialias: bool, name, ctx) -> Annotated[Any, TV_ScaleAndTranslateGrad_T]:
|
||
|
if kernel_type is None:
|
||
|
kernel_type = "lanczos3"
|
||
|
kernel_type = _execute.make_str(kernel_type, "kernel_type")
|
||
|
if antialias is None:
|
||
|
antialias = True
|
||
|
antialias = _execute.make_bool(antialias, "antialias")
|
||
|
_attr_T, _inputs_T = _execute.args_to_matching_eager([grads, original_image], ctx, [_dtypes.float32, ])
|
||
|
(grads, original_image) = _inputs_T
|
||
|
scale = _ops.convert_to_tensor(scale, _dtypes.float32)
|
||
|
translation = _ops.convert_to_tensor(translation, _dtypes.float32)
|
||
|
_inputs_flat = [grads, original_image, scale, translation]
|
||
|
_attrs = ("T", _attr_T, "kernel_type", kernel_type, "antialias", antialias)
|
||
|
_result = _execute.execute(b"ScaleAndTranslateGrad", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"ScaleAndTranslateGrad", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
_StatelessSampleDistortedBoundingBoxOutput = collections.namedtuple(
|
||
|
"StatelessSampleDistortedBoundingBox",
|
||
|
["begin", "size", "bboxes"])
|
||
|
|
||
|
|
||
|
TV_StatelessSampleDistortedBoundingBox_T = TypeVar("TV_StatelessSampleDistortedBoundingBox_T", _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt8)
|
||
|
TV_StatelessSampleDistortedBoundingBox_Tseed = TypeVar("TV_StatelessSampleDistortedBoundingBox_Tseed", _atypes.Int32, _atypes.Int64)
|
||
|
|
||
|
def stateless_sample_distorted_bounding_box(image_size: Annotated[Any, TV_StatelessSampleDistortedBoundingBox_T], bounding_boxes: Annotated[Any, _atypes.Float32], min_object_covered: Annotated[Any, _atypes.Float32], seed: Annotated[Any, TV_StatelessSampleDistortedBoundingBox_Tseed], aspect_ratio_range=[0.75, 1.33], area_range=[0.05, 1], max_attempts:int=100, use_image_if_no_bounding_boxes:bool=False, name=None):
|
||
|
r"""Generate a randomly distorted bounding box for an image deterministically.
|
||
|
|
||
|
Bounding box annotations are often supplied in addition to ground-truth labels
|
||
|
in image recognition or object localization tasks. A common technique for
|
||
|
training such a system is to randomly distort an image while preserving its
|
||
|
content, i.e. *data augmentation*. This Op, given the same `seed`,
|
||
|
deterministically outputs a randomly distorted localization of an object, i.e.
|
||
|
bounding box, given an `image_size`, `bounding_boxes` and a series of
|
||
|
constraints.
|
||
|
|
||
|
The output of this Op is a single bounding box that may be used to crop the
|
||
|
original image. The output is returned as 3 tensors: `begin`, `size` and
|
||
|
`bboxes`. The first 2 tensors can be fed directly into `tf.slice` to crop the
|
||
|
image. The latter may be supplied to `tf.image.draw_bounding_boxes` to visualize
|
||
|
what the bounding box looks like.
|
||
|
|
||
|
Bounding boxes are supplied and returned as `[y_min, x_min, y_max, x_max]`. The
|
||
|
bounding box coordinates are floats in `[0.0, 1.0]` relative to the width and
|
||
|
the height of the underlying image.
|
||
|
|
||
|
The output of this Op is guaranteed to be the same given the same `seed` and is
|
||
|
independent of how many times the function is called, and independent of global
|
||
|
seed settings (e.g. `tf.random.set_seed`).
|
||
|
|
||
|
Example usage:
|
||
|
|
||
|
>>> image = np.array([[[1], [2], [3]], [[4], [5], [6]], [[7], [8], [9]]])
|
||
|
>>> bbox = tf.constant(
|
||
|
... [0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
|
||
|
>>> seed = (1, 2)
|
||
|
>>> # Generate a single distorted bounding box.
|
||
|
>>> bbox_begin, bbox_size, bbox_draw = (
|
||
|
... tf.image.stateless_sample_distorted_bounding_box(
|
||
|
... tf.shape(image), bounding_boxes=bbox, seed=seed))
|
||
|
>>> # Employ the bounding box to distort the image.
|
||
|
>>> tf.slice(image, bbox_begin, bbox_size)
|
||
|
<tf.Tensor: shape=(2, 2, 1), dtype=int64, numpy=
|
||
|
array([[[1],
|
||
|
[2]],
|
||
|
[[4],
|
||
|
[5]]])>
|
||
|
>>> # Draw the bounding box in an image summary.
|
||
|
>>> colors = np.array([[1.0, 0.0, 0.0], [0.0, 0.0, 1.0]])
|
||
|
>>> tf.image.draw_bounding_boxes(
|
||
|
... tf.expand_dims(tf.cast(image, tf.float32),0), bbox_draw, colors)
|
||
|
<tf.Tensor: shape=(1, 3, 3, 1), dtype=float32, numpy=
|
||
|
array([[[[1.],
|
||
|
[1.],
|
||
|
[3.]],
|
||
|
[[1.],
|
||
|
[1.],
|
||
|
[6.]],
|
||
|
[[7.],
|
||
|
[8.],
|
||
|
[9.]]]], dtype=float32)>
|
||
|
|
||
|
Note that if no bounding box information is available, setting
|
||
|
`use_image_if_no_bounding_boxes = true` will assume there is a single implicit
|
||
|
bounding box covering the whole image. If `use_image_if_no_bounding_boxes` is
|
||
|
false and no bounding boxes are supplied, an error is raised.
|
||
|
|
||
|
Args:
|
||
|
image_size: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`.
|
||
|
1-D, containing `[height, width, channels]`.
|
||
|
bounding_boxes: A `Tensor` of type `float32`.
|
||
|
3-D with shape `[batch, N, 4]` describing the N bounding boxes
|
||
|
associated with the image.
|
||
|
min_object_covered: A `Tensor` of type `float32`.
|
||
|
The cropped area of the image must contain at least this
|
||
|
fraction of any bounding box supplied. The value of this parameter should be
|
||
|
non-negative. In the case of 0, the cropped area does not need to overlap
|
||
|
any of the bounding boxes supplied.
|
||
|
seed: A `Tensor`. Must be one of the following types: `int32`, `int64`.
|
||
|
1-D with shape `[2]`. The seed to the random number generator. Must have dtype
|
||
|
`int32` or `int64`. (When using XLA, only `int32` is allowed.)
|
||
|
aspect_ratio_range: An optional list of `floats`. Defaults to `[0.75, 1.33]`.
|
||
|
The cropped area of the image must have an aspect ratio =
|
||
|
width / height within this range.
|
||
|
area_range: An optional list of `floats`. Defaults to `[0.05, 1]`.
|
||
|
The cropped area of the image must contain a fraction of the
|
||
|
supplied image within this range.
|
||
|
max_attempts: An optional `int`. Defaults to `100`.
|
||
|
Number of attempts at generating a cropped region of the image
|
||
|
of the specified constraints. After `max_attempts` failures, return the entire
|
||
|
image.
|
||
|
use_image_if_no_bounding_boxes: An optional `bool`. Defaults to `False`.
|
||
|
Controls behavior if no bounding boxes supplied.
|
||
|
If true, assume an implicit bounding box covering the whole input. If false,
|
||
|
raise an error.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A tuple of `Tensor` objects (begin, size, bboxes).
|
||
|
|
||
|
begin: A `Tensor`. Has the same type as `image_size`.
|
||
|
size: A `Tensor`. Has the same type as `image_size`.
|
||
|
bboxes: A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "StatelessSampleDistortedBoundingBox", name, image_size,
|
||
|
bounding_boxes, min_object_covered, seed, "aspect_ratio_range",
|
||
|
aspect_ratio_range, "area_range", area_range, "max_attempts",
|
||
|
max_attempts, "use_image_if_no_bounding_boxes",
|
||
|
use_image_if_no_bounding_boxes)
|
||
|
_result = _StatelessSampleDistortedBoundingBoxOutput._make(_result)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return stateless_sample_distorted_bounding_box_eager_fallback(
|
||
|
image_size, bounding_boxes, min_object_covered, seed,
|
||
|
aspect_ratio_range=aspect_ratio_range, area_range=area_range,
|
||
|
max_attempts=max_attempts,
|
||
|
use_image_if_no_bounding_boxes=use_image_if_no_bounding_boxes,
|
||
|
name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if aspect_ratio_range is None:
|
||
|
aspect_ratio_range = [0.75, 1.33]
|
||
|
if not isinstance(aspect_ratio_range, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'aspect_ratio_range' argument to "
|
||
|
"'stateless_sample_distorted_bounding_box' Op, not %r." % aspect_ratio_range)
|
||
|
aspect_ratio_range = [_execute.make_float(_f, "aspect_ratio_range") for _f in aspect_ratio_range]
|
||
|
if area_range is None:
|
||
|
area_range = [0.05, 1]
|
||
|
if not isinstance(area_range, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'area_range' argument to "
|
||
|
"'stateless_sample_distorted_bounding_box' Op, not %r." % area_range)
|
||
|
area_range = [_execute.make_float(_f, "area_range") for _f in area_range]
|
||
|
if max_attempts is None:
|
||
|
max_attempts = 100
|
||
|
max_attempts = _execute.make_int(max_attempts, "max_attempts")
|
||
|
if use_image_if_no_bounding_boxes is None:
|
||
|
use_image_if_no_bounding_boxes = False
|
||
|
use_image_if_no_bounding_boxes = _execute.make_bool(use_image_if_no_bounding_boxes, "use_image_if_no_bounding_boxes")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"StatelessSampleDistortedBoundingBox", image_size=image_size,
|
||
|
bounding_boxes=bounding_boxes,
|
||
|
min_object_covered=min_object_covered,
|
||
|
seed=seed,
|
||
|
aspect_ratio_range=aspect_ratio_range,
|
||
|
area_range=area_range,
|
||
|
max_attempts=max_attempts,
|
||
|
use_image_if_no_bounding_boxes=use_image_if_no_bounding_boxes,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "Tseed",
|
||
|
_op._get_attr_type("Tseed"), "aspect_ratio_range",
|
||
|
_op.get_attr("aspect_ratio_range"), "area_range",
|
||
|
_op.get_attr("area_range"), "max_attempts",
|
||
|
_op._get_attr_int("max_attempts"),
|
||
|
"use_image_if_no_bounding_boxes",
|
||
|
_op._get_attr_bool("use_image_if_no_bounding_boxes"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"StatelessSampleDistortedBoundingBox", _inputs_flat, _attrs, _result)
|
||
|
_result = _StatelessSampleDistortedBoundingBoxOutput._make(_result)
|
||
|
return _result
|
||
|
|
||
|
StatelessSampleDistortedBoundingBox = tf_export("raw_ops.StatelessSampleDistortedBoundingBox")(_ops.to_raw_op(stateless_sample_distorted_bounding_box))
|
||
|
|
||
|
|
||
|
def stateless_sample_distorted_bounding_box_eager_fallback(image_size: Annotated[Any, TV_StatelessSampleDistortedBoundingBox_T], bounding_boxes: Annotated[Any, _atypes.Float32], min_object_covered: Annotated[Any, _atypes.Float32], seed: Annotated[Any, TV_StatelessSampleDistortedBoundingBox_Tseed], aspect_ratio_range, area_range, max_attempts: int, use_image_if_no_bounding_boxes: bool, name, ctx):
|
||
|
if aspect_ratio_range is None:
|
||
|
aspect_ratio_range = [0.75, 1.33]
|
||
|
if not isinstance(aspect_ratio_range, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'aspect_ratio_range' argument to "
|
||
|
"'stateless_sample_distorted_bounding_box' Op, not %r." % aspect_ratio_range)
|
||
|
aspect_ratio_range = [_execute.make_float(_f, "aspect_ratio_range") for _f in aspect_ratio_range]
|
||
|
if area_range is None:
|
||
|
area_range = [0.05, 1]
|
||
|
if not isinstance(area_range, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'area_range' argument to "
|
||
|
"'stateless_sample_distorted_bounding_box' Op, not %r." % area_range)
|
||
|
area_range = [_execute.make_float(_f, "area_range") for _f in area_range]
|
||
|
if max_attempts is None:
|
||
|
max_attempts = 100
|
||
|
max_attempts = _execute.make_int(max_attempts, "max_attempts")
|
||
|
if use_image_if_no_bounding_boxes is None:
|
||
|
use_image_if_no_bounding_boxes = False
|
||
|
use_image_if_no_bounding_boxes = _execute.make_bool(use_image_if_no_bounding_boxes, "use_image_if_no_bounding_boxes")
|
||
|
_attr_T, (image_size,) = _execute.args_to_matching_eager([image_size], ctx, [_dtypes.uint8, _dtypes.int8, _dtypes.int16, _dtypes.int32, _dtypes.int64, ])
|
||
|
_attr_Tseed, (seed,) = _execute.args_to_matching_eager([seed], ctx, [_dtypes.int32, _dtypes.int64, ])
|
||
|
bounding_boxes = _ops.convert_to_tensor(bounding_boxes, _dtypes.float32)
|
||
|
min_object_covered = _ops.convert_to_tensor(min_object_covered, _dtypes.float32)
|
||
|
_inputs_flat = [image_size, bounding_boxes, min_object_covered, seed]
|
||
|
_attrs = ("T", _attr_T, "Tseed", _attr_Tseed, "aspect_ratio_range",
|
||
|
aspect_ratio_range, "area_range", area_range, "max_attempts", max_attempts,
|
||
|
"use_image_if_no_bounding_boxes", use_image_if_no_bounding_boxes)
|
||
|
_result = _execute.execute(b"StatelessSampleDistortedBoundingBox", 3,
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"StatelessSampleDistortedBoundingBox", _inputs_flat, _attrs, _result)
|
||
|
_result = _StatelessSampleDistortedBoundingBoxOutput._make(_result)
|
||
|
return _result
|
||
|
|