5950 lines
229 KiB
Python
5950 lines
229 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Implementation of image ops."""
|
||
|
|
||
|
import functools
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from tensorflow.python.eager import context
|
||
|
from tensorflow.python.eager import def_function
|
||
|
from tensorflow.python.framework import config
|
||
|
from tensorflow.python.framework import constant_op
|
||
|
from tensorflow.python.framework import dtypes
|
||
|
from tensorflow.python.framework import ops
|
||
|
from tensorflow.python.framework import random_seed
|
||
|
from tensorflow.python.framework import tensor as tensor_lib
|
||
|
from tensorflow.python.framework import tensor_shape
|
||
|
from tensorflow.python.framework import tensor_util
|
||
|
from tensorflow.python.ops import array_ops
|
||
|
from tensorflow.python.ops import array_ops_stack
|
||
|
from tensorflow.python.ops import check_ops
|
||
|
from tensorflow.python.ops import cond as tf_cond
|
||
|
from tensorflow.python.ops import control_flow_assert
|
||
|
from tensorflow.python.ops import control_flow_case
|
||
|
from tensorflow.python.ops import control_flow_ops
|
||
|
from tensorflow.python.ops import gen_image_ops
|
||
|
from tensorflow.python.ops import math_ops
|
||
|
from tensorflow.python.ops import nn_impl
|
||
|
from tensorflow.python.ops import nn_ops
|
||
|
from tensorflow.python.ops import random_ops
|
||
|
from tensorflow.python.ops import ref_variable # pylint: disable=unused-import
|
||
|
from tensorflow.python.ops import sort_ops
|
||
|
from tensorflow.python.ops import stateless_random_ops
|
||
|
from tensorflow.python.ops import string_ops
|
||
|
from tensorflow.python.ops import variables
|
||
|
from tensorflow.python.ops import while_loop
|
||
|
from tensorflow.python.util import deprecation
|
||
|
from tensorflow.python.util import dispatch
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
ops.NotDifferentiable('RandomCrop')
|
||
|
# TODO(b/31222613): This op may be differentiable, and there may be
|
||
|
# latent bugs here.
|
||
|
ops.NotDifferentiable('HSVToRGB')
|
||
|
ops.NotDifferentiable('DrawBoundingBoxes')
|
||
|
ops.NotDifferentiable('SampleDistortedBoundingBox')
|
||
|
ops.NotDifferentiable('SampleDistortedBoundingBoxV2')
|
||
|
# TODO(bsteiner): Implement the gradient function for extract_glimpse
|
||
|
# TODO(b/31222613): This op may be differentiable, and there may be
|
||
|
# latent bugs here.
|
||
|
ops.NotDifferentiable('ExtractGlimpse')
|
||
|
ops.NotDifferentiable('NonMaxSuppression')
|
||
|
ops.NotDifferentiable('NonMaxSuppressionV2')
|
||
|
ops.NotDifferentiable('NonMaxSuppressionWithOverlaps')
|
||
|
ops.NotDifferentiable('GenerateBoundingBoxProposals')
|
||
|
|
||
|
|
||
|
# pylint: disable=invalid-name
|
||
|
def _assert(cond, ex_type, msg):
|
||
|
"""A polymorphic assert, works with tensors and boolean expressions.
|
||
|
|
||
|
If `cond` is not a tensor, behave like an ordinary assert statement, except
|
||
|
that a empty list is returned. If `cond` is a tensor, return a list
|
||
|
containing a single TensorFlow assert op.
|
||
|
|
||
|
Args:
|
||
|
cond: Something evaluates to a boolean value. May be a tensor.
|
||
|
ex_type: The exception class to use.
|
||
|
msg: The error message.
|
||
|
|
||
|
Returns:
|
||
|
A list, containing at most one assert op.
|
||
|
"""
|
||
|
if _is_tensor(cond):
|
||
|
return [control_flow_assert.Assert(cond, [msg])]
|
||
|
else:
|
||
|
if not cond:
|
||
|
raise ex_type(msg)
|
||
|
else:
|
||
|
return []
|
||
|
|
||
|
|
||
|
def _is_tensor(x):
|
||
|
"""Returns `True` if `x` is a symbolic tensor-like object.
|
||
|
|
||
|
Args:
|
||
|
x: A python object to check.
|
||
|
|
||
|
Returns:
|
||
|
`True` if `x` is a `tf.Tensor` or `tf.Variable`, otherwise `False`.
|
||
|
"""
|
||
|
return isinstance(x, (tensor_lib.Tensor, variables.Variable))
|
||
|
|
||
|
|
||
|
def _ImageDimensions(image, rank):
|
||
|
"""Returns the dimensions of an image tensor.
|
||
|
|
||
|
Args:
|
||
|
image: A rank-D Tensor. For 3-D of shape: `[height, width, channels]`.
|
||
|
rank: The expected rank of the image
|
||
|
|
||
|
Returns:
|
||
|
A list of corresponding to the dimensions of the
|
||
|
input image. Dimensions that are statically known are python integers,
|
||
|
otherwise, they are integer scalar tensors.
|
||
|
"""
|
||
|
if image.get_shape().is_fully_defined():
|
||
|
return image.get_shape().as_list()
|
||
|
else:
|
||
|
static_shape = image.get_shape().with_rank(rank).as_list()
|
||
|
dynamic_shape = array_ops_stack.unstack(array_ops.shape(image), rank)
|
||
|
return [
|
||
|
s if s is not None else d for s, d in zip(static_shape, dynamic_shape)
|
||
|
]
|
||
|
|
||
|
|
||
|
def _Check3DImage(image, require_static=True):
|
||
|
"""Assert that we are working with a properly shaped image.
|
||
|
|
||
|
Args:
|
||
|
image: 3-D Tensor of shape [height, width, channels]
|
||
|
require_static: If `True`, requires that all dimensions of `image` are known
|
||
|
and non-zero.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `image.shape` is not a 3-vector.
|
||
|
|
||
|
Returns:
|
||
|
An empty list, if `image` has fully defined dimensions. Otherwise, a list
|
||
|
containing an assert op is returned.
|
||
|
"""
|
||
|
try:
|
||
|
image_shape = image.get_shape().with_rank(3)
|
||
|
except ValueError:
|
||
|
raise ValueError("'image' (shape %s) must be three-dimensional." %
|
||
|
image.shape)
|
||
|
if require_static and not image_shape.is_fully_defined():
|
||
|
raise ValueError("'image' (shape %s) must be fully defined." % image_shape)
|
||
|
if any(x == 0 for x in image_shape):
|
||
|
raise ValueError("all dims of 'image.shape' must be > 0: %s" % image_shape)
|
||
|
if not image_shape.is_fully_defined():
|
||
|
return [
|
||
|
check_ops.assert_positive(
|
||
|
array_ops.shape(image),
|
||
|
["all dims of 'image.shape' "
|
||
|
'must be > 0.'])
|
||
|
]
|
||
|
else:
|
||
|
return []
|
||
|
|
||
|
|
||
|
def _Assert3DImage(image):
|
||
|
"""Assert that we are working with a properly shaped image.
|
||
|
|
||
|
Performs the check statically if possible (i.e. if the shape
|
||
|
is statically known). Otherwise adds a control dependency
|
||
|
to an assert op that checks the dynamic shape.
|
||
|
|
||
|
Args:
|
||
|
image: 3-D Tensor of shape [height, width, channels]
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `image.shape` is not a 3-vector.
|
||
|
|
||
|
Returns:
|
||
|
If the shape of `image` could be verified statically, `image` is
|
||
|
returned unchanged, otherwise there will be a control dependency
|
||
|
added that asserts the correct dynamic shape.
|
||
|
"""
|
||
|
return control_flow_ops.with_dependencies(
|
||
|
_Check3DImage(image, require_static=False), image)
|
||
|
|
||
|
|
||
|
def _AssertAtLeast3DImage(image):
|
||
|
"""Assert that we are working with a properly shaped image.
|
||
|
|
||
|
Performs the check statically if possible (i.e. if the shape
|
||
|
is statically known). Otherwise adds a control dependency
|
||
|
to an assert op that checks the dynamic shape.
|
||
|
|
||
|
Args:
|
||
|
image: >= 3-D Tensor of size [*, height, width, depth]
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if image.shape is not a [>= 3] vector.
|
||
|
|
||
|
Returns:
|
||
|
If the shape of `image` could be verified statically, `image` is
|
||
|
returned unchanged, otherwise there will be a control dependency
|
||
|
added that asserts the correct dynamic shape.
|
||
|
"""
|
||
|
return control_flow_ops.with_dependencies(
|
||
|
_CheckAtLeast3DImage(image, require_static=False), image)
|
||
|
|
||
|
|
||
|
def _CheckAtLeast3DImage(image, require_static=True):
|
||
|
"""Assert that we are working with a properly shaped image.
|
||
|
|
||
|
Args:
|
||
|
image: >= 3-D Tensor of size [*, height, width, depth]
|
||
|
require_static: If `True`, requires that all dimensions of `image` are known
|
||
|
and non-zero.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if image.shape is not a [>= 3] vector.
|
||
|
|
||
|
Returns:
|
||
|
An empty list, if `image` has fully defined dimensions. Otherwise, a list
|
||
|
containing an assert op is returned.
|
||
|
"""
|
||
|
try:
|
||
|
if image.get_shape().ndims is None:
|
||
|
image_shape = image.get_shape().with_rank(3)
|
||
|
else:
|
||
|
image_shape = image.get_shape().with_rank_at_least(3)
|
||
|
except ValueError:
|
||
|
raise ValueError("'image' (shape %s) must be at least three-dimensional." %
|
||
|
image.shape)
|
||
|
if require_static and not image_shape.is_fully_defined():
|
||
|
raise ValueError('\'image\' must be fully defined.')
|
||
|
if any(x == 0 for x in image_shape[-3:]):
|
||
|
raise ValueError('inner 3 dims of \'image.shape\' must be > 0: %s' %
|
||
|
image_shape)
|
||
|
if not image_shape[-3:].is_fully_defined():
|
||
|
return [
|
||
|
check_ops.assert_positive(
|
||
|
array_ops.shape(image)[-3:],
|
||
|
["inner 3 dims of 'image.shape' "
|
||
|
'must be > 0.']),
|
||
|
check_ops.assert_greater_equal(
|
||
|
array_ops.rank(image),
|
||
|
3,
|
||
|
message="'image' must be at least three-dimensional.")
|
||
|
]
|
||
|
else:
|
||
|
return []
|
||
|
|
||
|
|
||
|
def _AssertGrayscaleImage(image):
|
||
|
"""Assert that we are working with a properly shaped grayscale image.
|
||
|
|
||
|
Performs the check statically if possible (i.e. if the shape
|
||
|
is statically known). Otherwise adds a control dependency
|
||
|
to an assert op that checks the dynamic shape.
|
||
|
|
||
|
Args:
|
||
|
image: >= 2-D Tensor of size [*, 1]
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if image.shape is not a [>= 2] vector or if
|
||
|
last dimension is not size 1.
|
||
|
|
||
|
Returns:
|
||
|
If the shape of `image` could be verified statically, `image` is
|
||
|
returned unchanged, otherwise there will be a control dependency
|
||
|
added that asserts the correct dynamic shape.
|
||
|
"""
|
||
|
return control_flow_ops.with_dependencies(
|
||
|
_CheckGrayscaleImage(image, require_static=False), image)
|
||
|
|
||
|
|
||
|
def _CheckGrayscaleImage(image, require_static=True):
|
||
|
"""Assert that we are working with properly shaped grayscale image.
|
||
|
|
||
|
Args:
|
||
|
image: >= 2-D Tensor of size [*, 1]
|
||
|
require_static: Boolean, whether static shape is required.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if image.shape is not a [>= 2] vector or if
|
||
|
last dimension is not size 1.
|
||
|
|
||
|
Returns:
|
||
|
An empty list, if `image` has fully defined dimensions. Otherwise, a list
|
||
|
containing an assert op is returned.
|
||
|
"""
|
||
|
try:
|
||
|
if image.get_shape().ndims is None:
|
||
|
image_shape = image.get_shape().with_rank(2)
|
||
|
else:
|
||
|
image_shape = image.get_shape().with_rank_at_least(2)
|
||
|
except ValueError:
|
||
|
raise ValueError('A grayscale image (shape %s) must be at least '
|
||
|
'two-dimensional.' % image.shape)
|
||
|
if require_static and not image_shape.is_fully_defined():
|
||
|
raise ValueError('\'image\' must be fully defined.')
|
||
|
if image_shape.is_fully_defined():
|
||
|
if image_shape[-1] != 1:
|
||
|
raise ValueError('Last dimension of a grayscale image should be size 1.')
|
||
|
if not image_shape.is_fully_defined():
|
||
|
return [
|
||
|
check_ops.assert_equal(
|
||
|
array_ops.shape(image)[-1],
|
||
|
1,
|
||
|
message='Last dimension of a grayscale image should be size 1.'),
|
||
|
check_ops.assert_greater_equal(
|
||
|
array_ops.rank(image),
|
||
|
3,
|
||
|
message='A grayscale image must be at least two-dimensional.')
|
||
|
]
|
||
|
else:
|
||
|
return []
|
||
|
|
||
|
|
||
|
def fix_image_flip_shape(image, result):
|
||
|
"""Set the shape to 3 dimensional if we don't know anything else.
|
||
|
|
||
|
Args:
|
||
|
image: original image size
|
||
|
result: flipped or transformed image
|
||
|
|
||
|
Returns:
|
||
|
An image whose shape is at least (None, None, None).
|
||
|
"""
|
||
|
|
||
|
image_shape = image.get_shape()
|
||
|
if image_shape == tensor_shape.unknown_shape():
|
||
|
result.set_shape([None, None, None])
|
||
|
else:
|
||
|
result.set_shape(image_shape)
|
||
|
return result
|
||
|
|
||
|
|
||
|
@tf_export('image.random_flip_up_down')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def random_flip_up_down(image, seed=None):
|
||
|
"""Randomly flips an image vertically (upside down).
|
||
|
|
||
|
With a 1 in 2 chance, outputs the contents of `image` flipped along the first
|
||
|
dimension, which is `height`. Otherwise, output the image as-is.
|
||
|
When passing a batch of images, each image will be randomly flipped
|
||
|
independent of other images.
|
||
|
|
||
|
Example usage:
|
||
|
|
||
|
>>> image = np.array([[[1], [2]], [[3], [4]]])
|
||
|
>>> tf.image.random_flip_up_down(image, 3).numpy().tolist()
|
||
|
[[[3], [4]], [[1], [2]]]
|
||
|
|
||
|
Randomly flip multiple images.
|
||
|
|
||
|
>>> images = np.array(
|
||
|
... [
|
||
|
... [[[1], [2]], [[3], [4]]],
|
||
|
... [[[5], [6]], [[7], [8]]]
|
||
|
... ])
|
||
|
>>> tf.image.random_flip_up_down(images, 4).numpy().tolist()
|
||
|
[[[[3], [4]], [[1], [2]]], [[[5], [6]], [[7], [8]]]]
|
||
|
|
||
|
For producing deterministic results given a `seed` value, use
|
||
|
`tf.image.stateless_random_flip_up_down`. Unlike using the `seed` param
|
||
|
with `tf.image.random_*` ops, `tf.image.stateless_random_*` ops guarantee the
|
||
|
same results given the same seed independent of how many times the function is
|
||
|
called, and independent of global seed settings (e.g. tf.random.set_seed).
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
seed: A Python integer. Used to create a random seed. See
|
||
|
`tf.compat.v1.set_random_seed` for behavior.
|
||
|
|
||
|
Returns:
|
||
|
A tensor of the same type and shape as `image`.
|
||
|
Raises:
|
||
|
ValueError: if the shape of `image` not supported.
|
||
|
"""
|
||
|
random_func = functools.partial(random_ops.random_uniform, seed=seed)
|
||
|
return _random_flip(image, 0, random_func, 'random_flip_up_down')
|
||
|
|
||
|
|
||
|
@tf_export('image.random_flip_left_right')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def random_flip_left_right(image, seed=None):
|
||
|
"""Randomly flip an image horizontally (left to right).
|
||
|
|
||
|
With a 1 in 2 chance, outputs the contents of `image` flipped along the
|
||
|
second dimension, which is `width`. Otherwise output the image as-is.
|
||
|
When passing a batch of images, each image will be randomly flipped
|
||
|
independent of other images.
|
||
|
|
||
|
Example usage:
|
||
|
|
||
|
>>> image = np.array([[[1], [2]], [[3], [4]]])
|
||
|
>>> tf.image.random_flip_left_right(image, 5).numpy().tolist()
|
||
|
[[[2], [1]], [[4], [3]]]
|
||
|
|
||
|
Randomly flip multiple images.
|
||
|
|
||
|
>>> images = np.array(
|
||
|
... [
|
||
|
... [[[1], [2]], [[3], [4]]],
|
||
|
... [[[5], [6]], [[7], [8]]]
|
||
|
... ])
|
||
|
>>> tf.image.random_flip_left_right(images, 6).numpy().tolist()
|
||
|
[[[[2], [1]], [[4], [3]]], [[[5], [6]], [[7], [8]]]]
|
||
|
|
||
|
For producing deterministic results given a `seed` value, use
|
||
|
`tf.image.stateless_random_flip_left_right`. Unlike using the `seed` param
|
||
|
with `tf.image.random_*` ops, `tf.image.stateless_random_*` ops guarantee the
|
||
|
same results given the same seed independent of how many times the function is
|
||
|
called, and independent of global seed settings (e.g. tf.random.set_seed).
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
seed: A Python integer. Used to create a random seed. See
|
||
|
`tf.compat.v1.set_random_seed` for behavior.
|
||
|
|
||
|
Returns:
|
||
|
A tensor of the same type and shape as `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if the shape of `image` not supported.
|
||
|
"""
|
||
|
random_func = functools.partial(random_ops.random_uniform, seed=seed)
|
||
|
return _random_flip(image, 1, random_func, 'random_flip_left_right')
|
||
|
|
||
|
|
||
|
@tf_export('image.stateless_random_flip_left_right', v1=[])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def stateless_random_flip_left_right(image, seed):
|
||
|
"""Randomly flip an image horizontally (left to right) deterministically.
|
||
|
|
||
|
Guarantees the same results given the same `seed` independent of how many
|
||
|
times the function is called, and independent of global seed settings (e.g.
|
||
|
`tf.random.set_seed`).
|
||
|
|
||
|
Example usage:
|
||
|
|
||
|
>>> image = np.array([[[1], [2]], [[3], [4]]])
|
||
|
>>> seed = (2, 3)
|
||
|
>>> tf.image.stateless_random_flip_left_right(image, seed).numpy().tolist()
|
||
|
[[[2], [1]], [[4], [3]]]
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
seed: A shape [2] Tensor, the seed to the random number generator. Must have
|
||
|
dtype `int32` or `int64`. (When using XLA, only `int32` is allowed.)
|
||
|
|
||
|
Returns:
|
||
|
A tensor of the same type and shape as `image`.
|
||
|
"""
|
||
|
random_func = functools.partial(
|
||
|
stateless_random_ops.stateless_random_uniform, seed=seed)
|
||
|
return _random_flip(
|
||
|
image, 1, random_func, 'stateless_random_flip_left_right')
|
||
|
|
||
|
|
||
|
@tf_export('image.stateless_random_flip_up_down', v1=[])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def stateless_random_flip_up_down(image, seed):
|
||
|
"""Randomly flip an image vertically (upside down) deterministically.
|
||
|
|
||
|
Guarantees the same results given the same `seed` independent of how many
|
||
|
times the function is called, and independent of global seed settings (e.g.
|
||
|
`tf.random.set_seed`).
|
||
|
|
||
|
Example usage:
|
||
|
|
||
|
>>> image = np.array([[[1], [2]], [[3], [4]]])
|
||
|
>>> seed = (2, 3)
|
||
|
>>> tf.image.stateless_random_flip_up_down(image, seed).numpy().tolist()
|
||
|
[[[3], [4]], [[1], [2]]]
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
seed: A shape [2] Tensor, the seed to the random number generator. Must have
|
||
|
dtype `int32` or `int64`. (When using XLA, only `int32` is allowed.)
|
||
|
|
||
|
Returns:
|
||
|
A tensor of the same type and shape as `image`.
|
||
|
"""
|
||
|
random_func = functools.partial(
|
||
|
stateless_random_ops.stateless_random_uniform, seed=seed)
|
||
|
return _random_flip(
|
||
|
image, 0, random_func, 'stateless_random_flip_up_down')
|
||
|
|
||
|
|
||
|
def _random_flip(image, flip_index, random_func, scope_name):
|
||
|
"""Randomly (50% chance) flip an image along axis `flip_index`.
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
flip_index: Dimension along which to flip the image.
|
||
|
Vertical is 0, Horizontal is 1.
|
||
|
random_func: partial function for calling either stateful or stateless
|
||
|
random ops with `seed` parameter specified.
|
||
|
scope_name: Name of the scope in which the ops are added.
|
||
|
|
||
|
Returns:
|
||
|
A tensor of the same type and shape as `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if the shape of `image` not supported.
|
||
|
"""
|
||
|
with ops.name_scope(None, scope_name, [image]) as scope:
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
image = _AssertAtLeast3DImage(image)
|
||
|
shape = image.get_shape()
|
||
|
|
||
|
def f_rank3():
|
||
|
uniform_random = random_func(shape=[], minval=0, maxval=1.0)
|
||
|
mirror_cond = math_ops.less(uniform_random, .5)
|
||
|
result = tf_cond.cond(
|
||
|
mirror_cond,
|
||
|
lambda: array_ops.reverse(image, [flip_index]),
|
||
|
lambda: image,
|
||
|
name=scope)
|
||
|
return fix_image_flip_shape(image, result)
|
||
|
|
||
|
def f_rank4():
|
||
|
batch_size = array_ops.shape(image)[0]
|
||
|
uniform_random = random_func(shape=[batch_size], minval=0, maxval=1.0)
|
||
|
flips = math_ops.round(
|
||
|
array_ops.reshape(uniform_random, [batch_size, 1, 1, 1]))
|
||
|
flips = math_ops.cast(flips, image.dtype)
|
||
|
flipped_input = array_ops.reverse(image, [flip_index + 1])
|
||
|
return flips * flipped_input + (1 - flips) * image
|
||
|
|
||
|
if shape.ndims is None:
|
||
|
rank = array_ops.rank(image)
|
||
|
return tf_cond.cond(math_ops.equal(rank, 3), f_rank3, f_rank4)
|
||
|
if shape.ndims == 3:
|
||
|
return f_rank3()
|
||
|
elif shape.ndims == 4:
|
||
|
return f_rank4()
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
'\'image\' (shape %s) must have either 3 or 4 dimensions.' % shape)
|
||
|
|
||
|
|
||
|
@tf_export('image.flip_left_right')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def flip_left_right(image):
|
||
|
"""Flip an image horizontally (left to right).
|
||
|
|
||
|
Outputs the contents of `image` flipped along the width dimension.
|
||
|
|
||
|
See also `tf.reverse`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> tf.image.flip_left_right(x)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[ 4., 5., 6.],
|
||
|
[ 1., 2., 3.]],
|
||
|
[[10., 11., 12.],
|
||
|
[ 7., 8., 9.]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
|
||
|
Returns:
|
||
|
A tensor of the same type and shape as `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if the shape of `image` not supported.
|
||
|
"""
|
||
|
return _flip(image, 1, 'flip_left_right')
|
||
|
|
||
|
|
||
|
@tf_export('image.flip_up_down')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def flip_up_down(image):
|
||
|
"""Flip an image vertically (upside down).
|
||
|
|
||
|
Outputs the contents of `image` flipped along the height dimension.
|
||
|
|
||
|
See also `reverse()`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> tf.image.flip_up_down(x)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[ 7., 8., 9.],
|
||
|
[10., 11., 12.]],
|
||
|
[[ 1., 2., 3.],
|
||
|
[ 4., 5., 6.]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of the same type and shape as `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if the shape of `image` not supported.
|
||
|
"""
|
||
|
return _flip(image, 0, 'flip_up_down')
|
||
|
|
||
|
|
||
|
def _flip(image, flip_index, scope_name):
|
||
|
"""Flip an image either horizontally or vertically.
|
||
|
|
||
|
Outputs the contents of `image` flipped along the dimension `flip_index`.
|
||
|
|
||
|
See also `reverse()`.
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
flip_index: 0 For vertical, 1 for horizontal.
|
||
|
scope_name: string, scope name.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of the same type and shape as `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if the shape of `image` not supported.
|
||
|
"""
|
||
|
with ops.name_scope(None, scope_name, [image]):
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
image = _AssertAtLeast3DImage(image)
|
||
|
shape = image.get_shape()
|
||
|
|
||
|
def f_rank3():
|
||
|
return fix_image_flip_shape(image, array_ops.reverse(image, [flip_index]))
|
||
|
|
||
|
def f_rank4():
|
||
|
return array_ops.reverse(image, [flip_index + 1])
|
||
|
|
||
|
if shape.ndims is None:
|
||
|
rank = array_ops.rank(image)
|
||
|
return tf_cond.cond(math_ops.equal(rank, 3), f_rank3, f_rank4)
|
||
|
elif shape.ndims == 3:
|
||
|
return f_rank3()
|
||
|
elif shape.ndims == 4:
|
||
|
return f_rank4()
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
'\'image\' (shape %s)must have either 3 or 4 dimensions.' % shape)
|
||
|
|
||
|
|
||
|
@tf_export('image.rot90')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def rot90(image, k=1, name=None):
|
||
|
"""Rotate image(s) by 90 degrees.
|
||
|
|
||
|
|
||
|
For example:
|
||
|
|
||
|
>>> a=tf.constant([[[1],[2]],
|
||
|
... [[3],[4]]])
|
||
|
>>> # rotating `a` counter clockwise by 90 degrees
|
||
|
>>> a_rot=tf.image.rot90(a)
|
||
|
>>> print(a_rot[...,0].numpy())
|
||
|
[[2 4]
|
||
|
[1 3]]
|
||
|
>>> # rotating `a` counter clockwise by 270 degrees
|
||
|
>>> a_rot=tf.image.rot90(a, k=3)
|
||
|
>>> print(a_rot[...,0].numpy())
|
||
|
[[3 1]
|
||
|
[4 2]]
|
||
|
>>> # rotating `a` clockwise by 180 degrees
|
||
|
>>> a_rot=tf.image.rot90(a, k=-2)
|
||
|
>>> print(a_rot[...,0].numpy())
|
||
|
[[4 3]
|
||
|
[2 1]]
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
k: A scalar integer tensor. The number of times the image(s) are rotated by
|
||
|
90 degrees.
|
||
|
name: A name for this operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A rotated tensor of the same type and shape as `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if the shape of `image` not supported.
|
||
|
"""
|
||
|
with ops.name_scope(name, 'rot90', [image, k]) as scope:
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
image = _AssertAtLeast3DImage(image)
|
||
|
k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
|
||
|
k.get_shape().assert_has_rank(0)
|
||
|
k = math_ops.mod(k, 4)
|
||
|
|
||
|
shape = image.get_shape()
|
||
|
if shape.ndims is None:
|
||
|
rank = array_ops.rank(image)
|
||
|
|
||
|
def f_rank3():
|
||
|
return _rot90_3D(image, k, scope)
|
||
|
|
||
|
def f_rank4():
|
||
|
return _rot90_4D(image, k, scope)
|
||
|
|
||
|
return tf_cond.cond(math_ops.equal(rank, 3), f_rank3, f_rank4)
|
||
|
elif shape.ndims == 3:
|
||
|
return _rot90_3D(image, k, scope)
|
||
|
elif shape.ndims == 4:
|
||
|
return _rot90_4D(image, k, scope)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
'\'image\' (shape %s) must have either 3 or 4 dimensions.' % shape)
|
||
|
|
||
|
|
||
|
def _rot90_3D(image, k, name_scope):
|
||
|
"""Rotate image counter-clockwise by 90 degrees `k` times.
|
||
|
|
||
|
Args:
|
||
|
image: 3-D Tensor of shape `[height, width, channels]`.
|
||
|
k: A scalar integer. The number of times the image is rotated by 90 degrees.
|
||
|
name_scope: A valid TensorFlow name scope.
|
||
|
|
||
|
Returns:
|
||
|
A 3-D tensor of the same type and shape as `image`.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def _rot90():
|
||
|
return array_ops.transpose(array_ops.reverse_v2(image, [1]), [1, 0, 2])
|
||
|
|
||
|
def _rot180():
|
||
|
return array_ops.reverse_v2(image, [0, 1])
|
||
|
|
||
|
def _rot270():
|
||
|
return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]), [1])
|
||
|
|
||
|
cases = [(math_ops.equal(k, 1), _rot90), (math_ops.equal(k, 2), _rot180),
|
||
|
(math_ops.equal(k, 3), _rot270)]
|
||
|
|
||
|
result = control_flow_case.case(
|
||
|
cases, default=lambda: image, exclusive=True, name=name_scope)
|
||
|
result.set_shape([None, None, image.get_shape()[2]])
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _rot90_4D(images, k, name_scope):
|
||
|
"""Rotate batch of images counter-clockwise by 90 degrees `k` times.
|
||
|
|
||
|
Args:
|
||
|
images: 4-D Tensor of shape `[height, width, channels]`.
|
||
|
k: A scalar integer. The number of times the images are rotated by 90
|
||
|
degrees.
|
||
|
name_scope: A valid TensorFlow name scope.
|
||
|
|
||
|
Returns:
|
||
|
A 4-D `Tensor` of the same type and shape as `images`.
|
||
|
"""
|
||
|
|
||
|
def _rot90():
|
||
|
return array_ops.transpose(array_ops.reverse_v2(images, [2]), [0, 2, 1, 3])
|
||
|
|
||
|
def _rot180():
|
||
|
return array_ops.reverse_v2(images, [1, 2])
|
||
|
|
||
|
def _rot270():
|
||
|
return array_ops.reverse_v2(array_ops.transpose(images, [0, 2, 1, 3]), [2])
|
||
|
|
||
|
cases = [(math_ops.equal(k, 1), _rot90), (math_ops.equal(k, 2), _rot180),
|
||
|
(math_ops.equal(k, 3), _rot270)]
|
||
|
|
||
|
result = control_flow_case.case(
|
||
|
cases, default=lambda: images, exclusive=True, name=name_scope)
|
||
|
shape = result.get_shape()
|
||
|
result.set_shape([shape[0], None, None, shape[3]])
|
||
|
return result
|
||
|
|
||
|
|
||
|
@tf_export('image.transpose', v1=['image.transpose', 'image.transpose_image'])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def transpose(image, name=None):
|
||
|
"""Transpose image(s) by swapping the height and width dimension.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> tf.image.transpose(x)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[ 1., 2., 3.],
|
||
|
[ 7., 8., 9.]],
|
||
|
[[ 4., 5., 6.],
|
||
|
[10., 11., 12.]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
name: A name for this operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
If `image` was 4-D, a 4-D float Tensor of shape
|
||
|
`[batch, width, height, channels]`
|
||
|
If `image` was 3-D, a 3-D float Tensor of shape
|
||
|
`[width, height, channels]`
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if the shape of `image` not supported.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> image = [[[1, 2], [3, 4]],
|
||
|
... [[5, 6], [7, 8]],
|
||
|
... [[9, 10], [11, 12]]]
|
||
|
>>> image = tf.constant(image)
|
||
|
>>> tf.image.transpose(image)
|
||
|
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
|
||
|
array([[[ 1, 2],
|
||
|
[ 5, 6],
|
||
|
[ 9, 10]],
|
||
|
[[ 3, 4],
|
||
|
[ 7, 8],
|
||
|
[11, 12]]], dtype=int32)>
|
||
|
"""
|
||
|
with ops.name_scope(name, 'transpose', [image]):
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
image = _AssertAtLeast3DImage(image)
|
||
|
shape = image.get_shape()
|
||
|
if shape.ndims is None:
|
||
|
rank = array_ops.rank(image)
|
||
|
|
||
|
def f_rank3():
|
||
|
return array_ops.transpose(image, [1, 0, 2], name=name)
|
||
|
|
||
|
def f_rank4():
|
||
|
return array_ops.transpose(image, [0, 2, 1, 3], name=name)
|
||
|
|
||
|
return tf_cond.cond(math_ops.equal(rank, 3), f_rank3, f_rank4)
|
||
|
elif shape.ndims == 3:
|
||
|
return array_ops.transpose(image, [1, 0, 2], name=name)
|
||
|
elif shape.ndims == 4:
|
||
|
return array_ops.transpose(image, [0, 2, 1, 3], name=name)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
'\'image\' (shape %s) must have either 3 or 4 dimensions.' % shape)
|
||
|
|
||
|
|
||
|
@tf_export('image.central_crop')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def central_crop(image, central_fraction):
|
||
|
"""Crop the central region of the image(s).
|
||
|
|
||
|
Remove the outer parts of an image but retain the central region of the image
|
||
|
along each dimension. If we specify `central_fraction = 0.5`, this function
|
||
|
returns the region marked with "X" in the below diagram. The larger the value
|
||
|
of `central_fraction`, the larger the dimension of the region to be cropped
|
||
|
and retained.
|
||
|
|
||
|
--------
|
||
|
| |
|
||
|
| XXXX |
|
||
|
| XXXX |
|
||
|
| | where "X" is the central 50% of the image.
|
||
|
--------
|
||
|
|
||
|
This function works on either a single image (`image` is a 3-D Tensor), or a
|
||
|
batch of images (`image` is a 4-D Tensor).
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0],
|
||
|
... [7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]],
|
||
|
... [[13.0, 14.0, 15.0],
|
||
|
... [16.0, 17.0, 18.0],
|
||
|
... [19.0, 20.0, 21.0],
|
||
|
... [22.0, 23.0, 24.0]],
|
||
|
... [[25.0, 26.0, 27.0],
|
||
|
... [28.0, 29.0, 30.0],
|
||
|
... [31.0, 32.0, 33.0],
|
||
|
... [34.0, 35.0, 36.0]],
|
||
|
... [[37.0, 38.0, 39.0],
|
||
|
... [40.0, 41.0, 42.0],
|
||
|
... [43.0, 44.0, 45.0],
|
||
|
... [46.0, 47.0, 48.0]]]
|
||
|
>>> tf.image.central_crop(x, 0.5)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[16., 17., 18.],
|
||
|
[19., 20., 21.]],
|
||
|
[[28., 29., 30.],
|
||
|
[31., 32., 33.]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image: Either a 3-D float Tensor of shape [height, width, depth], or a 4-D
|
||
|
Tensor of shape [batch_size, height, width, depth].
|
||
|
central_fraction: float (0, 1], fraction of size to crop
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if central_crop_fraction is not within (0, 1].
|
||
|
|
||
|
Returns:
|
||
|
3-D / 4-D float Tensor, as per the input.
|
||
|
"""
|
||
|
with ops.name_scope(None, 'central_crop', [image]):
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
central_fraction_static = tensor_util.constant_value(central_fraction)
|
||
|
if central_fraction_static is not None:
|
||
|
if central_fraction_static <= 0.0 or central_fraction_static > 1.0:
|
||
|
raise ValueError('central_fraction must be within (0, 1]')
|
||
|
if central_fraction_static == 1.0:
|
||
|
return image
|
||
|
else:
|
||
|
assert_ops = _assert(
|
||
|
math_ops.logical_or(central_fraction > 0.0, central_fraction <= 1.0),
|
||
|
ValueError, 'central_fraction must be within (0, 1]')
|
||
|
image = control_flow_ops.with_dependencies(assert_ops, image)
|
||
|
|
||
|
_AssertAtLeast3DImage(image)
|
||
|
rank = image.get_shape().ndims
|
||
|
if rank != 3 and rank != 4:
|
||
|
raise ValueError('`image` should either be a Tensor with rank = 3 or '
|
||
|
'rank = 4. Had rank = {}.'.format(rank))
|
||
|
|
||
|
# Helper method to return the `idx`-th dimension of `tensor`, along with
|
||
|
# a boolean signifying if the dimension is dynamic.
|
||
|
def _get_dim(tensor, idx):
|
||
|
static_shape = tensor.get_shape().dims[idx].value
|
||
|
if static_shape is not None:
|
||
|
return static_shape, False
|
||
|
return array_ops.shape(tensor)[idx], True
|
||
|
|
||
|
# Get the height, width, depth (and batch size, if the image is a 4-D
|
||
|
# tensor).
|
||
|
if rank == 3:
|
||
|
img_h, dynamic_h = _get_dim(image, 0)
|
||
|
img_w, dynamic_w = _get_dim(image, 1)
|
||
|
img_d = image.get_shape()[2]
|
||
|
else:
|
||
|
img_bs = image.get_shape()[0]
|
||
|
img_h, dynamic_h = _get_dim(image, 1)
|
||
|
img_w, dynamic_w = _get_dim(image, 2)
|
||
|
img_d = image.get_shape()[3]
|
||
|
|
||
|
dynamic_h = dynamic_h or (central_fraction_static is None)
|
||
|
dynamic_w = dynamic_w or (central_fraction_static is None)
|
||
|
|
||
|
# Compute the bounding boxes for the crop. The type and value of the
|
||
|
# bounding boxes depend on the `image` tensor's rank and whether / not the
|
||
|
# dimensions are statically defined.
|
||
|
if dynamic_h:
|
||
|
img_hd = math_ops.cast(img_h, dtypes.float64)
|
||
|
bbox_h_start = math_ops.cast(
|
||
|
(img_hd - img_hd * math_ops.cast(central_fraction, dtypes.float64)) /
|
||
|
2, dtypes.int32)
|
||
|
else:
|
||
|
img_hd = float(img_h)
|
||
|
bbox_h_start = int((img_hd - img_hd * central_fraction_static) / 2)
|
||
|
|
||
|
if dynamic_w:
|
||
|
img_wd = math_ops.cast(img_w, dtypes.float64)
|
||
|
bbox_w_start = math_ops.cast(
|
||
|
(img_wd - img_wd * math_ops.cast(central_fraction, dtypes.float64)) /
|
||
|
2, dtypes.int32)
|
||
|
else:
|
||
|
img_wd = float(img_w)
|
||
|
bbox_w_start = int((img_wd - img_wd * central_fraction_static) / 2)
|
||
|
|
||
|
bbox_h_size = img_h - bbox_h_start * 2
|
||
|
bbox_w_size = img_w - bbox_w_start * 2
|
||
|
|
||
|
if rank == 3:
|
||
|
bbox_begin = array_ops_stack.stack([bbox_h_start, bbox_w_start, 0])
|
||
|
bbox_size = array_ops_stack.stack([bbox_h_size, bbox_w_size, -1])
|
||
|
else:
|
||
|
bbox_begin = array_ops_stack.stack([0, bbox_h_start, bbox_w_start, 0])
|
||
|
bbox_size = array_ops_stack.stack([-1, bbox_h_size, bbox_w_size, -1])
|
||
|
|
||
|
image = array_ops.slice(image, bbox_begin, bbox_size)
|
||
|
|
||
|
# Reshape the `image` tensor to the desired size.
|
||
|
if rank == 3:
|
||
|
image.set_shape([
|
||
|
None if dynamic_h else bbox_h_size,
|
||
|
None if dynamic_w else bbox_w_size, img_d
|
||
|
])
|
||
|
else:
|
||
|
image.set_shape([
|
||
|
img_bs, None if dynamic_h else bbox_h_size,
|
||
|
None if dynamic_w else bbox_w_size, img_d
|
||
|
])
|
||
|
return image
|
||
|
|
||
|
|
||
|
@tf_export('image.pad_to_bounding_box')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def pad_to_bounding_box(image, offset_height, offset_width, target_height,
|
||
|
target_width):
|
||
|
"""Pad `image` with zeros to the specified `height` and `width`.
|
||
|
|
||
|
Adds `offset_height` rows of zeros on top, `offset_width` columns of
|
||
|
zeros on the left, and then pads the image on the bottom and right
|
||
|
with zeros until it has dimensions `target_height`, `target_width`.
|
||
|
|
||
|
This op does nothing if `offset_*` is zero and the image already has size
|
||
|
`target_height` by `target_width`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1., 2., 3.],
|
||
|
... [4., 5., 6.]],
|
||
|
... [[7., 8., 9.],
|
||
|
... [10., 11., 12.]]]
|
||
|
>>> padded_image = tf.image.pad_to_bounding_box(x, 1, 1, 4, 4)
|
||
|
>>> padded_image
|
||
|
<tf.Tensor: shape=(4, 4, 3), dtype=float32, numpy=
|
||
|
array([[[ 0., 0., 0.],
|
||
|
[ 0., 0., 0.],
|
||
|
[ 0., 0., 0.],
|
||
|
[ 0., 0., 0.]],
|
||
|
[[ 0., 0., 0.],
|
||
|
[ 1., 2., 3.],
|
||
|
[ 4., 5., 6.],
|
||
|
[ 0., 0., 0.]],
|
||
|
[[ 0., 0., 0.],
|
||
|
[ 7., 8., 9.],
|
||
|
[10., 11., 12.],
|
||
|
[ 0., 0., 0.]],
|
||
|
[[ 0., 0., 0.],
|
||
|
[ 0., 0., 0.],
|
||
|
[ 0., 0., 0.],
|
||
|
[ 0., 0., 0.]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
offset_height: Number of rows of zeros to add on top.
|
||
|
offset_width: Number of columns of zeros to add on the left.
|
||
|
target_height: Height of output image.
|
||
|
target_width: Width of output image.
|
||
|
|
||
|
Returns:
|
||
|
If `image` was 4-D, a 4-D float Tensor of shape
|
||
|
`[batch, target_height, target_width, channels]`
|
||
|
If `image` was 3-D, a 3-D float Tensor of shape
|
||
|
`[target_height, target_width, channels]`
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If the shape of `image` is incompatible with the `offset_*` or
|
||
|
`target_*` arguments, or either `offset_height` or `offset_width` is
|
||
|
negative.
|
||
|
"""
|
||
|
return pad_to_bounding_box_internal(
|
||
|
image,
|
||
|
offset_height,
|
||
|
offset_width,
|
||
|
target_height,
|
||
|
target_width,
|
||
|
check_dims=True)
|
||
|
|
||
|
|
||
|
# TODO(b/190099338) Remove this internal method and remap call sites to call
|
||
|
# image_ops.pad_to_bounding_box when asserts are no longer serialized. See also
|
||
|
# b/204377079#comment6 for more context.
|
||
|
def pad_to_bounding_box_internal(image, offset_height, offset_width,
|
||
|
target_height, target_width, check_dims):
|
||
|
"""Pad `image` with zeros to the specified `height` and `width`.
|
||
|
|
||
|
Adds `offset_height` rows of zeros on top, `offset_width` columns of
|
||
|
zeros on the left, and then pads the image on the bottom and right
|
||
|
with zeros until it has dimensions `target_height`, `target_width`.
|
||
|
|
||
|
This op does nothing if `offset_*` is zero and the image already has size
|
||
|
`target_height` by `target_width`.
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
offset_height: Number of rows of zeros to add on top.Must be 0-D `Tensor` of
|
||
|
dtype int32 or int64. Can also a python integer.
|
||
|
offset_width: Number of columns of zeros to add on the left.Must be 0-D
|
||
|
`Tensor` of dtype int32 or int64. Can also a python integer.
|
||
|
target_height: Height of output image.Must be 0-D `Tensor` of dtype int32 or
|
||
|
int64. Can also a python integer.
|
||
|
target_width: Width of output image.Must be 0-D `Tensor` of dtype int32 or
|
||
|
int64. Can also a python integer.
|
||
|
check_dims: If True, assert that dimensions are non-negative and in range.
|
||
|
In multi-GPU distributed settings, assertions can cause program slowdown.
|
||
|
Setting this parameter to `False` avoids this, resulting in faster speed
|
||
|
in some situations, with the tradeoff being that some error checking is
|
||
|
not happening.
|
||
|
|
||
|
Returns:
|
||
|
If `image` was 4-D, a 4-D float Tensor of shape
|
||
|
`[batch, target_height, target_width, channels]`
|
||
|
If `image` was 3-D, a 3-D float Tensor of shape
|
||
|
`[target_height, target_width, channels]`
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If the shape of `image` is incompatible with the `offset_*` or
|
||
|
`target_*` arguments, or either `offset_height` or `offset_width` is
|
||
|
negative. Not raised if `check_dims` is `False`.
|
||
|
"""
|
||
|
with ops.name_scope(None, 'pad_to_bounding_box', [image]):
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
|
||
|
is_batch = True
|
||
|
image_shape = image.get_shape()
|
||
|
if image_shape.ndims == 3:
|
||
|
is_batch = False
|
||
|
image = array_ops.expand_dims(image, 0)
|
||
|
elif image_shape.ndims is None:
|
||
|
is_batch = False
|
||
|
image = array_ops.expand_dims(image, 0)
|
||
|
image.set_shape([None] * 4)
|
||
|
elif image_shape.ndims != 4:
|
||
|
raise ValueError(
|
||
|
'\'image\' (shape %s) must have either 3 or 4 dimensions.' %
|
||
|
image_shape)
|
||
|
|
||
|
batch, height, width, depth = _ImageDimensions(image, rank=4)
|
||
|
|
||
|
after_padding_width = target_width - offset_width - width
|
||
|
|
||
|
after_padding_height = target_height - offset_height - height
|
||
|
|
||
|
if check_dims:
|
||
|
assert_ops = _CheckAtLeast3DImage(image, require_static=False)
|
||
|
assert_ops += _assert(offset_height >= 0, ValueError,
|
||
|
'offset_height must be >= 0')
|
||
|
assert_ops += _assert(offset_width >= 0, ValueError,
|
||
|
'offset_width must be >= 0')
|
||
|
assert_ops += _assert(after_padding_width >= 0, ValueError,
|
||
|
'width must be <= target - offset')
|
||
|
assert_ops += _assert(after_padding_height >= 0, ValueError,
|
||
|
'height must be <= target - offset')
|
||
|
image = control_flow_ops.with_dependencies(assert_ops, image)
|
||
|
|
||
|
# Do not pad on the depth dimensions.
|
||
|
paddings = array_ops.reshape(
|
||
|
array_ops_stack.stack([
|
||
|
0, 0, offset_height, after_padding_height, offset_width,
|
||
|
after_padding_width, 0, 0
|
||
|
]), [4, 2])
|
||
|
padded = array_ops.pad(image, paddings)
|
||
|
|
||
|
padded_shape = [
|
||
|
None if _is_tensor(i) else i
|
||
|
for i in [batch, target_height, target_width, depth]
|
||
|
]
|
||
|
padded.set_shape(padded_shape)
|
||
|
|
||
|
if not is_batch:
|
||
|
padded = array_ops.squeeze(padded, axis=[0])
|
||
|
|
||
|
return padded
|
||
|
|
||
|
|
||
|
@tf_export('image.crop_to_bounding_box')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def crop_to_bounding_box(image, offset_height, offset_width, target_height,
|
||
|
target_width):
|
||
|
"""Crops an `image` to a specified bounding box.
|
||
|
|
||
|
This op cuts a rectangular bounding box out of `image`. The top-left corner
|
||
|
of the bounding box is at `offset_height, offset_width` in `image`, and the
|
||
|
lower-right corner is at
|
||
|
`offset_height + target_height, offset_width + target_width`.
|
||
|
|
||
|
Example Usage:
|
||
|
|
||
|
>>> image = tf.constant(np.arange(1, 28, dtype=np.float32), shape=[3, 3, 3])
|
||
|
>>> image[:,:,0] # print the first channel of the 3-D tensor
|
||
|
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
|
||
|
array([[ 1., 4., 7.],
|
||
|
[10., 13., 16.],
|
||
|
[19., 22., 25.]], dtype=float32)>
|
||
|
>>> cropped_image = tf.image.crop_to_bounding_box(image, 0, 0, 2, 2)
|
||
|
>>> cropped_image[:,:,0] # print the first channel of the cropped 3-D tensor
|
||
|
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
|
||
|
array([[ 1., 4.],
|
||
|
[10., 13.]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image: 4-D `Tensor` of shape `[batch, height, width, channels]` or 3-D
|
||
|
`Tensor` of shape `[height, width, channels]`.
|
||
|
offset_height: Vertical coordinate of the top-left corner of the bounding
|
||
|
box in `image`. Must be 0-D int32 `Tensor` or python integer.
|
||
|
offset_width: Horizontal coordinate of the top-left corner of the bounding
|
||
|
box in `image`. Must be 0-D int32 `Tensor` or python integer.
|
||
|
target_height: Height of the bounding box. Must be 0-D int32 `Tensor` or
|
||
|
python integer.
|
||
|
target_width: Width of the bounding box. Must be 0-D int32 `Tensor` or
|
||
|
python integer.
|
||
|
|
||
|
Returns:
|
||
|
If `image` was 4-D, a 4-D `Tensor` of shape
|
||
|
`[batch, target_height, target_width, channels]`.
|
||
|
If `image` was 3-D, a 3-D `Tensor` of shape
|
||
|
`[target_height, target_width, channels]`.
|
||
|
It has the same dtype with `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: `image` is not a 3-D or 4-D `Tensor`.
|
||
|
ValueError: `offset_width < 0` or `offset_height < 0`.
|
||
|
ValueError: `target_width <= 0` or `target_height <= 0`.
|
||
|
ValueError: `width < offset_width + target_width` or
|
||
|
`height < offset_height + target_height`.
|
||
|
"""
|
||
|
with ops.name_scope(None, 'crop_to_bounding_box', [image]):
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
|
||
|
is_batch = True
|
||
|
image_shape = image.get_shape()
|
||
|
if image_shape.ndims == 3:
|
||
|
is_batch = False
|
||
|
image = array_ops.expand_dims(image, 0)
|
||
|
elif image_shape.ndims is None:
|
||
|
is_batch = False
|
||
|
image = array_ops.expand_dims(image, 0)
|
||
|
image.set_shape([None] * 4)
|
||
|
elif image_shape.ndims != 4:
|
||
|
raise ValueError(
|
||
|
'\'image\' (shape %s) must have either 3 or 4 dimensions.' %
|
||
|
image_shape)
|
||
|
|
||
|
assert_ops = _CheckAtLeast3DImage(image, require_static=False)
|
||
|
|
||
|
batch, height, width, depth = _ImageDimensions(image, rank=4)
|
||
|
|
||
|
assert_ops += _assert(offset_width >= 0, ValueError,
|
||
|
'offset_width must be >= 0.')
|
||
|
assert_ops += _assert(offset_height >= 0, ValueError,
|
||
|
'offset_height must be >= 0.')
|
||
|
assert_ops += _assert(target_width > 0, ValueError,
|
||
|
'target_width must be > 0.')
|
||
|
assert_ops += _assert(target_height > 0, ValueError,
|
||
|
'target_height must be > 0.')
|
||
|
assert_ops += _assert(width >= (target_width + offset_width), ValueError,
|
||
|
'width must be >= target + offset.')
|
||
|
assert_ops += _assert(height >= (target_height + offset_height), ValueError,
|
||
|
'height must be >= target + offset.')
|
||
|
image = control_flow_ops.with_dependencies(assert_ops, image)
|
||
|
|
||
|
cropped = array_ops.slice(
|
||
|
image,
|
||
|
array_ops_stack.stack([0, offset_height, offset_width, 0]),
|
||
|
array_ops_stack.stack([
|
||
|
array_ops.shape(image)[0],
|
||
|
target_height,
|
||
|
target_width,
|
||
|
array_ops.shape(image)[3]]))
|
||
|
|
||
|
cropped_shape = [
|
||
|
None if _is_tensor(i) else i
|
||
|
for i in [batch, target_height, target_width, depth]
|
||
|
]
|
||
|
cropped.set_shape(cropped_shape)
|
||
|
|
||
|
if not is_batch:
|
||
|
cropped = array_ops.squeeze(cropped, axis=[0])
|
||
|
|
||
|
return cropped
|
||
|
|
||
|
|
||
|
@tf_export(
|
||
|
'image.resize_with_crop_or_pad',
|
||
|
v1=['image.resize_with_crop_or_pad', 'image.resize_image_with_crop_or_pad'])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def resize_image_with_crop_or_pad(image, target_height, target_width):
|
||
|
"""Crops and/or pads an image to a target width and height.
|
||
|
|
||
|
Resizes an image to a target width and height by either centrally
|
||
|
cropping the image or padding it evenly with zeros.
|
||
|
|
||
|
If `width` or `height` is greater than the specified `target_width` or
|
||
|
`target_height` respectively, this op centrally crops along that dimension.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
>>> image = np.arange(75).reshape(5, 5, 3) # create 3-D image input
|
||
|
>>> image[:,:,0] # print first channel just for demo purposes
|
||
|
array([[ 0, 3, 6, 9, 12],
|
||
|
[15, 18, 21, 24, 27],
|
||
|
[30, 33, 36, 39, 42],
|
||
|
[45, 48, 51, 54, 57],
|
||
|
[60, 63, 66, 69, 72]])
|
||
|
>>> image = tf.image.resize_with_crop_or_pad(image, 3, 3) # crop
|
||
|
>>> # print first channel for demo purposes; centrally cropped output
|
||
|
>>> image[:,:,0]
|
||
|
<tf.Tensor: shape=(3, 3), dtype=int64, numpy=
|
||
|
array([[18, 21, 24],
|
||
|
[33, 36, 39],
|
||
|
[48, 51, 54]])>
|
||
|
|
||
|
If `width` or `height` is smaller than the specified `target_width` or
|
||
|
`target_height` respectively, this op centrally pads with 0 along that
|
||
|
dimension.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
>>> image = np.arange(1, 28).reshape(3, 3, 3) # create 3-D image input
|
||
|
>>> image[:,:,0] # print first channel just for demo purposes
|
||
|
array([[ 1, 4, 7],
|
||
|
[10, 13, 16],
|
||
|
[19, 22, 25]])
|
||
|
>>> image = tf.image.resize_with_crop_or_pad(image, 5, 5) # pad
|
||
|
>>> # print first channel for demo purposes; we should see 0 paddings
|
||
|
>>> image[:,:,0]
|
||
|
<tf.Tensor: shape=(5, 5), dtype=int64, numpy=
|
||
|
array([[ 0, 0, 0, 0, 0],
|
||
|
[ 0, 1, 4, 7, 0],
|
||
|
[ 0, 10, 13, 16, 0],
|
||
|
[ 0, 19, 22, 25, 0],
|
||
|
[ 0, 0, 0, 0, 0]])>
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
target_height: Target height.
|
||
|
target_width: Target width.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `target_height` or `target_width` are zero or negative.
|
||
|
|
||
|
Returns:
|
||
|
Cropped and/or padded image.
|
||
|
If `images` was 4-D, a 4-D float Tensor of shape
|
||
|
`[batch, new_height, new_width, channels]`.
|
||
|
If `images` was 3-D, a 3-D float Tensor of shape
|
||
|
`[new_height, new_width, channels]`.
|
||
|
"""
|
||
|
with ops.name_scope(None, 'resize_image_with_crop_or_pad', [image]):
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
image_shape = image.get_shape()
|
||
|
is_batch = True
|
||
|
if image_shape.ndims == 3:
|
||
|
is_batch = False
|
||
|
image = array_ops.expand_dims(image, 0)
|
||
|
elif image_shape.ndims is None:
|
||
|
is_batch = False
|
||
|
image = array_ops.expand_dims(image, 0)
|
||
|
image.set_shape([None] * 4)
|
||
|
elif image_shape.ndims != 4:
|
||
|
raise ValueError(
|
||
|
'\'image\' (shape %s) must have either 3 or 4 dimensions.' %
|
||
|
image_shape)
|
||
|
|
||
|
assert_ops = _CheckAtLeast3DImage(image, require_static=False)
|
||
|
assert_ops += _assert(target_width > 0, ValueError,
|
||
|
'target_width must be > 0.')
|
||
|
assert_ops += _assert(target_height > 0, ValueError,
|
||
|
'target_height must be > 0.')
|
||
|
|
||
|
image = control_flow_ops.with_dependencies(assert_ops, image)
|
||
|
# `crop_to_bounding_box` and `pad_to_bounding_box` have their own checks.
|
||
|
# Make sure our checks come first, so that error messages are clearer.
|
||
|
if _is_tensor(target_height):
|
||
|
target_height = control_flow_ops.with_dependencies(
|
||
|
assert_ops, target_height)
|
||
|
if _is_tensor(target_width):
|
||
|
target_width = control_flow_ops.with_dependencies(assert_ops,
|
||
|
target_width)
|
||
|
|
||
|
def max_(x, y):
|
||
|
if _is_tensor(x) or _is_tensor(y):
|
||
|
return math_ops.maximum(x, y)
|
||
|
else:
|
||
|
return max(x, y)
|
||
|
|
||
|
def min_(x, y):
|
||
|
if _is_tensor(x) or _is_tensor(y):
|
||
|
return math_ops.minimum(x, y)
|
||
|
else:
|
||
|
return min(x, y)
|
||
|
|
||
|
def equal_(x, y):
|
||
|
if _is_tensor(x) or _is_tensor(y):
|
||
|
return math_ops.equal(x, y)
|
||
|
else:
|
||
|
return x == y
|
||
|
|
||
|
_, height, width, _ = _ImageDimensions(image, rank=4)
|
||
|
width_diff = target_width - width
|
||
|
offset_crop_width = max_(-width_diff // 2, 0)
|
||
|
offset_pad_width = max_(width_diff // 2, 0)
|
||
|
|
||
|
height_diff = target_height - height
|
||
|
offset_crop_height = max_(-height_diff // 2, 0)
|
||
|
offset_pad_height = max_(height_diff // 2, 0)
|
||
|
|
||
|
# Maybe crop if needed.
|
||
|
cropped = crop_to_bounding_box(image, offset_crop_height, offset_crop_width,
|
||
|
min_(target_height, height),
|
||
|
min_(target_width, width))
|
||
|
|
||
|
# Maybe pad if needed.
|
||
|
resized = pad_to_bounding_box(cropped, offset_pad_height, offset_pad_width,
|
||
|
target_height, target_width)
|
||
|
|
||
|
# In theory all the checks below are redundant.
|
||
|
if resized.get_shape().ndims is None:
|
||
|
raise ValueError('resized contains no shape.')
|
||
|
|
||
|
_, resized_height, resized_width, _ = _ImageDimensions(resized, rank=4)
|
||
|
|
||
|
assert_ops = []
|
||
|
assert_ops += _assert(
|
||
|
equal_(resized_height, target_height), ValueError,
|
||
|
'resized height is not correct.')
|
||
|
assert_ops += _assert(
|
||
|
equal_(resized_width, target_width), ValueError,
|
||
|
'resized width is not correct.')
|
||
|
|
||
|
resized = control_flow_ops.with_dependencies(assert_ops, resized)
|
||
|
|
||
|
if not is_batch:
|
||
|
resized = array_ops.squeeze(resized, axis=[0])
|
||
|
|
||
|
return resized
|
||
|
|
||
|
|
||
|
@tf_export(v1=['image.ResizeMethod'])
|
||
|
class ResizeMethodV1:
|
||
|
"""See `v1.image.resize` for details."""
|
||
|
BILINEAR = 0
|
||
|
NEAREST_NEIGHBOR = 1
|
||
|
BICUBIC = 2
|
||
|
AREA = 3
|
||
|
|
||
|
|
||
|
@tf_export('image.ResizeMethod', v1=[])
|
||
|
class ResizeMethod:
|
||
|
"""See `tf.image.resize` for details."""
|
||
|
BILINEAR = 'bilinear'
|
||
|
NEAREST_NEIGHBOR = 'nearest'
|
||
|
BICUBIC = 'bicubic'
|
||
|
AREA = 'area'
|
||
|
LANCZOS3 = 'lanczos3'
|
||
|
LANCZOS5 = 'lanczos5'
|
||
|
GAUSSIAN = 'gaussian'
|
||
|
MITCHELLCUBIC = 'mitchellcubic'
|
||
|
|
||
|
|
||
|
def _resize_images_common(images, resizer_fn, size, preserve_aspect_ratio, name,
|
||
|
skip_resize_if_same):
|
||
|
"""Core functionality for v1 and v2 resize functions."""
|
||
|
with ops.name_scope(name, 'resize', [images, size]):
|
||
|
images = ops.convert_to_tensor(images, name='images')
|
||
|
if images.get_shape().ndims is None:
|
||
|
raise ValueError('\'images\' contains no shape.')
|
||
|
# TODO(shlens): Migrate this functionality to the underlying Op's.
|
||
|
is_batch = True
|
||
|
if images.get_shape().ndims == 3:
|
||
|
is_batch = False
|
||
|
images = array_ops.expand_dims(images, 0)
|
||
|
elif images.get_shape().ndims != 4:
|
||
|
raise ValueError('\'images\' must have either 3 or 4 dimensions.')
|
||
|
|
||
|
_, height, width, _ = images.get_shape().as_list()
|
||
|
|
||
|
try:
|
||
|
size = ops.convert_to_tensor(size, dtypes.int32, name='size')
|
||
|
except (TypeError, ValueError):
|
||
|
raise ValueError('\'size\' must be a 1-D int32 Tensor')
|
||
|
if not size.get_shape().is_compatible_with([2]):
|
||
|
raise ValueError('\'size\' must be a 1-D Tensor of 2 elements: '
|
||
|
'new_height, new_width')
|
||
|
|
||
|
if preserve_aspect_ratio:
|
||
|
# Get the current shapes of the image, even if dynamic.
|
||
|
_, current_height, current_width, _ = _ImageDimensions(images, rank=4)
|
||
|
|
||
|
# do the computation to find the right scale and height/width.
|
||
|
scale_factor_height = (
|
||
|
math_ops.cast(size[0], dtypes.float32) /
|
||
|
math_ops.cast(current_height, dtypes.float32))
|
||
|
scale_factor_width = (
|
||
|
math_ops.cast(size[1], dtypes.float32) /
|
||
|
math_ops.cast(current_width, dtypes.float32))
|
||
|
scale_factor = math_ops.minimum(scale_factor_height, scale_factor_width)
|
||
|
scaled_height_const = math_ops.cast(
|
||
|
math_ops.round(scale_factor *
|
||
|
math_ops.cast(current_height, dtypes.float32)),
|
||
|
dtypes.int32)
|
||
|
scaled_width_const = math_ops.cast(
|
||
|
math_ops.round(scale_factor *
|
||
|
math_ops.cast(current_width, dtypes.float32)),
|
||
|
dtypes.int32)
|
||
|
|
||
|
# NOTE: Reset the size and other constants used later.
|
||
|
size = ops.convert_to_tensor([scaled_height_const, scaled_width_const],
|
||
|
dtypes.int32,
|
||
|
name='size')
|
||
|
|
||
|
size_const_as_shape = tensor_util.constant_value_as_shape(size)
|
||
|
new_height_const = tensor_shape.dimension_at_index(size_const_as_shape,
|
||
|
0).value
|
||
|
new_width_const = tensor_shape.dimension_at_index(size_const_as_shape,
|
||
|
1).value
|
||
|
|
||
|
# If we can determine that the height and width will be unmodified by this
|
||
|
# transformation, we avoid performing the resize.
|
||
|
if skip_resize_if_same and all(
|
||
|
x is not None
|
||
|
for x in [new_width_const, width, new_height_const, height]) and (
|
||
|
width == new_width_const and height == new_height_const):
|
||
|
if not is_batch:
|
||
|
images = array_ops.squeeze(images, axis=[0])
|
||
|
return images
|
||
|
|
||
|
images = resizer_fn(images, size)
|
||
|
|
||
|
# NOTE(mrry): The shape functions for the resize ops cannot unpack
|
||
|
# the packed values in `new_size`, so set the shape here.
|
||
|
images.set_shape([None, new_height_const, new_width_const, None])
|
||
|
|
||
|
if not is_batch:
|
||
|
images = array_ops.squeeze(images, axis=[0])
|
||
|
return images
|
||
|
|
||
|
|
||
|
@tf_export(v1=['image.resize_images', 'image.resize'])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def resize_images(images,
|
||
|
size,
|
||
|
method=ResizeMethodV1.BILINEAR,
|
||
|
align_corners=False,
|
||
|
preserve_aspect_ratio=False,
|
||
|
name=None):
|
||
|
"""Resize `images` to `size` using the specified `method`.
|
||
|
|
||
|
Resized images will be distorted if their original aspect ratio is not
|
||
|
the same as `size`. To avoid distortions see
|
||
|
`tf.image.resize_with_pad` or `tf.image.resize_with_crop_or_pad`.
|
||
|
|
||
|
The `method` can be one of:
|
||
|
|
||
|
* <b>`tf.image.ResizeMethod.BILINEAR`</b>: [Bilinear interpolation.](
|
||
|
https://en.wikipedia.org/wiki/Bilinear_interpolation)
|
||
|
* <b>`tf.image.ResizeMethod.NEAREST_NEIGHBOR`</b>: [
|
||
|
Nearest neighbor interpolation.](
|
||
|
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation)
|
||
|
* <b>`tf.image.ResizeMethod.BICUBIC`</b>: [Bicubic interpolation.](
|
||
|
https://en.wikipedia.org/wiki/Bicubic_interpolation)
|
||
|
* <b>`tf.image.ResizeMethod.AREA`</b>: Area interpolation.
|
||
|
|
||
|
The return value has the same type as `images` if `method` is
|
||
|
`tf.image.ResizeMethod.NEAREST_NEIGHBOR`. It will also have the same type
|
||
|
as `images` if the size of `images` can be statically determined to be the
|
||
|
same as `size`, because `images` is returned in this case. Otherwise, the
|
||
|
return value has type `float32`.
|
||
|
|
||
|
Args:
|
||
|
images: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
size: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The new
|
||
|
size for the images.
|
||
|
method: ResizeMethod. Defaults to `tf.image.ResizeMethod.BILINEAR`.
|
||
|
align_corners: bool. If True, the centers of the 4 corner pixels of the
|
||
|
input and output tensors are aligned, preserving the values at the corner
|
||
|
pixels. Defaults to `False`.
|
||
|
preserve_aspect_ratio: Whether to preserve the aspect ratio. If this is set,
|
||
|
then `images` will be resized to a size that fits in `size` while
|
||
|
preserving the aspect ratio of the original image. Scales up the image if
|
||
|
`size` is bigger than the current size of the `image`. Defaults to False.
|
||
|
name: A name for this operation (optional).
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if the shape of `images` is incompatible with the
|
||
|
shape arguments to this function
|
||
|
ValueError: if `size` has invalid shape or type.
|
||
|
ValueError: if an unsupported resize method is specified.
|
||
|
|
||
|
Returns:
|
||
|
If `images` was 4-D, a 4-D float Tensor of shape
|
||
|
`[batch, new_height, new_width, channels]`.
|
||
|
If `images` was 3-D, a 3-D float Tensor of shape
|
||
|
`[new_height, new_width, channels]`.
|
||
|
"""
|
||
|
|
||
|
def resize_fn(images_t, new_size):
|
||
|
"""Legacy resize core function, passed to _resize_images_common."""
|
||
|
if method == ResizeMethodV1.BILINEAR or method == ResizeMethod.BILINEAR:
|
||
|
return gen_image_ops.resize_bilinear(
|
||
|
images_t, new_size, align_corners=align_corners)
|
||
|
elif (method == ResizeMethodV1.NEAREST_NEIGHBOR or
|
||
|
method == ResizeMethod.NEAREST_NEIGHBOR):
|
||
|
return gen_image_ops.resize_nearest_neighbor(
|
||
|
images_t, new_size, align_corners=align_corners)
|
||
|
elif method == ResizeMethodV1.BICUBIC or method == ResizeMethod.BICUBIC:
|
||
|
return gen_image_ops.resize_bicubic(
|
||
|
images_t, new_size, align_corners=align_corners)
|
||
|
elif method == ResizeMethodV1.AREA or method == ResizeMethod.AREA:
|
||
|
return gen_image_ops.resize_area(
|
||
|
images_t, new_size, align_corners=align_corners)
|
||
|
else:
|
||
|
raise ValueError('Resize method is not implemented: {}'.format(method))
|
||
|
|
||
|
return _resize_images_common(
|
||
|
images,
|
||
|
resize_fn,
|
||
|
size,
|
||
|
preserve_aspect_ratio=preserve_aspect_ratio,
|
||
|
name=name,
|
||
|
skip_resize_if_same=True)
|
||
|
|
||
|
|
||
|
@tf_export('image.resize', v1=[])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def resize_images_v2(images,
|
||
|
size,
|
||
|
method=ResizeMethod.BILINEAR,
|
||
|
preserve_aspect_ratio=False,
|
||
|
antialias=False,
|
||
|
name=None):
|
||
|
"""Resize `images` to `size` using the specified `method`.
|
||
|
|
||
|
Resized images will be distorted if their original aspect ratio is not
|
||
|
the same as `size`. To avoid distortions see
|
||
|
`tf.image.resize_with_pad`.
|
||
|
|
||
|
>>> image = tf.constant([
|
||
|
... [1,0,0,0,0],
|
||
|
... [0,1,0,0,0],
|
||
|
... [0,0,1,0,0],
|
||
|
... [0,0,0,1,0],
|
||
|
... [0,0,0,0,1],
|
||
|
... ])
|
||
|
>>> # Add "batch" and "channels" dimensions
|
||
|
>>> image = image[tf.newaxis, ..., tf.newaxis]
|
||
|
>>> image.shape.as_list() # [batch, height, width, channels]
|
||
|
[1, 5, 5, 1]
|
||
|
>>> tf.image.resize(image, [3,5])[0,...,0].numpy()
|
||
|
array([[0.6666667, 0.3333333, 0. , 0. , 0. ],
|
||
|
[0. , 0. , 1. , 0. , 0. ],
|
||
|
[0. , 0. , 0. , 0.3333335, 0.6666665]],
|
||
|
dtype=float32)
|
||
|
|
||
|
It works equally well with a single image instead of a batch of images:
|
||
|
|
||
|
>>> tf.image.resize(image[0], [3,5]).shape.as_list()
|
||
|
[3, 5, 1]
|
||
|
|
||
|
When `antialias` is true, the sampling filter will anti-alias the input image
|
||
|
as well as interpolate. When downsampling an image with [anti-aliasing](
|
||
|
https://en.wikipedia.org/wiki/Spatial_anti-aliasing) the sampling filter
|
||
|
kernel is scaled in order to properly anti-alias the input image signal.
|
||
|
`antialias` has no effect when upsampling an image:
|
||
|
|
||
|
>>> a = tf.image.resize(image, [5,10])
|
||
|
>>> b = tf.image.resize(image, [5,10], antialias=True)
|
||
|
>>> tf.reduce_max(abs(a - b)).numpy()
|
||
|
0.0
|
||
|
|
||
|
The `method` argument expects an item from the `image.ResizeMethod` enum, or
|
||
|
the string equivalent. The options are:
|
||
|
|
||
|
* <b>`bilinear`</b>: [Bilinear interpolation.](
|
||
|
https://en.wikipedia.org/wiki/Bilinear_interpolation) If `antialias` is
|
||
|
true, becomes a hat/tent filter function with radius 1 when downsampling.
|
||
|
* <b>`lanczos3`</b>: [Lanczos kernel](
|
||
|
https://en.wikipedia.org/wiki/Lanczos_resampling) with radius 3.
|
||
|
High-quality practical filter but may have some ringing, especially on
|
||
|
synthetic images.
|
||
|
* <b>`lanczos5`</b>: [Lanczos kernel] (
|
||
|
https://en.wikipedia.org/wiki/Lanczos_resampling) with radius 5.
|
||
|
Very-high-quality filter but may have stronger ringing.
|
||
|
* <b>`bicubic`</b>: [Cubic interpolant](
|
||
|
https://en.wikipedia.org/wiki/Bicubic_interpolation) of Keys. Equivalent to
|
||
|
Catmull-Rom kernel. Reasonably good quality and faster than Lanczos3Kernel,
|
||
|
particularly when upsampling.
|
||
|
* <b>`gaussian`</b>: [Gaussian kernel](
|
||
|
https://en.wikipedia.org/wiki/Gaussian_filter) with radius 3,
|
||
|
sigma = 1.5 / 3.0.
|
||
|
* <b>`nearest`</b>: [Nearest neighbor interpolation.](
|
||
|
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation)
|
||
|
`antialias` has no effect when used with nearest neighbor interpolation.
|
||
|
* <b>`area`</b>: Anti-aliased resampling with area interpolation.
|
||
|
`antialias` has no effect when used with area interpolation; it
|
||
|
always anti-aliases.
|
||
|
* <b>`mitchellcubic`</b>: Mitchell-Netravali Cubic non-interpolating filter.
|
||
|
For synthetic images (especially those lacking proper prefiltering), less
|
||
|
ringing than Keys cubic kernel but less sharp.
|
||
|
|
||
|
Note: Near image edges the filtering kernel may be partially outside the
|
||
|
image boundaries. For these pixels, only input pixels inside the image will be
|
||
|
included in the filter sum, and the output value will be appropriately
|
||
|
normalized.
|
||
|
|
||
|
The return value has type `float32`, unless the `method` is
|
||
|
`ResizeMethod.NEAREST_NEIGHBOR`, then the return dtype is the dtype
|
||
|
of `images`:
|
||
|
|
||
|
>>> nn = tf.image.resize(image, [5,7], method='nearest')
|
||
|
>>> nn[0,...,0].numpy()
|
||
|
array([[1, 0, 0, 0, 0, 0, 0],
|
||
|
[0, 1, 1, 0, 0, 0, 0],
|
||
|
[0, 0, 0, 1, 0, 0, 0],
|
||
|
[0, 0, 0, 0, 1, 1, 0],
|
||
|
[0, 0, 0, 0, 0, 0, 1]], dtype=int32)
|
||
|
|
||
|
With `preserve_aspect_ratio=True`, the aspect ratio is preserved, so `size`
|
||
|
is the maximum for each dimension:
|
||
|
|
||
|
>>> max_10_20 = tf.image.resize(image, [10,20], preserve_aspect_ratio=True)
|
||
|
>>> max_10_20.shape.as_list()
|
||
|
[1, 10, 10, 1]
|
||
|
|
||
|
Args:
|
||
|
images: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
size: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The new
|
||
|
size for the images.
|
||
|
method: An `image.ResizeMethod`, or string equivalent. Defaults to
|
||
|
`bilinear`.
|
||
|
preserve_aspect_ratio: Whether to preserve the aspect ratio. If this is set,
|
||
|
then `images` will be resized to a size that fits in `size` while
|
||
|
preserving the aspect ratio of the original image. Scales up the image if
|
||
|
`size` is bigger than the current size of the `image`. Defaults to False.
|
||
|
antialias: Whether to use an anti-aliasing filter when downsampling an
|
||
|
image.
|
||
|
name: A name for this operation (optional).
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if the shape of `images` is incompatible with the
|
||
|
shape arguments to this function
|
||
|
ValueError: if `size` has an invalid shape or type.
|
||
|
ValueError: if an unsupported resize method is specified.
|
||
|
|
||
|
Returns:
|
||
|
If `images` was 4-D, a 4-D float Tensor of shape
|
||
|
`[batch, new_height, new_width, channels]`.
|
||
|
If `images` was 3-D, a 3-D float Tensor of shape
|
||
|
`[new_height, new_width, channels]`.
|
||
|
"""
|
||
|
|
||
|
def resize_fn(images_t, new_size):
|
||
|
"""Resize core function, passed to _resize_images_common."""
|
||
|
scale_and_translate_methods = [
|
||
|
ResizeMethod.LANCZOS3, ResizeMethod.LANCZOS5, ResizeMethod.GAUSSIAN,
|
||
|
ResizeMethod.MITCHELLCUBIC
|
||
|
]
|
||
|
|
||
|
def resize_with_scale_and_translate(method):
|
||
|
scale = (
|
||
|
math_ops.cast(new_size, dtype=dtypes.float32) /
|
||
|
math_ops.cast(array_ops.shape(images_t)[1:3], dtype=dtypes.float32))
|
||
|
return gen_image_ops.scale_and_translate(
|
||
|
images_t,
|
||
|
new_size,
|
||
|
scale,
|
||
|
array_ops.zeros([2]),
|
||
|
kernel_type=method,
|
||
|
antialias=antialias)
|
||
|
|
||
|
if method == ResizeMethod.BILINEAR:
|
||
|
if antialias:
|
||
|
return resize_with_scale_and_translate('triangle')
|
||
|
else:
|
||
|
return gen_image_ops.resize_bilinear(
|
||
|
images_t, new_size, half_pixel_centers=True)
|
||
|
elif method == ResizeMethod.NEAREST_NEIGHBOR:
|
||
|
return gen_image_ops.resize_nearest_neighbor(
|
||
|
images_t, new_size, half_pixel_centers=True)
|
||
|
elif method == ResizeMethod.BICUBIC:
|
||
|
if antialias:
|
||
|
return resize_with_scale_and_translate('keyscubic')
|
||
|
else:
|
||
|
return gen_image_ops.resize_bicubic(
|
||
|
images_t, new_size, half_pixel_centers=True)
|
||
|
elif method == ResizeMethod.AREA:
|
||
|
return gen_image_ops.resize_area(images_t, new_size)
|
||
|
elif method in scale_and_translate_methods:
|
||
|
return resize_with_scale_and_translate(method)
|
||
|
else:
|
||
|
raise ValueError('Resize method is not implemented: {}'.format(method))
|
||
|
|
||
|
return _resize_images_common(
|
||
|
images,
|
||
|
resize_fn,
|
||
|
size,
|
||
|
preserve_aspect_ratio=preserve_aspect_ratio,
|
||
|
name=name,
|
||
|
skip_resize_if_same=False)
|
||
|
|
||
|
|
||
|
def _resize_image_with_pad_common(image, target_height, target_width,
|
||
|
resize_fn):
|
||
|
"""Core functionality for v1 and v2 resize_image_with_pad functions."""
|
||
|
with ops.name_scope(None, 'resize_image_with_pad', [image]):
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
image_shape = image.get_shape()
|
||
|
is_batch = True
|
||
|
if image_shape.ndims == 3:
|
||
|
is_batch = False
|
||
|
image = array_ops.expand_dims(image, 0)
|
||
|
elif image_shape.ndims is None:
|
||
|
is_batch = False
|
||
|
image = array_ops.expand_dims(image, 0)
|
||
|
image.set_shape([None] * 4)
|
||
|
elif image_shape.ndims != 4:
|
||
|
raise ValueError(
|
||
|
'\'image\' (shape %s) must have either 3 or 4 dimensions.' %
|
||
|
image_shape)
|
||
|
|
||
|
assert_ops = _CheckAtLeast3DImage(image, require_static=False)
|
||
|
assert_ops += _assert(target_width > 0, ValueError,
|
||
|
'target_width must be > 0.')
|
||
|
assert_ops += _assert(target_height > 0, ValueError,
|
||
|
'target_height must be > 0.')
|
||
|
|
||
|
image = control_flow_ops.with_dependencies(assert_ops, image)
|
||
|
|
||
|
def max_(x, y):
|
||
|
if _is_tensor(x) or _is_tensor(y):
|
||
|
return math_ops.maximum(x, y)
|
||
|
else:
|
||
|
return max(x, y)
|
||
|
|
||
|
_, height, width, _ = _ImageDimensions(image, rank=4)
|
||
|
|
||
|
# convert values to float, to ease divisions
|
||
|
f_height = math_ops.cast(height, dtype=dtypes.float32)
|
||
|
f_width = math_ops.cast(width, dtype=dtypes.float32)
|
||
|
f_target_height = math_ops.cast(target_height, dtype=dtypes.float32)
|
||
|
f_target_width = math_ops.cast(target_width, dtype=dtypes.float32)
|
||
|
|
||
|
# Find the ratio by which the image must be adjusted
|
||
|
# to fit within the target
|
||
|
ratio = max_(f_width / f_target_width, f_height / f_target_height)
|
||
|
resized_height_float = f_height / ratio
|
||
|
resized_width_float = f_width / ratio
|
||
|
resized_height = math_ops.cast(
|
||
|
math_ops.floor(resized_height_float), dtype=dtypes.int32)
|
||
|
resized_width = math_ops.cast(
|
||
|
math_ops.floor(resized_width_float), dtype=dtypes.int32)
|
||
|
|
||
|
padding_height = (f_target_height - resized_height_float) / 2
|
||
|
padding_width = (f_target_width - resized_width_float) / 2
|
||
|
f_padding_height = math_ops.floor(padding_height)
|
||
|
f_padding_width = math_ops.floor(padding_width)
|
||
|
p_height = max_(0, math_ops.cast(f_padding_height, dtype=dtypes.int32))
|
||
|
p_width = max_(0, math_ops.cast(f_padding_width, dtype=dtypes.int32))
|
||
|
|
||
|
# Resize first, then pad to meet requested dimensions
|
||
|
resized = resize_fn(image, [resized_height, resized_width])
|
||
|
|
||
|
padded = pad_to_bounding_box(resized, p_height, p_width, target_height,
|
||
|
target_width)
|
||
|
|
||
|
if padded.get_shape().ndims is None:
|
||
|
raise ValueError('padded contains no shape.')
|
||
|
|
||
|
_ImageDimensions(padded, rank=4)
|
||
|
|
||
|
if not is_batch:
|
||
|
padded = array_ops.squeeze(padded, axis=[0])
|
||
|
|
||
|
return padded
|
||
|
|
||
|
|
||
|
@tf_export(v1=['image.resize_image_with_pad'])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def resize_image_with_pad_v1(image,
|
||
|
target_height,
|
||
|
target_width,
|
||
|
method=ResizeMethodV1.BILINEAR,
|
||
|
align_corners=False):
|
||
|
"""Resizes and pads an image to a target width and height.
|
||
|
|
||
|
Resizes an image to a target width and height by keeping
|
||
|
the aspect ratio the same without distortion. If the target
|
||
|
dimensions don't match the image dimensions, the image
|
||
|
is resized and then padded with zeroes to match requested
|
||
|
dimensions.
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
target_height: Target height.
|
||
|
target_width: Target width.
|
||
|
method: Method to use for resizing image. See `resize_images()`
|
||
|
align_corners: bool. If True, the centers of the 4 corner pixels of the
|
||
|
input and output tensors are aligned, preserving the values at the corner
|
||
|
pixels. Defaults to `False`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `target_height` or `target_width` are zero or negative.
|
||
|
|
||
|
Returns:
|
||
|
Resized and padded image.
|
||
|
If `images` was 4-D, a 4-D float Tensor of shape
|
||
|
`[batch, new_height, new_width, channels]`.
|
||
|
If `images` was 3-D, a 3-D float Tensor of shape
|
||
|
`[new_height, new_width, channels]`.
|
||
|
"""
|
||
|
|
||
|
def _resize_fn(im, new_size):
|
||
|
return resize_images(im, new_size, method, align_corners=align_corners)
|
||
|
|
||
|
return _resize_image_with_pad_common(image, target_height, target_width,
|
||
|
_resize_fn)
|
||
|
|
||
|
|
||
|
@tf_export('image.resize_with_pad', v1=[])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def resize_image_with_pad_v2(image,
|
||
|
target_height,
|
||
|
target_width,
|
||
|
method=ResizeMethod.BILINEAR,
|
||
|
antialias=False):
|
||
|
"""Resizes and pads an image to a target width and height.
|
||
|
|
||
|
Resizes an image to a target width and height by keeping
|
||
|
the aspect ratio the same without distortion. If the target
|
||
|
dimensions don't match the image dimensions, the image
|
||
|
is resized and then padded with zeroes to match requested
|
||
|
dimensions.
|
||
|
|
||
|
Args:
|
||
|
image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
target_height: Target height.
|
||
|
target_width: Target width.
|
||
|
method: Method to use for resizing image. See `image.resize()`
|
||
|
antialias: Whether to use anti-aliasing when resizing. See 'image.resize()'.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `target_height` or `target_width` are zero or negative.
|
||
|
|
||
|
Returns:
|
||
|
Resized and padded image.
|
||
|
If `images` was 4-D, a 4-D float Tensor of shape
|
||
|
`[batch, new_height, new_width, channels]`.
|
||
|
If `images` was 3-D, a 3-D float Tensor of shape
|
||
|
`[new_height, new_width, channels]`.
|
||
|
"""
|
||
|
|
||
|
def _resize_fn(im, new_size):
|
||
|
return resize_images_v2(im, new_size, method, antialias=antialias)
|
||
|
|
||
|
return _resize_image_with_pad_common(image, target_height, target_width,
|
||
|
_resize_fn)
|
||
|
|
||
|
|
||
|
@tf_export('image.per_image_standardization')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def per_image_standardization(image):
|
||
|
"""Linearly scales each image in `image` to have mean 0 and variance 1.
|
||
|
|
||
|
For each 3-D image `x` in `image`, computes `(x - mean) / adjusted_stddev`,
|
||
|
where
|
||
|
|
||
|
- `mean` is the average of all values in `x`
|
||
|
- `adjusted_stddev = max(stddev, 1.0/sqrt(N))` is capped away from 0 to
|
||
|
protect against division by 0 when handling uniform images
|
||
|
- `N` is the number of elements in `x`
|
||
|
- `stddev` is the standard deviation of all values in `x`
|
||
|
|
||
|
Example Usage:
|
||
|
|
||
|
>>> image = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])
|
||
|
>>> image # 3-D tensor
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=int32, numpy=
|
||
|
array([[[ 1, 2, 3],
|
||
|
[ 4, 5, 6]],
|
||
|
[[ 7, 8, 9],
|
||
|
[10, 11, 12]]], dtype=int32)>
|
||
|
>>> new_image = tf.image.per_image_standardization(image)
|
||
|
>>> new_image # 3-D tensor with mean ~= 0 and variance ~= 1
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[-1.593255 , -1.3035723 , -1.0138896 ],
|
||
|
[-0.7242068 , -0.4345241 , -0.14484136]],
|
||
|
[[ 0.14484136, 0.4345241 , 0.7242068 ],
|
||
|
[ 1.0138896 , 1.3035723 , 1.593255 ]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image: An n-D `Tensor` with at least 3 dimensions, the last 3 of which are
|
||
|
the dimensions of each image.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` with the same shape as `image` and its dtype is `float32`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: The shape of `image` has fewer than 3 dimensions.
|
||
|
"""
|
||
|
with ops.name_scope(None, 'per_image_standardization', [image]) as scope:
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
image = _AssertAtLeast3DImage(image)
|
||
|
|
||
|
image = math_ops.cast(image, dtype=dtypes.float32)
|
||
|
num_pixels = math_ops.reduce_prod(array_ops.shape(image)[-3:])
|
||
|
image_mean = math_ops.reduce_mean(image, axis=[-1, -2, -3], keepdims=True)
|
||
|
|
||
|
# Apply a minimum normalization that protects us against uniform images.
|
||
|
stddev = math_ops.reduce_std(image, axis=[-1, -2, -3], keepdims=True)
|
||
|
min_stddev = math_ops.rsqrt(math_ops.cast(num_pixels, dtypes.float32))
|
||
|
adjusted_stddev = math_ops.maximum(stddev, min_stddev)
|
||
|
|
||
|
image -= image_mean
|
||
|
image = math_ops.divide(image, adjusted_stddev, name=scope)
|
||
|
return image
|
||
|
|
||
|
|
||
|
@tf_export('image.random_brightness')
|
||
|
@dispatch.register_unary_elementwise_api
|
||
|
@dispatch.add_dispatch_support
|
||
|
def random_brightness(image, max_delta, seed=None):
|
||
|
"""Adjust the brightness of images by a random factor.
|
||
|
|
||
|
Equivalent to `adjust_brightness()` using a `delta` randomly picked in the
|
||
|
interval `[-max_delta, max_delta)`.
|
||
|
|
||
|
For producing deterministic results given a `seed` value, use
|
||
|
`tf.image.stateless_random_brightness`. Unlike using the `seed` param
|
||
|
with `tf.image.random_*` ops, `tf.image.stateless_random_*` ops guarantee the
|
||
|
same results given the same seed independent of how many times the function is
|
||
|
called, and independent of global seed settings (e.g. tf.random.set_seed).
|
||
|
|
||
|
Args:
|
||
|
image: An image or images to adjust.
|
||
|
max_delta: float, must be non-negative. This parameter controls the maximum
|
||
|
relative change in brightness.
|
||
|
seed: A Python integer. Used to create a random seed. See
|
||
|
`tf.compat.v1.set_random_seed` for behavior.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> tf.image.random_brightness(x, 0.2)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=...>
|
||
|
|
||
|
Returns:
|
||
|
The brightness-adjusted image(s).
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `max_delta` is negative.
|
||
|
"""
|
||
|
if max_delta < 0:
|
||
|
raise ValueError('max_delta must be non-negative.')
|
||
|
|
||
|
delta = random_ops.random_uniform([], -max_delta, max_delta, seed=seed)
|
||
|
return adjust_brightness(image, delta)
|
||
|
|
||
|
|
||
|
@tf_export('image.stateless_random_brightness', v1=[])
|
||
|
@dispatch.register_unary_elementwise_api
|
||
|
@dispatch.add_dispatch_support
|
||
|
def stateless_random_brightness(image, max_delta, seed):
|
||
|
"""Adjust the brightness of images by a random factor deterministically.
|
||
|
|
||
|
Equivalent to `adjust_brightness()` using a `delta` randomly picked in the
|
||
|
interval `[-max_delta, max_delta)`.
|
||
|
|
||
|
Guarantees the same results given the same `seed` independent of how many
|
||
|
times the function is called, and independent of global seed settings (e.g.
|
||
|
`tf.random.set_seed`).
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> seed = (1, 2)
|
||
|
>>> tf.image.stateless_random_brightness(x, 0.2, seed)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[ 1.1376241, 2.1376243, 3.1376243],
|
||
|
[ 4.1376243, 5.1376243, 6.1376243]],
|
||
|
[[ 7.1376243, 8.137624 , 9.137624 ],
|
||
|
[10.137624 , 11.137624 , 12.137624 ]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image: An image or images to adjust.
|
||
|
max_delta: float, must be non-negative.
|
||
|
seed: A shape [2] Tensor, the seed to the random number generator. Must have
|
||
|
dtype `int32` or `int64`. (When using XLA, only `int32` is allowed.)
|
||
|
|
||
|
Returns:
|
||
|
The brightness-adjusted image(s).
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `max_delta` is negative.
|
||
|
"""
|
||
|
if max_delta < 0:
|
||
|
raise ValueError('max_delta must be non-negative.')
|
||
|
|
||
|
delta = stateless_random_ops.stateless_random_uniform(
|
||
|
shape=[], minval=-max_delta, maxval=max_delta, seed=seed)
|
||
|
return adjust_brightness(image, delta)
|
||
|
|
||
|
|
||
|
@tf_export('image.random_contrast')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def random_contrast(image, lower, upper, seed=None):
|
||
|
"""Adjust the contrast of an image or images by a random factor.
|
||
|
|
||
|
Equivalent to `adjust_contrast()` but uses a `contrast_factor` randomly
|
||
|
picked in the interval `[lower, upper)`.
|
||
|
|
||
|
For producing deterministic results given a `seed` value, use
|
||
|
`tf.image.stateless_random_contrast`. Unlike using the `seed` param
|
||
|
with `tf.image.random_*` ops, `tf.image.stateless_random_*` ops guarantee the
|
||
|
same results given the same seed independent of how many times the function is
|
||
|
called, and independent of global seed settings (e.g. tf.random.set_seed).
|
||
|
|
||
|
Args:
|
||
|
image: An image tensor with 3 or more dimensions.
|
||
|
lower: float. Lower bound for the random contrast factor.
|
||
|
upper: float. Upper bound for the random contrast factor.
|
||
|
seed: A Python integer. Used to create a random seed. See
|
||
|
`tf.compat.v1.set_random_seed` for behavior.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> tf.image.random_contrast(x, 0.2, 0.5)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=...>
|
||
|
|
||
|
Returns:
|
||
|
The contrast-adjusted image(s).
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `upper <= lower` or if `lower < 0`.
|
||
|
"""
|
||
|
if upper <= lower:
|
||
|
raise ValueError('upper must be > lower.')
|
||
|
|
||
|
if lower < 0:
|
||
|
raise ValueError('lower must be non-negative.')
|
||
|
|
||
|
contrast_factor = random_ops.random_uniform([], lower, upper, seed=seed)
|
||
|
return adjust_contrast(image, contrast_factor)
|
||
|
|
||
|
|
||
|
@tf_export('image.stateless_random_contrast', v1=[])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def stateless_random_contrast(image, lower, upper, seed):
|
||
|
"""Adjust the contrast of images by a random factor deterministically.
|
||
|
|
||
|
Guarantees the same results given the same `seed` independent of how many
|
||
|
times the function is called, and independent of global seed settings (e.g.
|
||
|
`tf.random.set_seed`).
|
||
|
|
||
|
Args:
|
||
|
image: An image tensor with 3 or more dimensions.
|
||
|
lower: float. Lower bound for the random contrast factor.
|
||
|
upper: float. Upper bound for the random contrast factor.
|
||
|
seed: A shape [2] Tensor, the seed to the random number generator. Must have
|
||
|
dtype `int32` or `int64`. (When using XLA, only `int32` is allowed.)
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> seed = (1, 2)
|
||
|
>>> tf.image.stateless_random_contrast(x, 0.2, 0.5, seed)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[3.4605184, 4.4605184, 5.4605184],
|
||
|
[4.820173 , 5.820173 , 6.820173 ]],
|
||
|
[[6.179827 , 7.179827 , 8.179828 ],
|
||
|
[7.5394816, 8.539482 , 9.539482 ]]], dtype=float32)>
|
||
|
|
||
|
Returns:
|
||
|
The contrast-adjusted image(s).
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `upper <= lower` or if `lower < 0`.
|
||
|
"""
|
||
|
if upper <= lower:
|
||
|
raise ValueError('upper must be > lower.')
|
||
|
|
||
|
if lower < 0:
|
||
|
raise ValueError('lower must be non-negative.')
|
||
|
|
||
|
contrast_factor = stateless_random_ops.stateless_random_uniform(
|
||
|
shape=[], minval=lower, maxval=upper, seed=seed)
|
||
|
return adjust_contrast(image, contrast_factor)
|
||
|
|
||
|
|
||
|
@tf_export('image.adjust_brightness')
|
||
|
@dispatch.register_unary_elementwise_api
|
||
|
@dispatch.add_dispatch_support
|
||
|
def adjust_brightness(image, delta):
|
||
|
"""Adjust the brightness of RGB or Grayscale images.
|
||
|
|
||
|
This is a convenience method that converts RGB images to float
|
||
|
representation, adjusts their brightness, and then converts them back to the
|
||
|
original data type. If several adjustments are chained, it is advisable to
|
||
|
minimize the number of redundant conversions.
|
||
|
|
||
|
The value `delta` is added to all components of the tensor `image`. `image` is
|
||
|
converted to `float` and scaled appropriately if it is in fixed-point
|
||
|
representation, and `delta` is converted to the same data type. For regular
|
||
|
images, `delta` should be in the range `(-1,1)`, as it is added to the image
|
||
|
in floating point representation, where pixel values are in the `[0,1)` range.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> tf.image.adjust_brightness(x, delta=0.1)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[ 1.1, 2.1, 3.1],
|
||
|
[ 4.1, 5.1, 6.1]],
|
||
|
[[ 7.1, 8.1, 9.1],
|
||
|
[10.1, 11.1, 12.1]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image: RGB image or images to adjust.
|
||
|
delta: A scalar. Amount to add to the pixel values.
|
||
|
|
||
|
Returns:
|
||
|
A brightness-adjusted tensor of the same shape and type as `image`.
|
||
|
"""
|
||
|
with ops.name_scope(None, 'adjust_brightness', [image, delta]) as name:
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
# Remember original dtype to so we can convert back if needed
|
||
|
orig_dtype = image.dtype
|
||
|
|
||
|
if orig_dtype in [dtypes.float16, dtypes.float32]:
|
||
|
flt_image = image
|
||
|
else:
|
||
|
flt_image = convert_image_dtype(image, dtypes.float32)
|
||
|
|
||
|
adjusted = math_ops.add(
|
||
|
flt_image, math_ops.cast(delta, flt_image.dtype), name=name)
|
||
|
|
||
|
return convert_image_dtype(adjusted, orig_dtype, saturate=True)
|
||
|
|
||
|
|
||
|
@tf_export('image.adjust_contrast')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def adjust_contrast(images, contrast_factor):
|
||
|
"""Adjust contrast of RGB or grayscale images.
|
||
|
|
||
|
This is a convenience method that converts RGB images to float
|
||
|
representation, adjusts their contrast, and then converts them back to the
|
||
|
original data type. If several adjustments are chained, it is advisable to
|
||
|
minimize the number of redundant conversions.
|
||
|
|
||
|
`images` is a tensor of at least 3 dimensions. The last 3 dimensions are
|
||
|
interpreted as `[height, width, channels]`. The other dimensions only
|
||
|
represent a collection of images, such as `[batch, height, width, channels].`
|
||
|
|
||
|
Contrast is adjusted independently for each channel of each image.
|
||
|
|
||
|
For each channel, this Op computes the mean of the image pixels in the
|
||
|
channel and then adjusts each component `x` of each pixel to
|
||
|
`(x - mean) * contrast_factor + mean`.
|
||
|
|
||
|
`contrast_factor` must be in the interval `(-inf, inf)`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> tf.image.adjust_contrast(x, 2.)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[-3.5, -2.5, -1.5],
|
||
|
[ 2.5, 3.5, 4.5]],
|
||
|
[[ 8.5, 9.5, 10.5],
|
||
|
[14.5, 15.5, 16.5]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
images: Images to adjust. At least 3-D.
|
||
|
contrast_factor: A float multiplier for adjusting contrast.
|
||
|
|
||
|
Returns:
|
||
|
The contrast-adjusted image or images.
|
||
|
"""
|
||
|
with ops.name_scope(None, 'adjust_contrast',
|
||
|
[images, contrast_factor]) as name:
|
||
|
images = ops.convert_to_tensor(images, name='images')
|
||
|
# Remember original dtype to so we can convert back if needed
|
||
|
orig_dtype = images.dtype
|
||
|
|
||
|
if orig_dtype in (dtypes.float16, dtypes.float32):
|
||
|
flt_images = images
|
||
|
else:
|
||
|
flt_images = convert_image_dtype(images, dtypes.float32)
|
||
|
|
||
|
adjusted = gen_image_ops.adjust_contrastv2(
|
||
|
flt_images, contrast_factor=contrast_factor, name=name)
|
||
|
|
||
|
return convert_image_dtype(adjusted, orig_dtype, saturate=True)
|
||
|
|
||
|
|
||
|
@tf_export('image.adjust_gamma')
|
||
|
@dispatch.register_unary_elementwise_api
|
||
|
@dispatch.add_dispatch_support
|
||
|
def adjust_gamma(image, gamma=1, gain=1):
|
||
|
"""Performs [Gamma Correction](http://en.wikipedia.org/wiki/Gamma_correction).
|
||
|
|
||
|
on the input image.
|
||
|
|
||
|
Also known as Power Law Transform. This function converts the
|
||
|
input images at first to float representation, then transforms them
|
||
|
pixelwise according to the equation `Out = gain * In**gamma`,
|
||
|
and then converts the back to the original data type.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> tf.image.adjust_gamma(x, 0.2)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[1. , 1.1486983, 1.2457309],
|
||
|
[1.319508 , 1.3797297, 1.4309691]],
|
||
|
[[1.4757731, 1.5157166, 1.5518456],
|
||
|
[1.5848932, 1.6153942, 1.6437519]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image : RGB image or images to adjust.
|
||
|
gamma : A scalar or tensor. Non-negative real number.
|
||
|
gain : A scalar or tensor. The constant multiplier.
|
||
|
|
||
|
Returns:
|
||
|
A Tensor. A Gamma-adjusted tensor of the same shape and type as `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If gamma is negative.
|
||
|
Notes:
|
||
|
For gamma greater than 1, the histogram will shift towards left and
|
||
|
the output image will be darker than the input image.
|
||
|
For gamma less than 1, the histogram will shift towards right and
|
||
|
the output image will be brighter than the input image.
|
||
|
References:
|
||
|
[Wikipedia](http://en.wikipedia.org/wiki/Gamma_correction)
|
||
|
"""
|
||
|
|
||
|
with ops.name_scope(None, 'adjust_gamma', [image, gamma, gain]) as name:
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
# Remember original dtype to so we can convert back if needed
|
||
|
orig_dtype = image.dtype
|
||
|
|
||
|
if orig_dtype in [dtypes.float16, dtypes.float32]:
|
||
|
flt_image = image
|
||
|
else:
|
||
|
flt_image = convert_image_dtype(image, dtypes.float32)
|
||
|
|
||
|
assert_op = _assert(gamma >= 0, ValueError,
|
||
|
'Gamma should be a non-negative real number.')
|
||
|
if assert_op:
|
||
|
gamma = control_flow_ops.with_dependencies(assert_op, gamma)
|
||
|
|
||
|
# According to the definition of gamma correction.
|
||
|
adjusted_img = gain * flt_image**gamma
|
||
|
|
||
|
return convert_image_dtype(adjusted_img, orig_dtype, saturate=True)
|
||
|
|
||
|
|
||
|
@tf_export('image.convert_image_dtype')
|
||
|
@dispatch.register_unary_elementwise_api
|
||
|
@dispatch.add_dispatch_support
|
||
|
def convert_image_dtype(image, dtype, saturate=False, name=None):
|
||
|
"""Convert `image` to `dtype`, scaling its values if needed.
|
||
|
|
||
|
The operation supports data types (for `image` and `dtype`) of
|
||
|
`uint8`, `uint16`, `uint32`, `uint64`, `int8`, `int16`, `int32`, `int64`,
|
||
|
`float16`, `float32`, `float64`, `bfloat16`.
|
||
|
|
||
|
Images that are represented using floating point values are expected to have
|
||
|
values in the range [0,1). Image data stored in integer data types are
|
||
|
expected to have values in the range `[0,MAX]`, where `MAX` is the largest
|
||
|
positive representable number for the data type.
|
||
|
|
||
|
This op converts between data types, scaling the values appropriately before
|
||
|
casting.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1, 2, 3], [4, 5, 6]],
|
||
|
... [[7, 8, 9], [10, 11, 12]]]
|
||
|
>>> x_int8 = tf.convert_to_tensor(x, dtype=tf.int8)
|
||
|
>>> tf.image.convert_image_dtype(x_int8, dtype=tf.float16, saturate=False)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float16, numpy=
|
||
|
array([[[0.00787, 0.01575, 0.02362],
|
||
|
[0.0315 , 0.03937, 0.04724]],
|
||
|
[[0.0551 , 0.063 , 0.07086],
|
||
|
[0.07874, 0.0866 , 0.0945 ]]], dtype=float16)>
|
||
|
|
||
|
Converting integer types to floating point types returns normalized floating
|
||
|
point values in the range [0, 1); the values are normalized by the `MAX` value
|
||
|
of the input dtype. Consider the following two examples:
|
||
|
|
||
|
>>> a = [[[1], [2]], [[3], [4]]]
|
||
|
>>> a_int8 = tf.convert_to_tensor(a, dtype=tf.int8)
|
||
|
>>> tf.image.convert_image_dtype(a_int8, dtype=tf.float32)
|
||
|
<tf.Tensor: shape=(2, 2, 1), dtype=float32, numpy=
|
||
|
array([[[0.00787402],
|
||
|
[0.01574803]],
|
||
|
[[0.02362205],
|
||
|
[0.03149606]]], dtype=float32)>
|
||
|
|
||
|
>>> a_int32 = tf.convert_to_tensor(a, dtype=tf.int32)
|
||
|
>>> tf.image.convert_image_dtype(a_int32, dtype=tf.float32)
|
||
|
<tf.Tensor: shape=(2, 2, 1), dtype=float32, numpy=
|
||
|
array([[[4.6566129e-10],
|
||
|
[9.3132257e-10]],
|
||
|
[[1.3969839e-09],
|
||
|
[1.8626451e-09]]], dtype=float32)>
|
||
|
|
||
|
Despite having identical values of `a` and output dtype of `float32`, the
|
||
|
outputs differ due to the different input dtypes (`int8` vs. `int32`). This
|
||
|
is, again, because the values are normalized by the `MAX` value of the input
|
||
|
dtype.
|
||
|
|
||
|
Note that converting floating point values to integer type may lose precision.
|
||
|
In the example below, an image tensor `b` of dtype `float32` is converted to
|
||
|
`int8` and back to `float32`. The final output, however, is different from
|
||
|
the original input `b` due to precision loss.
|
||
|
|
||
|
>>> b = [[[0.12], [0.34]], [[0.56], [0.78]]]
|
||
|
>>> b_float32 = tf.convert_to_tensor(b, dtype=tf.float32)
|
||
|
>>> b_int8 = tf.image.convert_image_dtype(b_float32, dtype=tf.int8)
|
||
|
>>> tf.image.convert_image_dtype(b_int8, dtype=tf.float32)
|
||
|
<tf.Tensor: shape=(2, 2, 1), dtype=float32, numpy=
|
||
|
array([[[0.11811024],
|
||
|
[0.33858266]],
|
||
|
[[0.5590551 ],
|
||
|
[0.77952754]]], dtype=float32)>
|
||
|
|
||
|
Scaling up from an integer type (input dtype) to another integer type (output
|
||
|
dtype) will not map input dtype's `MAX` to output dtype's `MAX` but converting
|
||
|
back and forth should result in no change. For example, as shown below, the
|
||
|
`MAX` value of int8 (=127) is not mapped to the `MAX` value of int16 (=32,767)
|
||
|
but, when scaled back, we get the same, original values of `c`.
|
||
|
|
||
|
>>> c = [[[1], [2]], [[127], [127]]]
|
||
|
>>> c_int8 = tf.convert_to_tensor(c, dtype=tf.int8)
|
||
|
>>> c_int16 = tf.image.convert_image_dtype(c_int8, dtype=tf.int16)
|
||
|
>>> print(c_int16)
|
||
|
tf.Tensor(
|
||
|
[[[ 256]
|
||
|
[ 512]]
|
||
|
[[32512]
|
||
|
[32512]]], shape=(2, 2, 1), dtype=int16)
|
||
|
>>> c_int8_back = tf.image.convert_image_dtype(c_int16, dtype=tf.int8)
|
||
|
>>> print(c_int8_back)
|
||
|
tf.Tensor(
|
||
|
[[[ 1]
|
||
|
[ 2]]
|
||
|
[[127]
|
||
|
[127]]], shape=(2, 2, 1), dtype=int8)
|
||
|
|
||
|
Scaling down from an integer type to another integer type can be a lossy
|
||
|
conversion. Notice in the example below that converting `int16` to `uint8` and
|
||
|
back to `int16` has lost precision.
|
||
|
|
||
|
>>> d = [[[1000], [2000]], [[3000], [4000]]]
|
||
|
>>> d_int16 = tf.convert_to_tensor(d, dtype=tf.int16)
|
||
|
>>> d_uint8 = tf.image.convert_image_dtype(d_int16, dtype=tf.uint8)
|
||
|
>>> d_int16_back = tf.image.convert_image_dtype(d_uint8, dtype=tf.int16)
|
||
|
>>> print(d_int16_back)
|
||
|
tf.Tensor(
|
||
|
[[[ 896]
|
||
|
[1920]]
|
||
|
[[2944]
|
||
|
[3968]]], shape=(2, 2, 1), dtype=int16)
|
||
|
|
||
|
Note that converting from floating point inputs to integer types may lead to
|
||
|
over/underflow problems. Set saturate to `True` to avoid such problem in
|
||
|
problematic conversions. If enabled, saturation will clip the output into the
|
||
|
allowed range before performing a potentially dangerous cast (and only before
|
||
|
performing such a cast, i.e., when casting from a floating point to an integer
|
||
|
type, and when casting from a signed to an unsigned type; `saturate` has no
|
||
|
effect on casts between floats, or on casts that increase the type's range).
|
||
|
|
||
|
Args:
|
||
|
image: An image.
|
||
|
dtype: A `DType` to convert `image` to.
|
||
|
saturate: If `True`, clip the input before casting (if necessary).
|
||
|
name: A name for this operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
`image`, converted to `dtype`.
|
||
|
|
||
|
Raises:
|
||
|
AttributeError: Raises an attribute error when dtype is neither
|
||
|
float nor integer.
|
||
|
"""
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
dtype = dtypes.as_dtype(dtype)
|
||
|
if not dtype.is_floating and not dtype.is_integer:
|
||
|
raise AttributeError('dtype must be either floating point or integer')
|
||
|
if not image.dtype.is_floating and not image.dtype.is_integer:
|
||
|
raise AttributeError('image dtype must be either floating point or integer')
|
||
|
if dtype == image.dtype:
|
||
|
return array_ops.identity(image, name=name)
|
||
|
|
||
|
with ops.name_scope(name, 'convert_image', [image]) as name:
|
||
|
# Both integer: use integer multiplication in the larger range
|
||
|
if image.dtype.is_integer and dtype.is_integer:
|
||
|
scale_in = image.dtype.max
|
||
|
scale_out = dtype.max
|
||
|
if scale_in > scale_out:
|
||
|
# Scaling down, scale first, then cast. The scaling factor will
|
||
|
# cause in.max to be mapped to above out.max but below out.max+1,
|
||
|
# so that the output is safely in the supported range.
|
||
|
scale = (scale_in + 1) // (scale_out + 1)
|
||
|
scaled = math_ops.floordiv(image, scale)
|
||
|
|
||
|
if saturate:
|
||
|
return math_ops.saturate_cast(scaled, dtype, name=name)
|
||
|
else:
|
||
|
return math_ops.cast(scaled, dtype, name=name)
|
||
|
else:
|
||
|
# Scaling up, cast first, then scale. The scale will not map in.max to
|
||
|
# out.max, but converting back and forth should result in no change.
|
||
|
if saturate:
|
||
|
cast = math_ops.saturate_cast(image, dtype)
|
||
|
else:
|
||
|
cast = math_ops.cast(image, dtype)
|
||
|
scale = (scale_out + 1) // (scale_in + 1)
|
||
|
return math_ops.multiply(cast, scale, name=name)
|
||
|
elif image.dtype.is_floating and dtype.is_floating:
|
||
|
# Both float: Just cast, no possible overflows in the allowed ranges.
|
||
|
# Note: We're ignoring float overflows. If your image dynamic range
|
||
|
# exceeds float range, you're on your own.
|
||
|
return math_ops.cast(image, dtype, name=name)
|
||
|
else:
|
||
|
if image.dtype.is_integer:
|
||
|
# Converting to float: first cast, then scale. No saturation possible.
|
||
|
cast = math_ops.cast(image, dtype)
|
||
|
scale = 1. / image.dtype.max
|
||
|
return math_ops.multiply(cast, scale, name=name)
|
||
|
else:
|
||
|
# Converting from float: first scale, then cast
|
||
|
scale = dtype.max + 0.5 # avoid rounding problems in the cast
|
||
|
scaled = math_ops.multiply(image, scale)
|
||
|
if saturate:
|
||
|
return math_ops.saturate_cast(scaled, dtype, name=name)
|
||
|
else:
|
||
|
return math_ops.cast(scaled, dtype, name=name)
|
||
|
|
||
|
|
||
|
@tf_export('image.rgb_to_grayscale')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def rgb_to_grayscale(images, name=None):
|
||
|
"""Converts one or more images from RGB to Grayscale.
|
||
|
|
||
|
Outputs a tensor of the same `DType` and rank as `images`. The size of the
|
||
|
last dimension of the output is 1, containing the Grayscale value of the
|
||
|
pixels.
|
||
|
|
||
|
>>> original = tf.constant([[[1.0, 2.0, 3.0]]])
|
||
|
>>> converted = tf.image.rgb_to_grayscale(original)
|
||
|
>>> print(converted.numpy())
|
||
|
[[[1.81...]]]
|
||
|
|
||
|
Args:
|
||
|
images: The RGB tensor to convert. The last dimension must have size 3 and
|
||
|
should contain RGB values.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
The converted grayscale image(s).
|
||
|
"""
|
||
|
with ops.name_scope(name, 'rgb_to_grayscale', [images]) as name:
|
||
|
images = ops.convert_to_tensor(images, name='images')
|
||
|
# Remember original dtype to so we can convert back if needed
|
||
|
orig_dtype = images.dtype
|
||
|
flt_image = convert_image_dtype(images, dtypes.float32)
|
||
|
|
||
|
# Reference for converting between RGB and grayscale.
|
||
|
# https://en.wikipedia.org/wiki/Luma_%28video%29
|
||
|
rgb_weights = [0.2989, 0.5870, 0.1140]
|
||
|
gray_float = math_ops.tensordot(flt_image, rgb_weights, [-1, -1])
|
||
|
gray_float = array_ops.expand_dims(gray_float, -1)
|
||
|
return convert_image_dtype(gray_float, orig_dtype, name=name)
|
||
|
|
||
|
|
||
|
@tf_export('image.grayscale_to_rgb')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def grayscale_to_rgb(images, name=None):
|
||
|
"""Converts one or more images from Grayscale to RGB.
|
||
|
|
||
|
Outputs a tensor of the same `DType` and rank as `images`. The size of the
|
||
|
last dimension of the output is 3, containing the RGB value of the pixels.
|
||
|
The input images' last dimension must be size 1.
|
||
|
|
||
|
>>> original = tf.constant([[[1.0], [2.0], [3.0]]])
|
||
|
>>> converted = tf.image.grayscale_to_rgb(original)
|
||
|
>>> print(converted.numpy())
|
||
|
[[[1. 1. 1.]
|
||
|
[2. 2. 2.]
|
||
|
[3. 3. 3.]]]
|
||
|
|
||
|
Args:
|
||
|
images: The Grayscale tensor to convert. The last dimension must be size 1.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
The converted grayscale image(s).
|
||
|
"""
|
||
|
with ops.name_scope(name, 'grayscale_to_rgb', [images]) as name:
|
||
|
images = _AssertGrayscaleImage(images)
|
||
|
|
||
|
images = ops.convert_to_tensor(images, name='images')
|
||
|
rank_1 = array_ops.expand_dims(array_ops.rank(images) - 1, 0)
|
||
|
shape_list = ([array_ops.ones(rank_1, dtype=dtypes.int32)] +
|
||
|
[array_ops.expand_dims(3, 0)])
|
||
|
multiples = array_ops.concat(shape_list, 0)
|
||
|
rgb = array_ops.tile(images, multiples, name=name)
|
||
|
rgb.set_shape(images.get_shape()[:-1].concatenate([3]))
|
||
|
return rgb
|
||
|
|
||
|
|
||
|
# pylint: disable=invalid-name
|
||
|
@tf_export('image.random_hue')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def random_hue(image, max_delta, seed=None):
|
||
|
"""Adjust the hue of RGB images by a random factor.
|
||
|
|
||
|
Equivalent to `adjust_hue()` but uses a `delta` randomly
|
||
|
picked in the interval `[-max_delta, max_delta)`.
|
||
|
|
||
|
`max_delta` must be in the interval `[0, 0.5]`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> tf.image.random_hue(x, 0.2)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=...>
|
||
|
|
||
|
For producing deterministic results given a `seed` value, use
|
||
|
`tf.image.stateless_random_hue`. Unlike using the `seed` param with
|
||
|
`tf.image.random_*` ops, `tf.image.stateless_random_*` ops guarantee the same
|
||
|
results given the same seed independent of how many times the function is
|
||
|
called, and independent of global seed settings (e.g. tf.random.set_seed).
|
||
|
|
||
|
Args:
|
||
|
image: RGB image or images. The size of the last dimension must be 3.
|
||
|
max_delta: float. The maximum value for the random delta.
|
||
|
seed: An operation-specific seed. It will be used in conjunction with the
|
||
|
graph-level seed to determine the real seeds that will be used in this
|
||
|
operation. Please see the documentation of set_random_seed for its
|
||
|
interaction with the graph-level random seed.
|
||
|
|
||
|
Returns:
|
||
|
Adjusted image(s), same shape and DType as `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `max_delta` is invalid.
|
||
|
"""
|
||
|
if max_delta > 0.5:
|
||
|
raise ValueError('max_delta must be <= 0.5.')
|
||
|
|
||
|
if max_delta < 0:
|
||
|
raise ValueError('max_delta must be non-negative.')
|
||
|
|
||
|
delta = random_ops.random_uniform([], -max_delta, max_delta, seed=seed)
|
||
|
return adjust_hue(image, delta)
|
||
|
|
||
|
|
||
|
@tf_export('image.stateless_random_hue', v1=[])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def stateless_random_hue(image, max_delta, seed):
|
||
|
"""Adjust the hue of RGB images by a random factor deterministically.
|
||
|
|
||
|
Equivalent to `adjust_hue()` but uses a `delta` randomly picked in the
|
||
|
interval `[-max_delta, max_delta)`.
|
||
|
|
||
|
Guarantees the same results given the same `seed` independent of how many
|
||
|
times the function is called, and independent of global seed settings (e.g.
|
||
|
`tf.random.set_seed`).
|
||
|
|
||
|
`max_delta` must be in the interval `[0, 0.5]`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> seed = (1, 2)
|
||
|
>>> tf.image.stateless_random_hue(x, 0.2, seed)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[ 1.6514902, 1. , 3. ],
|
||
|
[ 4.65149 , 4. , 6. ]],
|
||
|
[[ 7.65149 , 7. , 9. ],
|
||
|
[10.65149 , 10. , 12. ]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image: RGB image or images. The size of the last dimension must be 3.
|
||
|
max_delta: float. The maximum value for the random delta.
|
||
|
seed: A shape [2] Tensor, the seed to the random number generator. Must have
|
||
|
dtype `int32` or `int64`.
|
||
|
|
||
|
Returns:
|
||
|
Adjusted image(s), same shape and DType as `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `max_delta` is invalid.
|
||
|
"""
|
||
|
if max_delta > 0.5:
|
||
|
raise ValueError('max_delta must be <= 0.5.')
|
||
|
|
||
|
if max_delta < 0:
|
||
|
raise ValueError('max_delta must be non-negative.')
|
||
|
|
||
|
delta = stateless_random_ops.stateless_random_uniform(
|
||
|
shape=[], minval=-max_delta, maxval=max_delta, seed=seed)
|
||
|
return adjust_hue(image, delta)
|
||
|
|
||
|
|
||
|
@tf_export('image.adjust_hue')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def adjust_hue(image, delta, name=None):
|
||
|
"""Adjust hue of RGB images.
|
||
|
|
||
|
This is a convenience method that converts an RGB image to float
|
||
|
representation, converts it to HSV, adds an offset to the
|
||
|
hue channel, converts back to RGB and then back to the original
|
||
|
data type. If several adjustments are chained it is advisable to minimize
|
||
|
the number of redundant conversions.
|
||
|
|
||
|
`image` is an RGB image. The image hue is adjusted by converting the
|
||
|
image(s) to HSV and rotating the hue channel (H) by
|
||
|
`delta`. The image is then converted back to RGB.
|
||
|
|
||
|
`delta` must be in the interval `[-1, 1]`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> tf.image.adjust_hue(x, 0.2)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[ 2.3999996, 1. , 3. ],
|
||
|
[ 5.3999996, 4. , 6. ]],
|
||
|
[[ 8.4 , 7. , 9. ],
|
||
|
[11.4 , 10. , 12. ]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image: RGB image or images. The size of the last dimension must be 3.
|
||
|
delta: float. How much to add to the hue channel.
|
||
|
name: A name for this operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
Adjusted image(s), same shape and DType as `image`.
|
||
|
|
||
|
Raises:
|
||
|
InvalidArgumentError: image must have at least 3 dimensions.
|
||
|
InvalidArgumentError: The size of the last dimension must be 3.
|
||
|
ValueError: if `delta` is not in the interval of `[-1, 1]`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> image = [[[1, 2, 3], [4, 5, 6]],
|
||
|
... [[7, 8, 9], [10, 11, 12]],
|
||
|
... [[13, 14, 15], [16, 17, 18]]]
|
||
|
>>> image = tf.constant(image)
|
||
|
>>> tf.image.adjust_hue(image, 0.2)
|
||
|
<tf.Tensor: shape=(3, 2, 3), dtype=int32, numpy=
|
||
|
array([[[ 2, 1, 3],
|
||
|
[ 5, 4, 6]],
|
||
|
[[ 8, 7, 9],
|
||
|
[11, 10, 12]],
|
||
|
[[14, 13, 15],
|
||
|
[17, 16, 18]]], dtype=int32)>
|
||
|
"""
|
||
|
with ops.name_scope(name, 'adjust_hue', [image]) as name:
|
||
|
if context.executing_eagerly():
|
||
|
if delta < -1 or delta > 1:
|
||
|
raise ValueError('delta must be in the interval [-1, 1]')
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
# Remember original dtype to so we can convert back if needed
|
||
|
orig_dtype = image.dtype
|
||
|
if orig_dtype in (dtypes.float16, dtypes.float32):
|
||
|
flt_image = image
|
||
|
else:
|
||
|
flt_image = convert_image_dtype(image, dtypes.float32)
|
||
|
|
||
|
rgb_altered = gen_image_ops.adjust_hue(flt_image, delta)
|
||
|
|
||
|
return convert_image_dtype(rgb_altered, orig_dtype)
|
||
|
|
||
|
|
||
|
# pylint: disable=invalid-name
|
||
|
@tf_export('image.random_jpeg_quality')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def random_jpeg_quality(image, min_jpeg_quality, max_jpeg_quality, seed=None):
|
||
|
"""Randomly changes jpeg encoding quality for inducing jpeg noise.
|
||
|
|
||
|
`min_jpeg_quality` must be in the interval `[0, 100]` and less than
|
||
|
`max_jpeg_quality`.
|
||
|
`max_jpeg_quality` must be in the interval `[0, 100]`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = tf.constant([[[1, 2, 3],
|
||
|
... [4, 5, 6]],
|
||
|
... [[7, 8, 9],
|
||
|
... [10, 11, 12]]], dtype=tf.uint8)
|
||
|
>>> tf.image.random_jpeg_quality(x, 75, 95)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=uint8, numpy=...>
|
||
|
|
||
|
For producing deterministic results given a `seed` value, use
|
||
|
`tf.image.stateless_random_jpeg_quality`. Unlike using the `seed` param
|
||
|
with `tf.image.random_*` ops, `tf.image.stateless_random_*` ops guarantee the
|
||
|
same results given the same seed independent of how many times the function is
|
||
|
called, and independent of global seed settings (e.g. tf.random.set_seed).
|
||
|
|
||
|
Args:
|
||
|
image: 3D image. Size of the last dimension must be 1 or 3.
|
||
|
min_jpeg_quality: Minimum jpeg encoding quality to use.
|
||
|
max_jpeg_quality: Maximum jpeg encoding quality to use.
|
||
|
seed: An operation-specific seed. It will be used in conjunction with the
|
||
|
graph-level seed to determine the real seeds that will be used in this
|
||
|
operation. Please see the documentation of set_random_seed for its
|
||
|
interaction with the graph-level random seed.
|
||
|
|
||
|
Returns:
|
||
|
Adjusted image(s), same shape and DType as `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `min_jpeg_quality` or `max_jpeg_quality` is invalid.
|
||
|
"""
|
||
|
if (min_jpeg_quality < 0 or max_jpeg_quality < 0 or min_jpeg_quality > 100 or
|
||
|
max_jpeg_quality > 100):
|
||
|
raise ValueError('jpeg encoding range must be between 0 and 100.')
|
||
|
|
||
|
if min_jpeg_quality >= max_jpeg_quality:
|
||
|
raise ValueError('`min_jpeg_quality` must be less than `max_jpeg_quality`.')
|
||
|
|
||
|
jpeg_quality = random_ops.random_uniform([],
|
||
|
min_jpeg_quality,
|
||
|
max_jpeg_quality,
|
||
|
seed=seed,
|
||
|
dtype=dtypes.int32)
|
||
|
return adjust_jpeg_quality(image, jpeg_quality)
|
||
|
|
||
|
|
||
|
@tf_export('image.stateless_random_jpeg_quality', v1=[])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def stateless_random_jpeg_quality(image,
|
||
|
min_jpeg_quality,
|
||
|
max_jpeg_quality,
|
||
|
seed):
|
||
|
"""Deterministically radomize jpeg encoding quality for inducing jpeg noise.
|
||
|
|
||
|
Guarantees the same results given the same `seed` independent of how many
|
||
|
times the function is called, and independent of global seed settings (e.g.
|
||
|
`tf.random.set_seed`).
|
||
|
|
||
|
`min_jpeg_quality` must be in the interval `[0, 100]` and less than
|
||
|
`max_jpeg_quality`.
|
||
|
`max_jpeg_quality` must be in the interval `[0, 100]`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = tf.constant([[[1, 2, 3],
|
||
|
... [4, 5, 6]],
|
||
|
... [[7, 8, 9],
|
||
|
... [10, 11, 12]]], dtype=tf.uint8)
|
||
|
>>> seed = (1, 2)
|
||
|
>>> tf.image.stateless_random_jpeg_quality(x, 75, 95, seed)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=uint8, numpy=
|
||
|
array([[[ 0, 4, 5],
|
||
|
[ 1, 5, 6]],
|
||
|
[[ 5, 9, 10],
|
||
|
[ 5, 9, 10]]], dtype=uint8)>
|
||
|
|
||
|
Args:
|
||
|
image: 3D image. Size of the last dimension must be 1 or 3.
|
||
|
min_jpeg_quality: Minimum jpeg encoding quality to use.
|
||
|
max_jpeg_quality: Maximum jpeg encoding quality to use.
|
||
|
seed: A shape [2] Tensor, the seed to the random number generator. Must have
|
||
|
dtype `int32` or `int64`. (When using XLA, only `int32` is allowed.)
|
||
|
|
||
|
Returns:
|
||
|
Adjusted image(s), same shape and DType as `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `min_jpeg_quality` or `max_jpeg_quality` is invalid.
|
||
|
"""
|
||
|
if (min_jpeg_quality < 0 or max_jpeg_quality < 0 or min_jpeg_quality > 100 or
|
||
|
max_jpeg_quality > 100):
|
||
|
raise ValueError('jpeg encoding range must be between 0 and 100.')
|
||
|
|
||
|
if min_jpeg_quality >= max_jpeg_quality:
|
||
|
raise ValueError('`min_jpeg_quality` must be less than `max_jpeg_quality`.')
|
||
|
|
||
|
jpeg_quality = stateless_random_ops.stateless_random_uniform(
|
||
|
shape=[], minval=min_jpeg_quality, maxval=max_jpeg_quality, seed=seed,
|
||
|
dtype=dtypes.int32)
|
||
|
return adjust_jpeg_quality(image, jpeg_quality)
|
||
|
|
||
|
|
||
|
@tf_export('image.adjust_jpeg_quality')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def adjust_jpeg_quality(image, jpeg_quality, dct_method='', name=None):
|
||
|
"""Adjust jpeg encoding quality of an image.
|
||
|
|
||
|
This is a convenience method that converts an image to uint8 representation,
|
||
|
encodes it to jpeg with `jpeg_quality`, decodes it, and then converts back
|
||
|
to the original data type.
|
||
|
|
||
|
`jpeg_quality` must be in the interval `[0, 100]`.
|
||
|
|
||
|
Usage Examples:
|
||
|
|
||
|
>>> x = [[[0.01, 0.02, 0.03],
|
||
|
... [0.04, 0.05, 0.06]],
|
||
|
... [[0.07, 0.08, 0.09],
|
||
|
... [0.10, 0.11, 0.12]]]
|
||
|
>>> x_jpeg = tf.image.adjust_jpeg_quality(x, 75)
|
||
|
>>> x_jpeg.numpy()
|
||
|
array([[[0.00392157, 0.01960784, 0.03137255],
|
||
|
[0.02745098, 0.04313726, 0.05490196]],
|
||
|
[[0.05882353, 0.07450981, 0.08627451],
|
||
|
[0.08235294, 0.09803922, 0.10980393]]], dtype=float32)
|
||
|
|
||
|
Note that floating point values are expected to have values in the range
|
||
|
[0,1) and values outside this range are clipped.
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> tf.image.adjust_jpeg_quality(x, 75)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[1., 1., 1.],
|
||
|
[1., 1., 1.]],
|
||
|
[[1., 1., 1.],
|
||
|
[1., 1., 1.]]], dtype=float32)>
|
||
|
|
||
|
Note that `jpeg_quality` 100 is still lossy compression.
|
||
|
|
||
|
>>> x = tf.constant([[[1, 2, 3],
|
||
|
... [4, 5, 6]],
|
||
|
... [[7, 8, 9],
|
||
|
... [10, 11, 12]]], dtype=tf.uint8)
|
||
|
>>> tf.image.adjust_jpeg_quality(x, 100)
|
||
|
<tf.Tensor: shape(2, 2, 3), dtype=uint8, numpy=
|
||
|
array([[[ 0, 1, 3],
|
||
|
[ 3, 4, 6]],
|
||
|
[[ 6, 7, 9],
|
||
|
[ 9, 10, 12]]], dtype=uint8)>
|
||
|
|
||
|
Args:
|
||
|
image: 3D image. The size of the last dimension must be None, 1 or 3.
|
||
|
jpeg_quality: Python int or Tensor of type int32. jpeg encoding quality.
|
||
|
dct_method: An optional string. Specifies the DCT method to use for JPEG
|
||
|
decompression. Currently available options are ["INTEGER_FAST",
|
||
|
"INTEGER_ACCURATE"]. Defaults to "" which maps to "INTEGER_FAST",
|
||
|
sacrificing image quality for speed.
|
||
|
name: A name for this operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
Adjusted image, same shape and DType as `image`.
|
||
|
|
||
|
Raises:
|
||
|
InvalidArgumentError: quality must be in [0,100]
|
||
|
InvalidArgumentError: image must have 1 or 3 channels
|
||
|
"""
|
||
|
with ops.name_scope(name, 'adjust_jpeg_quality', [image]):
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
channels = image.shape.as_list()[-1]
|
||
|
# Remember original dtype to so we can convert back if needed
|
||
|
orig_dtype = image.dtype
|
||
|
image = convert_image_dtype(image, dtypes.uint8, saturate=True)
|
||
|
if not _is_tensor(jpeg_quality):
|
||
|
# If jpeg_quality is a int (not tensor).
|
||
|
jpeg_quality = ops.convert_to_tensor(jpeg_quality, dtype=dtypes.int32)
|
||
|
image = gen_image_ops.encode_jpeg_variable_quality(image, jpeg_quality)
|
||
|
|
||
|
image = gen_image_ops.decode_jpeg(
|
||
|
image, channels=channels, dct_method=dct_method
|
||
|
)
|
||
|
return convert_image_dtype(image, orig_dtype, saturate=True)
|
||
|
|
||
|
|
||
|
@tf_export('image.random_saturation')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def random_saturation(image, lower, upper, seed=None):
|
||
|
"""Adjust the saturation of RGB images by a random factor.
|
||
|
|
||
|
Equivalent to `adjust_saturation()` but uses a `saturation_factor` randomly
|
||
|
picked in the interval `[lower, upper)`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> tf.image.random_saturation(x, 5, 10)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[ 0. , 1.5, 3. ],
|
||
|
[ 0. , 3. , 6. ]],
|
||
|
[[ 0. , 4.5, 9. ],
|
||
|
[ 0. , 6. , 12. ]]], dtype=float32)>
|
||
|
|
||
|
For producing deterministic results given a `seed` value, use
|
||
|
`tf.image.stateless_random_saturation`. Unlike using the `seed` param
|
||
|
with `tf.image.random_*` ops, `tf.image.stateless_random_*` ops guarantee the
|
||
|
same results given the same seed independent of how many times the function is
|
||
|
called, and independent of global seed settings (e.g. tf.random.set_seed).
|
||
|
|
||
|
Args:
|
||
|
image: RGB image or images. The size of the last dimension must be 3.
|
||
|
lower: float. Lower bound for the random saturation factor.
|
||
|
upper: float. Upper bound for the random saturation factor.
|
||
|
seed: An operation-specific seed. It will be used in conjunction with the
|
||
|
graph-level seed to determine the real seeds that will be used in this
|
||
|
operation. Please see the documentation of set_random_seed for its
|
||
|
interaction with the graph-level random seed.
|
||
|
|
||
|
Returns:
|
||
|
Adjusted image(s), same shape and DType as `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `upper <= lower` or if `lower < 0`.
|
||
|
"""
|
||
|
if upper <= lower:
|
||
|
raise ValueError('upper must be > lower.')
|
||
|
|
||
|
if lower < 0:
|
||
|
raise ValueError('lower must be non-negative.')
|
||
|
|
||
|
saturation_factor = random_ops.random_uniform([], lower, upper, seed=seed)
|
||
|
return adjust_saturation(image, saturation_factor)
|
||
|
|
||
|
|
||
|
@tf_export('image.stateless_random_saturation', v1=[])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def stateless_random_saturation(image, lower, upper, seed=None):
|
||
|
"""Adjust the saturation of RGB images by a random factor deterministically.
|
||
|
|
||
|
Equivalent to `adjust_saturation()` but uses a `saturation_factor` randomly
|
||
|
picked in the interval `[lower, upper)`.
|
||
|
|
||
|
Guarantees the same results given the same `seed` independent of how many
|
||
|
times the function is called, and independent of global seed settings (e.g.
|
||
|
`tf.random.set_seed`).
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> seed = (1, 2)
|
||
|
>>> tf.image.stateless_random_saturation(x, 0.5, 1.0, seed)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[ 1.1559395, 2.0779698, 3. ],
|
||
|
[ 4.1559396, 5.07797 , 6. ]],
|
||
|
[[ 7.1559396, 8.07797 , 9. ],
|
||
|
[10.155939 , 11.07797 , 12. ]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image: RGB image or images. The size of the last dimension must be 3.
|
||
|
lower: float. Lower bound for the random saturation factor.
|
||
|
upper: float. Upper bound for the random saturation factor.
|
||
|
seed: A shape [2] Tensor, the seed to the random number generator. Must have
|
||
|
dtype `int32` or `int64`. (When using XLA, only `int32` is allowed.)
|
||
|
|
||
|
Returns:
|
||
|
Adjusted image(s), same shape and DType as `image`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `upper <= lower` or if `lower < 0`.
|
||
|
"""
|
||
|
if upper <= lower:
|
||
|
raise ValueError('upper must be > lower.')
|
||
|
|
||
|
if lower < 0:
|
||
|
raise ValueError('lower must be non-negative.')
|
||
|
|
||
|
saturation_factor = stateless_random_ops.stateless_random_uniform(
|
||
|
shape=[], minval=lower, maxval=upper, seed=seed)
|
||
|
return adjust_saturation(image, saturation_factor)
|
||
|
|
||
|
|
||
|
@tf_export('image.adjust_saturation')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def adjust_saturation(image, saturation_factor, name=None):
|
||
|
"""Adjust saturation of RGB images.
|
||
|
|
||
|
This is a convenience method that converts RGB images to float
|
||
|
representation, converts them to HSV, adds an offset to the
|
||
|
saturation channel, converts back to RGB and then back to the original
|
||
|
data type. If several adjustments are chained it is advisable to minimize
|
||
|
the number of redundant conversions.
|
||
|
|
||
|
`image` is an RGB image or images. The image saturation is adjusted by
|
||
|
converting the images to HSV and multiplying the saturation (S) channel by
|
||
|
`saturation_factor` and clipping. The images are then converted back to RGB.
|
||
|
|
||
|
`saturation_factor` must be in the interval `[0, inf)`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[1.0, 2.0, 3.0],
|
||
|
... [4.0, 5.0, 6.0]],
|
||
|
... [[7.0, 8.0, 9.0],
|
||
|
... [10.0, 11.0, 12.0]]]
|
||
|
>>> tf.image.adjust_saturation(x, 0.5)
|
||
|
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
|
||
|
array([[[ 2. , 2.5, 3. ],
|
||
|
[ 5. , 5.5, 6. ]],
|
||
|
[[ 8. , 8.5, 9. ],
|
||
|
[11. , 11.5, 12. ]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
image: RGB image or images. The size of the last dimension must be 3.
|
||
|
saturation_factor: float. Factor to multiply the saturation by.
|
||
|
name: A name for this operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
Adjusted image(s), same shape and DType as `image`.
|
||
|
|
||
|
Raises:
|
||
|
InvalidArgumentError: input must have 3 channels
|
||
|
"""
|
||
|
with ops.name_scope(name, 'adjust_saturation', [image]) as name:
|
||
|
image = ops.convert_to_tensor(image, name='image')
|
||
|
# Remember original dtype to so we can convert back if needed
|
||
|
orig_dtype = image.dtype
|
||
|
if orig_dtype in (dtypes.float16, dtypes.float32):
|
||
|
flt_image = image
|
||
|
else:
|
||
|
flt_image = convert_image_dtype(image, dtypes.float32)
|
||
|
|
||
|
adjusted = gen_image_ops.adjust_saturation(flt_image, saturation_factor)
|
||
|
|
||
|
return convert_image_dtype(adjusted, orig_dtype)
|
||
|
|
||
|
|
||
|
@tf_export('io.is_jpeg', 'image.is_jpeg', v1=['io.is_jpeg', 'image.is_jpeg'])
|
||
|
def is_jpeg(contents, name=None):
|
||
|
r"""Convenience function to check if the 'contents' encodes a JPEG image.
|
||
|
|
||
|
Args:
|
||
|
contents: 0-D `string`. The encoded image bytes.
|
||
|
name: A name for the operation (optional)
|
||
|
|
||
|
Returns:
|
||
|
A scalar boolean tensor indicating if 'contents' may be a JPEG image.
|
||
|
is_jpeg is susceptible to false positives.
|
||
|
"""
|
||
|
# Normal JPEGs start with \xff\xd8\xff\xe0
|
||
|
# JPEG with EXIF starts with \xff\xd8\xff\xe1
|
||
|
# Use \xff\xd8\xff to cover both.
|
||
|
with ops.name_scope(name, 'is_jpeg'):
|
||
|
substr = string_ops.substr(contents, 0, 3)
|
||
|
return math_ops.equal(substr, b'\xff\xd8\xff', name=name)
|
||
|
|
||
|
|
||
|
def _is_png(contents, name=None):
|
||
|
r"""Convenience function to check if the 'contents' encodes a PNG image.
|
||
|
|
||
|
Args:
|
||
|
contents: 0-D `string`. The encoded image bytes.
|
||
|
name: A name for the operation (optional)
|
||
|
|
||
|
Returns:
|
||
|
A scalar boolean tensor indicating if 'contents' may be a PNG image.
|
||
|
is_png is susceptible to false positives.
|
||
|
"""
|
||
|
with ops.name_scope(name, 'is_png'):
|
||
|
substr = string_ops.substr(contents, 0, 3)
|
||
|
return math_ops.equal(substr, b'\211PN', name=name)
|
||
|
|
||
|
|
||
|
decode_and_crop_jpeg = tf_export(
|
||
|
'io.decode_and_crop_jpeg',
|
||
|
'image.decode_and_crop_jpeg',
|
||
|
v1=['io.decode_and_crop_jpeg', 'image.decode_and_crop_jpeg'])(
|
||
|
dispatch.add_dispatch_support(gen_image_ops.decode_and_crop_jpeg))
|
||
|
|
||
|
decode_bmp = tf_export(
|
||
|
'io.decode_bmp',
|
||
|
'image.decode_bmp',
|
||
|
v1=['io.decode_bmp', 'image.decode_bmp'])(
|
||
|
dispatch.add_dispatch_support(gen_image_ops.decode_bmp))
|
||
|
decode_gif = tf_export(
|
||
|
'io.decode_gif',
|
||
|
'image.decode_gif',
|
||
|
v1=['io.decode_gif', 'image.decode_gif'])(
|
||
|
dispatch.add_dispatch_support(gen_image_ops.decode_gif))
|
||
|
decode_jpeg = tf_export(
|
||
|
'io.decode_jpeg',
|
||
|
'image.decode_jpeg',
|
||
|
v1=['io.decode_jpeg', 'image.decode_jpeg'])(
|
||
|
dispatch.add_dispatch_support(gen_image_ops.decode_jpeg))
|
||
|
decode_png = tf_export(
|
||
|
'io.decode_png',
|
||
|
'image.decode_png',
|
||
|
v1=['io.decode_png', 'image.decode_png'])(
|
||
|
dispatch.add_dispatch_support(gen_image_ops.decode_png))
|
||
|
|
||
|
encode_jpeg = tf_export(
|
||
|
'io.encode_jpeg',
|
||
|
'image.encode_jpeg',
|
||
|
v1=['io.encode_jpeg', 'image.encode_jpeg'])(
|
||
|
dispatch.add_dispatch_support(gen_image_ops.encode_jpeg))
|
||
|
extract_jpeg_shape = tf_export(
|
||
|
'io.extract_jpeg_shape',
|
||
|
'image.extract_jpeg_shape',
|
||
|
v1=['io.extract_jpeg_shape', 'image.extract_jpeg_shape'])(
|
||
|
dispatch.add_dispatch_support(gen_image_ops.extract_jpeg_shape))
|
||
|
|
||
|
|
||
|
@tf_export('io.encode_png', 'image.encode_png')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def encode_png(image, compression=-1, name=None):
|
||
|
r"""PNG-encode an image.
|
||
|
|
||
|
`image` is a rank-N Tensor of type uint8 or uint16 with shape `batch_dims +
|
||
|
[height, width, channels]`, where `channels` is:
|
||
|
|
||
|
* 1: for grayscale.
|
||
|
* 2: for grayscale + alpha.
|
||
|
* 3: for RGB.
|
||
|
* 4: for RGBA.
|
||
|
|
||
|
The ZLIB compression level, `compression`, can be -1 for the PNG-encoder
|
||
|
default or a value from 0 to 9. 9 is the highest compression level,
|
||
|
generating the smallest output, but is slower.
|
||
|
|
||
|
Args:
|
||
|
image: A `Tensor`. Must be one of the following types: `uint8`, `uint16`.
|
||
|
Rank N >= 3 with shape `batch_dims + [height, width, channels]`.
|
||
|
compression: An optional `int`. Defaults to `-1`. Compression level.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `string`.
|
||
|
"""
|
||
|
return gen_image_ops.encode_png(
|
||
|
ops.convert_to_tensor(image), compression, name)
|
||
|
|
||
|
|
||
|
@tf_export(
|
||
|
'io.decode_image',
|
||
|
'image.decode_image',
|
||
|
v1=['io.decode_image', 'image.decode_image'])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def decode_image(contents,
|
||
|
channels=None,
|
||
|
dtype=dtypes.uint8,
|
||
|
name=None,
|
||
|
expand_animations=True):
|
||
|
"""Function for `decode_bmp`, `decode_gif`, `decode_jpeg`, and `decode_png`.
|
||
|
|
||
|
Detects whether an image is a BMP, GIF, JPEG, or PNG, and performs the
|
||
|
appropriate operation to convert the input bytes `string` into a `Tensor`
|
||
|
of type `dtype`.
|
||
|
|
||
|
Note: `decode_gif` returns a 4-D array `[num_frames, height, width, 3]`, as
|
||
|
opposed to `decode_bmp`, `decode_jpeg` and `decode_png`, which return 3-D
|
||
|
arrays `[height, width, num_channels]`. Make sure to take this into account
|
||
|
when constructing your graph if you are intermixing GIF files with BMP, JPEG,
|
||
|
and/or PNG files. Alternately, set the `expand_animations` argument of this
|
||
|
function to `False`, in which case the op will return 3-dimensional tensors
|
||
|
and will truncate animated GIF files to the first frame.
|
||
|
|
||
|
NOTE: If the first frame of an animated GIF does not occupy the entire
|
||
|
canvas (maximum frame width x maximum frame height), then it fills the
|
||
|
unoccupied areas (in the first frame) with zeros (black). For frames after the
|
||
|
first frame that does not occupy the entire canvas, it uses the previous
|
||
|
frame to fill the unoccupied areas.
|
||
|
|
||
|
Args:
|
||
|
contents: A `Tensor` of type `string`. 0-D. The encoded image bytes.
|
||
|
channels: An optional `int`. Defaults to `0`. Number of color channels for
|
||
|
the decoded image.
|
||
|
dtype: The desired DType of the returned `Tensor`.
|
||
|
name: A name for the operation (optional)
|
||
|
expand_animations: An optional `bool`. Defaults to `True`. Controls the
|
||
|
shape of the returned op's output. If `True`, the returned op will produce
|
||
|
a 3-D tensor for PNG, JPEG, and BMP files; and a 4-D tensor for all GIFs,
|
||
|
whether animated or not. If, `False`, the returned op will produce a 3-D
|
||
|
tensor for all file types and will truncate animated GIFs to the first
|
||
|
frame.
|
||
|
|
||
|
Returns:
|
||
|
`Tensor` with type `dtype` and a 3- or 4-dimensional shape, depending on
|
||
|
the file type and the value of the `expand_animations` parameter.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: On incorrect number of channels.
|
||
|
"""
|
||
|
with ops.name_scope(name, 'decode_image'):
|
||
|
channels = 0 if channels is None else channels
|
||
|
if dtype not in [dtypes.float32, dtypes.uint8, dtypes.uint16]:
|
||
|
dest_dtype = dtype
|
||
|
dtype = dtypes.uint16
|
||
|
return convert_image_dtype(
|
||
|
gen_image_ops.decode_image(
|
||
|
contents=contents,
|
||
|
channels=channels,
|
||
|
expand_animations=expand_animations,
|
||
|
dtype=dtype), dest_dtype)
|
||
|
else:
|
||
|
return gen_image_ops.decode_image(
|
||
|
contents=contents,
|
||
|
channels=channels,
|
||
|
expand_animations=expand_animations,
|
||
|
dtype=dtype)
|
||
|
|
||
|
|
||
|
@tf_export('image.total_variation')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def total_variation(images, name=None):
|
||
|
"""Calculate and return the total variation for one or more images.
|
||
|
|
||
|
The total variation is the sum of the absolute differences for neighboring
|
||
|
pixel-values in the input images. This measures how much noise is in the
|
||
|
images.
|
||
|
|
||
|
This can be used as a loss-function during optimization so as to suppress
|
||
|
noise in images. If you have a batch of images, then you should calculate
|
||
|
the scalar loss-value as the sum:
|
||
|
`loss = tf.reduce_sum(tf.image.total_variation(images))`
|
||
|
|
||
|
This implements the anisotropic 2-D version of the formula described here:
|
||
|
|
||
|
https://en.wikipedia.org/wiki/Total_variation_denoising
|
||
|
|
||
|
Args:
|
||
|
images: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor
|
||
|
of shape `[height, width, channels]`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if images.shape is not a 3-D or 4-D vector.
|
||
|
|
||
|
Returns:
|
||
|
The total variation of `images`.
|
||
|
|
||
|
If `images` was 4-D, return a 1-D float Tensor of shape `[batch]` with the
|
||
|
total variation for each image in the batch.
|
||
|
If `images` was 3-D, return a scalar float with the total variation for
|
||
|
that image.
|
||
|
"""
|
||
|
|
||
|
with ops.name_scope(name, 'total_variation'):
|
||
|
ndims = images.get_shape().ndims
|
||
|
|
||
|
if ndims == 3:
|
||
|
# The input is a single image with shape [height, width, channels].
|
||
|
|
||
|
# Calculate the difference of neighboring pixel-values.
|
||
|
# The images are shifted one pixel along the height and width by slicing.
|
||
|
pixel_dif1 = images[1:, :, :] - images[:-1, :, :]
|
||
|
pixel_dif2 = images[:, 1:, :] - images[:, :-1, :]
|
||
|
|
||
|
# Sum for all axis. (None is an alias for all axis.)
|
||
|
sum_axis = None
|
||
|
elif ndims == 4:
|
||
|
# The input is a batch of images with shape:
|
||
|
# [batch, height, width, channels].
|
||
|
|
||
|
# Calculate the difference of neighboring pixel-values.
|
||
|
# The images are shifted one pixel along the height and width by slicing.
|
||
|
pixel_dif1 = images[:, 1:, :, :] - images[:, :-1, :, :]
|
||
|
pixel_dif2 = images[:, :, 1:, :] - images[:, :, :-1, :]
|
||
|
|
||
|
# Only sum for the last 3 axis.
|
||
|
# This results in a 1-D tensor with the total variation for each image.
|
||
|
sum_axis = [1, 2, 3]
|
||
|
else:
|
||
|
raise ValueError('\'images\' must be either 3 or 4-dimensional.')
|
||
|
|
||
|
# Calculate the total variation by taking the absolute value of the
|
||
|
# pixel-differences and summing over the appropriate axis.
|
||
|
tot_var = (
|
||
|
math_ops.reduce_sum(math_ops.abs(pixel_dif1), axis=sum_axis) +
|
||
|
math_ops.reduce_sum(math_ops.abs(pixel_dif2), axis=sum_axis))
|
||
|
|
||
|
return tot_var
|
||
|
|
||
|
|
||
|
@tf_export('image.sample_distorted_bounding_box', v1=[])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def sample_distorted_bounding_box_v2(image_size,
|
||
|
bounding_boxes,
|
||
|
seed=0,
|
||
|
min_object_covered=0.1,
|
||
|
aspect_ratio_range=None,
|
||
|
area_range=None,
|
||
|
max_attempts=None,
|
||
|
use_image_if_no_bounding_boxes=None,
|
||
|
name=None):
|
||
|
"""Generate a single randomly distorted bounding box for an image.
|
||
|
|
||
|
Bounding box annotations are often supplied in addition to ground-truth labels
|
||
|
in image recognition or object localization tasks. A common technique for
|
||
|
training such a system is to randomly distort an image while preserving
|
||
|
its content, i.e. *data augmentation*. This Op outputs a randomly distorted
|
||
|
localization of an object, i.e. bounding box, given an `image_size`,
|
||
|
`bounding_boxes` and a series of constraints.
|
||
|
|
||
|
The output of this Op is a single bounding box that may be used to crop the
|
||
|
original image. The output is returned as 3 tensors: `begin`, `size` and
|
||
|
`bboxes`. The first 2 tensors can be fed directly into `tf.slice` to crop the
|
||
|
image. The latter may be supplied to `tf.image.draw_bounding_boxes` to
|
||
|
visualize what the bounding box looks like.
|
||
|
|
||
|
Bounding boxes are supplied and returned as `[y_min, x_min, y_max, x_max]`.
|
||
|
The bounding box coordinates are floats in `[0.0, 1.0]` relative to the width
|
||
|
and the height of the underlying image.
|
||
|
|
||
|
For example,
|
||
|
|
||
|
```python
|
||
|
# Generate a single distorted bounding box.
|
||
|
begin, size, bbox_for_draw = tf.image.sample_distorted_bounding_box(
|
||
|
tf.shape(image),
|
||
|
bounding_boxes=bounding_boxes,
|
||
|
min_object_covered=0.1)
|
||
|
|
||
|
# Draw the bounding box in an image summary.
|
||
|
image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0),
|
||
|
bbox_for_draw)
|
||
|
tf.compat.v1.summary.image('images_with_box', image_with_box)
|
||
|
|
||
|
# Employ the bounding box to distort the image.
|
||
|
distorted_image = tf.slice(image, begin, size)
|
||
|
```
|
||
|
|
||
|
Note that if no bounding box information is available, setting
|
||
|
`use_image_if_no_bounding_boxes = true` will assume there is a single implicit
|
||
|
bounding box covering the whole image. If `use_image_if_no_bounding_boxes` is
|
||
|
false and no bounding boxes are supplied, an error is raised.
|
||
|
|
||
|
For producing deterministic results given a `seed` value, use
|
||
|
`tf.image.stateless_sample_distorted_bounding_box`. Unlike using the `seed`
|
||
|
param with `tf.image.random_*` ops, `tf.image.stateless_random_*` ops
|
||
|
guarantee the same results given the same seed independent of how many times
|
||
|
the function is called, and independent of global seed settings
|
||
|
(e.g. tf.random.set_seed).
|
||
|
|
||
|
Args:
|
||
|
image_size: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
|
||
|
`int16`, `int32`, `int64`. 1-D, containing `[height, width, channels]`.
|
||
|
bounding_boxes: A `Tensor` of type `float32`. 3-D with shape `[batch, N, 4]`
|
||
|
describing the N bounding boxes associated with the image.
|
||
|
seed: An optional `int`. Defaults to `0`. If `seed` is set to non-zero, the
|
||
|
random number generator is seeded by the given `seed`. Otherwise, it is
|
||
|
seeded by a random seed.
|
||
|
min_object_covered: A Tensor of type `float32`. Defaults to `0.1`. The
|
||
|
cropped area of the image must contain at least this fraction of any
|
||
|
bounding box supplied. The value of this parameter should be non-negative.
|
||
|
In the case of 0, the cropped area does not need to overlap any of the
|
||
|
bounding boxes supplied.
|
||
|
aspect_ratio_range: An optional list of `floats`. Defaults to `[0.75,
|
||
|
1.33]`. The cropped area of the image must have an aspect `ratio = width /
|
||
|
height` within this range.
|
||
|
area_range: An optional list of `floats`. Defaults to `[0.05, 1]`. The
|
||
|
cropped area of the image must contain a fraction of the supplied image
|
||
|
within this range.
|
||
|
max_attempts: An optional `int`. Defaults to `100`. Number of attempts at
|
||
|
generating a cropped region of the image of the specified constraints.
|
||
|
After `max_attempts` failures, return the entire image.
|
||
|
use_image_if_no_bounding_boxes: An optional `bool`. Defaults to `False`.
|
||
|
Controls behavior if no bounding boxes supplied. If true, assume an
|
||
|
implicit bounding box covering the whole input. If false, raise an error.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A tuple of `Tensor` objects (begin, size, bboxes).
|
||
|
|
||
|
begin: A `Tensor`. Has the same type as `image_size`. 1-D, containing
|
||
|
`[offset_height, offset_width, 0]`. Provide as input to
|
||
|
`tf.slice`.
|
||
|
size: A `Tensor`. Has the same type as `image_size`. 1-D, containing
|
||
|
`[target_height, target_width, -1]`. Provide as input to
|
||
|
`tf.slice`.
|
||
|
bboxes: A `Tensor` of type `float32`. 3-D with shape `[1, 1, 4]` containing
|
||
|
the distorted bounding box.
|
||
|
Provide as input to `tf.image.draw_bounding_boxes`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If no seed is specified and op determinism is enabled.
|
||
|
"""
|
||
|
if seed:
|
||
|
seed1, seed2 = random_seed.get_seed(seed)
|
||
|
else:
|
||
|
if config.is_op_determinism_enabled():
|
||
|
raise ValueError(
|
||
|
f'tf.image.sample_distorted_bounding_box requires a non-zero seed to '
|
||
|
f'be passed in when determinism is enabled, but got seed={seed}. '
|
||
|
f'Please pass in a non-zero seed, e.g. by passing "seed=1".')
|
||
|
seed1, seed2 = (0, 0)
|
||
|
with ops.name_scope(name, 'sample_distorted_bounding_box'):
|
||
|
return gen_image_ops.sample_distorted_bounding_box_v2(
|
||
|
image_size,
|
||
|
bounding_boxes,
|
||
|
seed=seed1,
|
||
|
seed2=seed2,
|
||
|
min_object_covered=min_object_covered,
|
||
|
aspect_ratio_range=aspect_ratio_range,
|
||
|
area_range=area_range,
|
||
|
max_attempts=max_attempts,
|
||
|
use_image_if_no_bounding_boxes=use_image_if_no_bounding_boxes,
|
||
|
name=name)
|
||
|
|
||
|
|
||
|
@tf_export('image.stateless_sample_distorted_bounding_box', v1=[])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def stateless_sample_distorted_bounding_box(image_size,
|
||
|
bounding_boxes,
|
||
|
seed,
|
||
|
min_object_covered=0.1,
|
||
|
aspect_ratio_range=None,
|
||
|
area_range=None,
|
||
|
max_attempts=None,
|
||
|
use_image_if_no_bounding_boxes=None,
|
||
|
name=None):
|
||
|
"""Generate a randomly distorted bounding box for an image deterministically.
|
||
|
|
||
|
Bounding box annotations are often supplied in addition to ground-truth labels
|
||
|
in image recognition or object localization tasks. A common technique for
|
||
|
training such a system is to randomly distort an image while preserving
|
||
|
its content, i.e. *data augmentation*. This Op, given the same `seed`,
|
||
|
deterministically outputs a randomly distorted localization of an object, i.e.
|
||
|
bounding box, given an `image_size`, `bounding_boxes` and a series of
|
||
|
constraints.
|
||
|
|
||
|
The output of this Op is a single bounding box that may be used to crop the
|
||
|
original image. The output is returned as 3 tensors: `begin`, `size` and
|
||
|
`bboxes`. The first 2 tensors can be fed directly into `tf.slice` to crop the
|
||
|
image. The latter may be supplied to `tf.image.draw_bounding_boxes` to
|
||
|
visualize what the bounding box looks like.
|
||
|
|
||
|
Bounding boxes are supplied and returned as `[y_min, x_min, y_max, x_max]`.
|
||
|
The bounding box coordinates are floats in `[0.0, 1.0]` relative to the width
|
||
|
and the height of the underlying image.
|
||
|
|
||
|
The output of this Op is guaranteed to be the same given the same `seed` and
|
||
|
is independent of how many times the function is called, and independent of
|
||
|
global seed settings (e.g. `tf.random.set_seed`).
|
||
|
|
||
|
Example usage:
|
||
|
|
||
|
>>> image = np.array([[[1], [2], [3]], [[4], [5], [6]], [[7], [8], [9]]])
|
||
|
>>> bbox = tf.constant(
|
||
|
... [0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
|
||
|
>>> seed = (1, 2)
|
||
|
>>> # Generate a single distorted bounding box.
|
||
|
>>> bbox_begin, bbox_size, bbox_draw = (
|
||
|
... tf.image.stateless_sample_distorted_bounding_box(
|
||
|
... tf.shape(image), bounding_boxes=bbox, seed=seed))
|
||
|
>>> # Employ the bounding box to distort the image.
|
||
|
>>> tf.slice(image, bbox_begin, bbox_size)
|
||
|
<tf.Tensor: shape=(2, 2, 1), dtype=int64, numpy=
|
||
|
array([[[1],
|
||
|
[2]],
|
||
|
[[4],
|
||
|
[5]]])>
|
||
|
>>> # Draw the bounding box in an image summary.
|
||
|
>>> colors = np.array([[1.0, 0.0, 0.0], [0.0, 0.0, 1.0]])
|
||
|
>>> tf.image.draw_bounding_boxes(
|
||
|
... tf.expand_dims(tf.cast(image, tf.float32),0), bbox_draw, colors)
|
||
|
<tf.Tensor: shape=(1, 3, 3, 1), dtype=float32, numpy=
|
||
|
array([[[[1.],
|
||
|
[1.],
|
||
|
[3.]],
|
||
|
[[1.],
|
||
|
[1.],
|
||
|
[6.]],
|
||
|
[[7.],
|
||
|
[8.],
|
||
|
[9.]]]], dtype=float32)>
|
||
|
|
||
|
Note that if no bounding box information is available, setting
|
||
|
`use_image_if_no_bounding_boxes = true` will assume there is a single implicit
|
||
|
bounding box covering the whole image. If `use_image_if_no_bounding_boxes` is
|
||
|
false and no bounding boxes are supplied, an error is raised.
|
||
|
|
||
|
Args:
|
||
|
image_size: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
|
||
|
`int16`, `int32`, `int64`. 1-D, containing `[height, width, channels]`.
|
||
|
bounding_boxes: A `Tensor` of type `float32`. 3-D with shape `[batch, N, 4]`
|
||
|
describing the N bounding boxes associated with the image.
|
||
|
seed: A shape [2] Tensor, the seed to the random number generator. Must have
|
||
|
dtype `int32` or `int64`. (When using XLA, only `int32` is allowed.)
|
||
|
min_object_covered: A Tensor of type `float32`. Defaults to `0.1`. The
|
||
|
cropped area of the image must contain at least this fraction of any
|
||
|
bounding box supplied. The value of this parameter should be non-negative.
|
||
|
In the case of 0, the cropped area does not need to overlap any of the
|
||
|
bounding boxes supplied.
|
||
|
aspect_ratio_range: An optional list of `floats`. Defaults to `[0.75,
|
||
|
1.33]`. The cropped area of the image must have an aspect `ratio = width /
|
||
|
height` within this range.
|
||
|
area_range: An optional list of `floats`. Defaults to `[0.05, 1]`. The
|
||
|
cropped area of the image must contain a fraction of the supplied image
|
||
|
within this range.
|
||
|
max_attempts: An optional `int`. Defaults to `100`. Number of attempts at
|
||
|
generating a cropped region of the image of the specified constraints.
|
||
|
After `max_attempts` failures, return the entire image.
|
||
|
use_image_if_no_bounding_boxes: An optional `bool`. Defaults to `False`.
|
||
|
Controls behavior if no bounding boxes supplied. If true, assume an
|
||
|
implicit bounding box covering the whole input. If false, raise an error.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A tuple of `Tensor` objects (begin, size, bboxes).
|
||
|
|
||
|
begin: A `Tensor`. Has the same type as `image_size`. 1-D, containing
|
||
|
`[offset_height, offset_width, 0]`. Provide as input to
|
||
|
`tf.slice`.
|
||
|
size: A `Tensor`. Has the same type as `image_size`. 1-D, containing
|
||
|
`[target_height, target_width, -1]`. Provide as input to
|
||
|
`tf.slice`.
|
||
|
bboxes: A `Tensor` of type `float32`. 3-D with shape `[1, 1, 4]` containing
|
||
|
the distorted bounding box.
|
||
|
Provide as input to `tf.image.draw_bounding_boxes`.
|
||
|
"""
|
||
|
with ops.name_scope(name, 'stateless_sample_distorted_bounding_box'):
|
||
|
return gen_image_ops.stateless_sample_distorted_bounding_box(
|
||
|
image_size=image_size,
|
||
|
bounding_boxes=bounding_boxes,
|
||
|
seed=seed,
|
||
|
min_object_covered=min_object_covered,
|
||
|
aspect_ratio_range=aspect_ratio_range,
|
||
|
area_range=area_range,
|
||
|
max_attempts=max_attempts,
|
||
|
use_image_if_no_bounding_boxes=use_image_if_no_bounding_boxes,
|
||
|
name=name)
|
||
|
|
||
|
|
||
|
@tf_export(v1=['image.sample_distorted_bounding_box'])
|
||
|
@dispatch.add_dispatch_support
|
||
|
@deprecation.deprecated(
|
||
|
date=None,
|
||
|
instructions='`seed2` arg is deprecated.'
|
||
|
'Use sample_distorted_bounding_box_v2 instead.')
|
||
|
def sample_distorted_bounding_box(image_size,
|
||
|
bounding_boxes,
|
||
|
seed=None,
|
||
|
seed2=None,
|
||
|
min_object_covered=0.1,
|
||
|
aspect_ratio_range=None,
|
||
|
area_range=None,
|
||
|
max_attempts=None,
|
||
|
use_image_if_no_bounding_boxes=None,
|
||
|
name=None):
|
||
|
"""Generate a single randomly distorted bounding box for an image.
|
||
|
|
||
|
Bounding box annotations are often supplied in addition to ground-truth labels
|
||
|
in image recognition or object localization tasks. A common technique for
|
||
|
training such a system is to randomly distort an image while preserving
|
||
|
its content, i.e. *data augmentation*. This Op outputs a randomly distorted
|
||
|
localization of an object, i.e. bounding box, given an `image_size`,
|
||
|
`bounding_boxes` and a series of constraints.
|
||
|
|
||
|
The output of this Op is a single bounding box that may be used to crop the
|
||
|
original image. The output is returned as 3 tensors: `begin`, `size` and
|
||
|
`bboxes`. The first 2 tensors can be fed directly into `tf.slice` to crop the
|
||
|
image. The latter may be supplied to `tf.image.draw_bounding_boxes` to
|
||
|
visualize what the bounding box looks like.
|
||
|
|
||
|
Bounding boxes are supplied and returned as `[y_min, x_min, y_max, x_max]`.
|
||
|
The
|
||
|
bounding box coordinates are floats in `[0.0, 1.0]` relative to the width and
|
||
|
height of the underlying image.
|
||
|
|
||
|
For example,
|
||
|
|
||
|
```python
|
||
|
# Generate a single distorted bounding box.
|
||
|
begin, size, bbox_for_draw = tf.image.sample_distorted_bounding_box(
|
||
|
tf.shape(image),
|
||
|
bounding_boxes=bounding_boxes,
|
||
|
min_object_covered=0.1)
|
||
|
|
||
|
# Draw the bounding box in an image summary.
|
||
|
image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0),
|
||
|
bbox_for_draw)
|
||
|
tf.compat.v1.summary.image('images_with_box', image_with_box)
|
||
|
|
||
|
# Employ the bounding box to distort the image.
|
||
|
distorted_image = tf.slice(image, begin, size)
|
||
|
```
|
||
|
|
||
|
Note that if no bounding box information is available, setting
|
||
|
`use_image_if_no_bounding_boxes = True` will assume there is a single implicit
|
||
|
bounding box covering the whole image. If `use_image_if_no_bounding_boxes` is
|
||
|
false and no bounding boxes are supplied, an error is raised.
|
||
|
|
||
|
Args:
|
||
|
image_size: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
|
||
|
`int16`, `int32`, `int64`. 1-D, containing `[height, width, channels]`.
|
||
|
bounding_boxes: A `Tensor` of type `float32`. 3-D with shape `[batch, N, 4]`
|
||
|
describing the N bounding boxes associated with the image.
|
||
|
seed: An optional `int`. Defaults to `0`. If either `seed` or `seed2` are
|
||
|
set to non-zero, the random number generator is seeded by the given
|
||
|
`seed`. Otherwise, it is seeded by a random seed.
|
||
|
seed2: An optional `int`. Defaults to `0`. A second seed to avoid seed
|
||
|
collision.
|
||
|
min_object_covered: A Tensor of type `float32`. Defaults to `0.1`. The
|
||
|
cropped area of the image must contain at least this fraction of any
|
||
|
bounding box supplied. The value of this parameter should be non-negative.
|
||
|
In the case of 0, the cropped area does not need to overlap any of the
|
||
|
bounding boxes supplied.
|
||
|
aspect_ratio_range: An optional list of `floats`. Defaults to `[0.75,
|
||
|
1.33]`. The cropped area of the image must have an aspect ratio = width /
|
||
|
height within this range.
|
||
|
area_range: An optional list of `floats`. Defaults to `[0.05, 1]`. The
|
||
|
cropped area of the image must contain a fraction of the supplied image
|
||
|
within this range.
|
||
|
max_attempts: An optional `int`. Defaults to `100`. Number of attempts at
|
||
|
generating a cropped region of the image of the specified constraints.
|
||
|
After `max_attempts` failures, return the entire image.
|
||
|
use_image_if_no_bounding_boxes: An optional `bool`. Defaults to `False`.
|
||
|
Controls behavior if no bounding boxes supplied. If true, assume an
|
||
|
implicit bounding box covering the whole input. If false, raise an error.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A tuple of `Tensor` objects (begin, size, bboxes).
|
||
|
|
||
|
begin: A `Tensor`. Has the same type as `image_size`. 1-D, containing
|
||
|
`[offset_height, offset_width, 0]`. Provide as input to
|
||
|
`tf.slice`.
|
||
|
size: A `Tensor`. Has the same type as `image_size`. 1-D, containing
|
||
|
`[target_height, target_width, -1]`. Provide as input to
|
||
|
`tf.slice`.
|
||
|
bboxes: A `Tensor` of type `float32`. 3-D with shape `[1, 1, 4]` containing
|
||
|
the distorted bounding box.
|
||
|
Provide as input to `tf.image.draw_bounding_boxes`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If no seed is specified and op determinism is enabled.
|
||
|
"""
|
||
|
if not seed and not seed2 and config.is_op_determinism_enabled():
|
||
|
raise ValueError(
|
||
|
f'tf.compat.v1.image.sample_distorted_bounding_box requires "seed" or '
|
||
|
f'"seed2" to be non-zero when determinism is enabled. Please pass in '
|
||
|
f'a non-zero seed, e.g. by passing "seed=1". Got seed={seed} and '
|
||
|
f"seed2={seed2}")
|
||
|
with ops.name_scope(name, 'sample_distorted_bounding_box'):
|
||
|
return gen_image_ops.sample_distorted_bounding_box_v2(
|
||
|
image_size,
|
||
|
bounding_boxes,
|
||
|
seed=seed,
|
||
|
seed2=seed2,
|
||
|
min_object_covered=min_object_covered,
|
||
|
aspect_ratio_range=aspect_ratio_range,
|
||
|
area_range=area_range,
|
||
|
max_attempts=max_attempts,
|
||
|
use_image_if_no_bounding_boxes=use_image_if_no_bounding_boxes,
|
||
|
name=name)
|
||
|
|
||
|
|
||
|
@tf_export('image.non_max_suppression')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def non_max_suppression(boxes,
|
||
|
scores,
|
||
|
max_output_size,
|
||
|
iou_threshold=0.5,
|
||
|
score_threshold=float('-inf'),
|
||
|
name=None):
|
||
|
"""Greedily selects a subset of bounding boxes in descending order of score.
|
||
|
|
||
|
Prunes away boxes that have high intersection-over-union (IOU) overlap
|
||
|
with previously selected boxes. Bounding boxes are supplied as
|
||
|
`[y1, x1, y2, x2]`, where `(y1, x1)` and `(y2, x2)` are the coordinates of any
|
||
|
diagonal pair of box corners and the coordinates can be provided as normalized
|
||
|
(i.e., lying in the interval `[0, 1]`) or absolute. Note that this algorithm
|
||
|
is agnostic to where the origin is in the coordinate system. Note that this
|
||
|
algorithm is invariant to orthogonal transformations and translations
|
||
|
of the coordinate system; thus translating or reflections of the coordinate
|
||
|
system result in the same boxes being selected by the algorithm.
|
||
|
The output of this operation is a set of integers indexing into the input
|
||
|
collection of bounding boxes representing the selected boxes. The bounding
|
||
|
box coordinates corresponding to the selected indices can then be obtained
|
||
|
using the `tf.gather` operation. For example:
|
||
|
```python
|
||
|
selected_indices = tf.image.non_max_suppression(
|
||
|
boxes, scores, max_output_size, iou_threshold)
|
||
|
selected_boxes = tf.gather(boxes, selected_indices)
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
boxes: A 2-D float `Tensor` of shape `[num_boxes, 4]`.
|
||
|
scores: A 1-D float `Tensor` of shape `[num_boxes]` representing a single
|
||
|
score corresponding to each box (each row of boxes).
|
||
|
max_output_size: A scalar integer `Tensor` representing the maximum number
|
||
|
of boxes to be selected by non-max suppression.
|
||
|
iou_threshold: A 0-D float tensor representing the threshold for deciding
|
||
|
whether boxes overlap too much with respect to IOU.
|
||
|
score_threshold: A 0-D float tensor representing the threshold for deciding
|
||
|
when to remove boxes based on score.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
selected_indices: A 1-D integer `Tensor` of shape `[M]` representing the
|
||
|
selected indices from the boxes tensor, where `M <= max_output_size`.
|
||
|
"""
|
||
|
with ops.name_scope(name, 'non_max_suppression'):
|
||
|
iou_threshold = ops.convert_to_tensor(iou_threshold, name='iou_threshold')
|
||
|
score_threshold = ops.convert_to_tensor(
|
||
|
score_threshold, name='score_threshold')
|
||
|
return gen_image_ops.non_max_suppression_v3(boxes, scores, max_output_size,
|
||
|
iou_threshold, score_threshold)
|
||
|
|
||
|
|
||
|
@tf_export('image.non_max_suppression_with_scores')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def non_max_suppression_with_scores(boxes,
|
||
|
scores,
|
||
|
max_output_size,
|
||
|
iou_threshold=0.5,
|
||
|
score_threshold=float('-inf'),
|
||
|
soft_nms_sigma=0.0,
|
||
|
name=None):
|
||
|
"""Greedily selects a subset of bounding boxes in descending order of score.
|
||
|
|
||
|
Prunes away boxes that have high intersection-over-union (IOU) overlap
|
||
|
with previously selected boxes. Bounding boxes are supplied as
|
||
|
`[y1, x1, y2, x2]`, where `(y1, x1)` and `(y2, x2)` are the coordinates of any
|
||
|
diagonal pair of box corners and the coordinates can be provided as normalized
|
||
|
(i.e., lying in the interval `[0, 1]`) or absolute. Note that this algorithm
|
||
|
is agnostic to where the origin is in the coordinate system. Note that this
|
||
|
algorithm is invariant to orthogonal transformations and translations
|
||
|
of the coordinate system; thus translating or reflections of the coordinate
|
||
|
system result in the same boxes being selected by the algorithm.
|
||
|
The output of this operation is a set of integers indexing into the input
|
||
|
collection of bounding boxes representing the selected boxes. The bounding
|
||
|
box coordinates corresponding to the selected indices can then be obtained
|
||
|
using the `tf.gather` operation. For example:
|
||
|
```python
|
||
|
selected_indices, selected_scores = tf.image.non_max_suppression_padded(
|
||
|
boxes, scores, max_output_size, iou_threshold=1.0, score_threshold=0.1,
|
||
|
soft_nms_sigma=0.5)
|
||
|
selected_boxes = tf.gather(boxes, selected_indices)
|
||
|
```
|
||
|
|
||
|
This function generalizes the `tf.image.non_max_suppression` op by also
|
||
|
supporting a Soft-NMS (with Gaussian weighting) mode (c.f.
|
||
|
Bodla et al, https://arxiv.org/abs/1704.04503) where boxes reduce the score
|
||
|
of other overlapping boxes instead of directly causing them to be pruned.
|
||
|
Consequently, in contrast to `tf.image.non_max_suppression`,
|
||
|
`tf.image.non_max_suppression_with_scores` returns the new scores of each
|
||
|
input box in the second output, `selected_scores`.
|
||
|
|
||
|
To enable this Soft-NMS mode, set the `soft_nms_sigma` parameter to be
|
||
|
larger than 0. When `soft_nms_sigma` equals 0, the behavior of
|
||
|
`tf.image.non_max_suppression_with_scores` is identical to that of
|
||
|
`tf.image.non_max_suppression` (except for the extra output) both in function
|
||
|
and in running time.
|
||
|
|
||
|
Note that when `soft_nms_sigma` > 0, Soft-NMS is performed and `iou_threshold`
|
||
|
is ignored. `iou_threshold` is only used for standard NMS.
|
||
|
|
||
|
Args:
|
||
|
boxes: A 2-D float `Tensor` of shape `[num_boxes, 4]`.
|
||
|
scores: A 1-D float `Tensor` of shape `[num_boxes]` representing a single
|
||
|
score corresponding to each box (each row of boxes).
|
||
|
max_output_size: A scalar integer `Tensor` representing the maximum number
|
||
|
of boxes to be selected by non-max suppression.
|
||
|
iou_threshold: A 0-D float tensor representing the threshold for deciding
|
||
|
whether boxes overlap too much with respect to IOU.
|
||
|
score_threshold: A 0-D float tensor representing the threshold for deciding
|
||
|
when to remove boxes based on score.
|
||
|
soft_nms_sigma: A 0-D float tensor representing the sigma parameter for Soft
|
||
|
NMS; see Bodla et al (c.f. https://arxiv.org/abs/1704.04503). When
|
||
|
`soft_nms_sigma=0.0` (which is default), we fall back to standard (hard)
|
||
|
NMS.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
selected_indices: A 1-D integer `Tensor` of shape `[M]` representing the
|
||
|
selected indices from the boxes tensor, where `M <= max_output_size`.
|
||
|
selected_scores: A 1-D float tensor of shape `[M]` representing the
|
||
|
corresponding scores for each selected box, where `M <= max_output_size`.
|
||
|
Scores only differ from corresponding input scores when using Soft NMS
|
||
|
(i.e. when `soft_nms_sigma>0`)
|
||
|
"""
|
||
|
with ops.name_scope(name, 'non_max_suppression_with_scores'):
|
||
|
iou_threshold = ops.convert_to_tensor(iou_threshold, name='iou_threshold')
|
||
|
score_threshold = ops.convert_to_tensor(
|
||
|
score_threshold, name='score_threshold')
|
||
|
soft_nms_sigma = ops.convert_to_tensor(
|
||
|
soft_nms_sigma, name='soft_nms_sigma')
|
||
|
(selected_indices, selected_scores,
|
||
|
_) = gen_image_ops.non_max_suppression_v5(
|
||
|
boxes,
|
||
|
scores,
|
||
|
max_output_size,
|
||
|
iou_threshold,
|
||
|
score_threshold,
|
||
|
soft_nms_sigma,
|
||
|
pad_to_max_output_size=False)
|
||
|
return selected_indices, selected_scores
|
||
|
|
||
|
|
||
|
@tf_export('image.non_max_suppression_overlaps')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def non_max_suppression_with_overlaps(overlaps,
|
||
|
scores,
|
||
|
max_output_size,
|
||
|
overlap_threshold=0.5,
|
||
|
score_threshold=float('-inf'),
|
||
|
name=None):
|
||
|
"""Greedily selects a subset of bounding boxes in descending order of score.
|
||
|
|
||
|
Prunes away boxes that have high overlap with previously selected boxes.
|
||
|
N-by-n overlap values are supplied as square matrix.
|
||
|
The output of this operation is a set of integers indexing into the input
|
||
|
collection of bounding boxes representing the selected boxes. The bounding
|
||
|
box coordinates corresponding to the selected indices can then be obtained
|
||
|
using the `tf.gather` operation. For example:
|
||
|
```python
|
||
|
selected_indices = tf.image.non_max_suppression_overlaps(
|
||
|
overlaps, scores, max_output_size, iou_threshold)
|
||
|
selected_boxes = tf.gather(boxes, selected_indices)
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
overlaps: A 2-D float `Tensor` of shape `[num_boxes, num_boxes]`
|
||
|
representing the n-by-n box overlap values.
|
||
|
scores: A 1-D float `Tensor` of shape `[num_boxes]` representing a single
|
||
|
score corresponding to each box (each row of boxes).
|
||
|
max_output_size: A scalar integer `Tensor` representing the maximum number
|
||
|
of boxes to be selected by non-max suppression.
|
||
|
overlap_threshold: A 0-D float tensor representing the threshold for
|
||
|
deciding whether boxes overlap too much with respect to the provided
|
||
|
overlap values.
|
||
|
score_threshold: A 0-D float tensor representing the threshold for deciding
|
||
|
when to remove boxes based on score.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
selected_indices: A 1-D integer `Tensor` of shape `[M]` representing the
|
||
|
selected indices from the overlaps tensor, where `M <= max_output_size`.
|
||
|
"""
|
||
|
with ops.name_scope(name, 'non_max_suppression_overlaps'):
|
||
|
overlap_threshold = ops.convert_to_tensor(
|
||
|
overlap_threshold, name='overlap_threshold')
|
||
|
# pylint: disable=protected-access
|
||
|
return gen_image_ops.non_max_suppression_with_overlaps(
|
||
|
overlaps, scores, max_output_size, overlap_threshold, score_threshold)
|
||
|
# pylint: enable=protected-access
|
||
|
|
||
|
|
||
|
_rgb_to_yiq_kernel = [[0.299, 0.59590059, 0.2115],
|
||
|
[0.587, -0.27455667, -0.52273617],
|
||
|
[0.114, -0.32134392, 0.31119955]]
|
||
|
|
||
|
|
||
|
@tf_export('image.rgb_to_yiq')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def rgb_to_yiq(images):
|
||
|
"""Converts one or more images from RGB to YIQ.
|
||
|
|
||
|
Outputs a tensor of the same shape as the `images` tensor, containing the YIQ
|
||
|
value of the pixels.
|
||
|
The output is only well defined if the value in images are in [0,1].
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = tf.constant([[[1.0, 2.0, 3.0]]])
|
||
|
>>> tf.image.rgb_to_yiq(x)
|
||
|
<tf.Tensor: shape=(1, 1, 3), dtype=float32,
|
||
|
numpy=array([[[ 1.815 , -0.91724455, 0.09962624]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
images: 2-D or higher rank. Image data to convert. Last dimension must be
|
||
|
size 3.
|
||
|
|
||
|
Returns:
|
||
|
images: tensor with the same shape as `images`.
|
||
|
"""
|
||
|
images = ops.convert_to_tensor(images, name='images')
|
||
|
kernel = ops.convert_to_tensor(
|
||
|
_rgb_to_yiq_kernel, dtype=images.dtype, name='kernel')
|
||
|
ndims = images.get_shape().ndims
|
||
|
return math_ops.tensordot(images, kernel, axes=[[ndims - 1], [0]])
|
||
|
|
||
|
|
||
|
_yiq_to_rgb_kernel = [[1, 1, 1], [0.95598634, -0.27201283, -1.10674021],
|
||
|
[0.6208248, -0.64720424, 1.70423049]]
|
||
|
|
||
|
|
||
|
@tf_export('image.yiq_to_rgb')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def yiq_to_rgb(images):
|
||
|
"""Converts one or more images from YIQ to RGB.
|
||
|
|
||
|
Outputs a tensor of the same shape as the `images` tensor, containing the RGB
|
||
|
value of the pixels.
|
||
|
The output is only well defined if the Y value in images are in [0,1],
|
||
|
I value are in [-0.5957,0.5957] and Q value are in [-0.5226,0.5226].
|
||
|
|
||
|
Args:
|
||
|
images: 2-D or higher rank. Image data to convert. Last dimension must be
|
||
|
size 3.
|
||
|
|
||
|
Returns:
|
||
|
images: tensor with the same shape as `images`.
|
||
|
"""
|
||
|
images = ops.convert_to_tensor(images, name='images')
|
||
|
kernel = ops.convert_to_tensor(
|
||
|
_yiq_to_rgb_kernel, dtype=images.dtype, name='kernel')
|
||
|
ndims = images.get_shape().ndims
|
||
|
return math_ops.tensordot(images, kernel, axes=[[ndims - 1], [0]])
|
||
|
|
||
|
|
||
|
_rgb_to_yuv_kernel = [[0.299, -0.14714119, 0.61497538],
|
||
|
[0.587, -0.28886916, -0.51496512],
|
||
|
[0.114, 0.43601035, -0.10001026]]
|
||
|
|
||
|
|
||
|
@tf_export('image.rgb_to_yuv')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def rgb_to_yuv(images):
|
||
|
"""Converts one or more images from RGB to YUV.
|
||
|
|
||
|
Outputs a tensor of the same shape as the `images` tensor, containing the YUV
|
||
|
value of the pixels.
|
||
|
The output is only well defined if the value in images are in [0, 1].
|
||
|
There are two ways of representing an image: [0, 255] pixel values range or
|
||
|
[0, 1] (as float) pixel values range. Users need to convert the input image
|
||
|
into a float [0, 1] range.
|
||
|
|
||
|
Args:
|
||
|
images: 2-D or higher rank. Image data to convert. Last dimension must be
|
||
|
size 3.
|
||
|
|
||
|
Returns:
|
||
|
images: tensor with the same shape as `images`.
|
||
|
"""
|
||
|
images = ops.convert_to_tensor(images, name='images')
|
||
|
kernel = ops.convert_to_tensor(
|
||
|
_rgb_to_yuv_kernel, dtype=images.dtype, name='kernel')
|
||
|
ndims = images.get_shape().ndims
|
||
|
return math_ops.tensordot(images, kernel, axes=[[ndims - 1], [0]])
|
||
|
|
||
|
|
||
|
_yuv_to_rgb_kernel = [[1, 1, 1], [0, -0.394642334, 2.03206185],
|
||
|
[1.13988303, -0.58062185, 0]]
|
||
|
|
||
|
|
||
|
@tf_export('image.yuv_to_rgb')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def yuv_to_rgb(images):
|
||
|
"""Converts one or more images from YUV to RGB.
|
||
|
|
||
|
Outputs a tensor of the same shape as the `images` tensor, containing the RGB
|
||
|
value of the pixels.
|
||
|
The output is only well defined if the Y value in images are in [0,1],
|
||
|
U and V value are in [-0.5,0.5].
|
||
|
|
||
|
As per the above description, you need to scale your YUV images if their
|
||
|
pixel values are not in the required range. Below given example illustrates
|
||
|
preprocessing of each channel of images before feeding them to `yuv_to_rgb`.
|
||
|
|
||
|
```python
|
||
|
yuv_images = tf.random.uniform(shape=[100, 64, 64, 3], maxval=255)
|
||
|
last_dimension_axis = len(yuv_images.shape) - 1
|
||
|
yuv_tensor_images = tf.truediv(
|
||
|
tf.subtract(
|
||
|
yuv_images,
|
||
|
tf.reduce_min(yuv_images)
|
||
|
),
|
||
|
tf.subtract(
|
||
|
tf.reduce_max(yuv_images),
|
||
|
tf.reduce_min(yuv_images)
|
||
|
)
|
||
|
)
|
||
|
y, u, v = tf.split(yuv_tensor_images, 3, axis=last_dimension_axis)
|
||
|
target_uv_min, target_uv_max = -0.5, 0.5
|
||
|
u = u * (target_uv_max - target_uv_min) + target_uv_min
|
||
|
v = v * (target_uv_max - target_uv_min) + target_uv_min
|
||
|
preprocessed_yuv_images = tf.concat([y, u, v], axis=last_dimension_axis)
|
||
|
rgb_tensor_images = tf.image.yuv_to_rgb(preprocessed_yuv_images)
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
images: 2-D or higher rank. Image data to convert. Last dimension must be
|
||
|
size 3.
|
||
|
|
||
|
Returns:
|
||
|
images: tensor with the same shape as `images`.
|
||
|
"""
|
||
|
images = ops.convert_to_tensor(images, name='images')
|
||
|
kernel = ops.convert_to_tensor(
|
||
|
_yuv_to_rgb_kernel, dtype=images.dtype, name='kernel')
|
||
|
ndims = images.get_shape().ndims
|
||
|
return math_ops.tensordot(images, kernel, axes=[[ndims - 1], [0]])
|
||
|
|
||
|
|
||
|
def _verify_compatible_image_shapes(img1, img2):
|
||
|
"""Checks if two image tensors are compatible for applying SSIM or PSNR.
|
||
|
|
||
|
This function checks if two sets of images have ranks at least 3, and if the
|
||
|
last three dimensions match.
|
||
|
|
||
|
Args:
|
||
|
img1: Tensor containing the first image batch.
|
||
|
img2: Tensor containing the second image batch.
|
||
|
|
||
|
Returns:
|
||
|
A tuple containing: the first tensor shape, the second tensor shape, and a
|
||
|
list of control_flow_ops.Assert() ops implementing the checks.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: When static shape check fails.
|
||
|
"""
|
||
|
shape1 = img1.get_shape().with_rank_at_least(3)
|
||
|
shape2 = img2.get_shape().with_rank_at_least(3)
|
||
|
shape1[-3:].assert_is_compatible_with(shape2[-3:])
|
||
|
|
||
|
if shape1.ndims is not None and shape2.ndims is not None:
|
||
|
for dim1, dim2 in zip(
|
||
|
reversed(shape1.dims[:-3]), reversed(shape2.dims[:-3])):
|
||
|
if not (dim1 == 1 or dim2 == 1 or dim1.is_compatible_with(dim2)):
|
||
|
raise ValueError('Two images are not compatible: %s and %s' %
|
||
|
(shape1, shape2))
|
||
|
|
||
|
# Now assign shape tensors.
|
||
|
shape1, shape2 = array_ops.shape_n([img1, img2])
|
||
|
|
||
|
# TODO(sjhwang): Check if shape1[:-3] and shape2[:-3] are broadcastable.
|
||
|
checks = []
|
||
|
checks.append(
|
||
|
control_flow_assert.Assert(
|
||
|
math_ops.greater_equal(array_ops.size(shape1), 3), [shape1, shape2],
|
||
|
summarize=10))
|
||
|
checks.append(
|
||
|
control_flow_assert.Assert(
|
||
|
math_ops.reduce_all(math_ops.equal(shape1[-3:], shape2[-3:])),
|
||
|
[shape1, shape2],
|
||
|
summarize=10))
|
||
|
return shape1, shape2, checks
|
||
|
|
||
|
|
||
|
@tf_export('image.psnr')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def psnr(a, b, max_val, name=None):
|
||
|
"""Returns the Peak Signal-to-Noise Ratio between a and b.
|
||
|
|
||
|
This is intended to be used on signals (or images). Produces a PSNR value for
|
||
|
each image in batch.
|
||
|
|
||
|
The last three dimensions of input are expected to be [height, width, depth].
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
# Read images from file.
|
||
|
im1 = tf.decode_png('path/to/im1.png')
|
||
|
im2 = tf.decode_png('path/to/im2.png')
|
||
|
# Compute PSNR over tf.uint8 Tensors.
|
||
|
psnr1 = tf.image.psnr(im1, im2, max_val=255)
|
||
|
|
||
|
# Compute PSNR over tf.float32 Tensors.
|
||
|
im1 = tf.image.convert_image_dtype(im1, tf.float32)
|
||
|
im2 = tf.image.convert_image_dtype(im2, tf.float32)
|
||
|
psnr2 = tf.image.psnr(im1, im2, max_val=1.0)
|
||
|
# psnr1 and psnr2 both have type tf.float32 and are almost equal.
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
a: First set of images.
|
||
|
b: Second set of images.
|
||
|
max_val: The dynamic range of the images (i.e., the difference between the
|
||
|
maximum the and minimum allowed values).
|
||
|
name: Namespace to embed the computation in.
|
||
|
|
||
|
Returns:
|
||
|
The scalar PSNR between a and b. The returned tensor has type `tf.float32`
|
||
|
and shape [batch_size, 1].
|
||
|
"""
|
||
|
with ops.name_scope(name, 'PSNR', [a, b]):
|
||
|
# Need to convert the images to float32. Scale max_val accordingly so that
|
||
|
# PSNR is computed correctly.
|
||
|
max_val = math_ops.cast(max_val, a.dtype)
|
||
|
max_val = convert_image_dtype(max_val, dtypes.float32)
|
||
|
a = convert_image_dtype(a, dtypes.float32)
|
||
|
b = convert_image_dtype(b, dtypes.float32)
|
||
|
mse = math_ops.reduce_mean(math_ops.squared_difference(a, b), [-3, -2, -1])
|
||
|
psnr_val = math_ops.subtract(
|
||
|
20 * math_ops.log(max_val) / math_ops.log(10.0),
|
||
|
np.float32(10 / np.log(10)) * math_ops.log(mse),
|
||
|
name='psnr')
|
||
|
|
||
|
_, _, checks = _verify_compatible_image_shapes(a, b)
|
||
|
with ops.control_dependencies(checks):
|
||
|
return array_ops.identity(psnr_val)
|
||
|
|
||
|
|
||
|
def _ssim_helper(x, y, reducer, max_val, compensation=1.0, k1=0.01, k2=0.03):
|
||
|
r"""Helper function for computing SSIM.
|
||
|
|
||
|
SSIM estimates covariances with weighted sums. The default parameters
|
||
|
use a biased estimate of the covariance:
|
||
|
Suppose `reducer` is a weighted sum, then the mean estimators are
|
||
|
\mu_x = \sum_i w_i x_i,
|
||
|
\mu_y = \sum_i w_i y_i,
|
||
|
where w_i's are the weighted-sum weights, and covariance estimator is
|
||
|
cov_{xy} = \sum_i w_i (x_i - \mu_x) (y_i - \mu_y)
|
||
|
with assumption \sum_i w_i = 1. This covariance estimator is biased, since
|
||
|
E[cov_{xy}] = (1 - \sum_i w_i ^ 2) Cov(X, Y).
|
||
|
For SSIM measure with unbiased covariance estimators, pass as `compensation`
|
||
|
argument (1 - \sum_i w_i ^ 2).
|
||
|
|
||
|
Args:
|
||
|
x: First set of images.
|
||
|
y: Second set of images.
|
||
|
reducer: Function that computes 'local' averages from the set of images. For
|
||
|
non-convolutional version, this is usually tf.reduce_mean(x, [1, 2]), and
|
||
|
for convolutional version, this is usually tf.nn.avg_pool2d or
|
||
|
tf.nn.conv2d with weighted-sum kernel.
|
||
|
max_val: The dynamic range (i.e., the difference between the maximum
|
||
|
possible allowed value and the minimum allowed value).
|
||
|
compensation: Compensation factor. See above.
|
||
|
k1: Default value 0.01
|
||
|
k2: Default value 0.03 (SSIM is less sensitivity to K2 for lower values, so
|
||
|
it would be better if we took the values in the range of 0 < K2 < 0.4).
|
||
|
|
||
|
Returns:
|
||
|
A pair containing the luminance measure, and the contrast-structure measure.
|
||
|
"""
|
||
|
|
||
|
c1 = (k1 * max_val)**2
|
||
|
c2 = (k2 * max_val)**2
|
||
|
|
||
|
# SSIM luminance measure is
|
||
|
# (2 * mu_x * mu_y + c1) / (mu_x ** 2 + mu_y ** 2 + c1).
|
||
|
mean0 = reducer(x)
|
||
|
mean1 = reducer(y)
|
||
|
num0 = mean0 * mean1 * 2.0
|
||
|
den0 = math_ops.square(mean0) + math_ops.square(mean1)
|
||
|
luminance = (num0 + c1) / (den0 + c1)
|
||
|
|
||
|
# SSIM contrast-structure measure is
|
||
|
# (2 * cov_{xy} + c2) / (cov_{xx} + cov_{yy} + c2).
|
||
|
# Note that `reducer` is a weighted sum with weight w_k, \sum_i w_i = 1, then
|
||
|
# cov_{xy} = \sum_i w_i (x_i - \mu_x) (y_i - \mu_y)
|
||
|
# = \sum_i w_i x_i y_i - (\sum_i w_i x_i) (\sum_j w_j y_j).
|
||
|
num1 = reducer(x * y) * 2.0
|
||
|
den1 = reducer(math_ops.square(x) + math_ops.square(y))
|
||
|
c2 *= compensation
|
||
|
cs = (num1 - num0 + c2) / (den1 - den0 + c2)
|
||
|
|
||
|
# SSIM score is the product of the luminance and contrast-structure measures.
|
||
|
return luminance, cs
|
||
|
|
||
|
|
||
|
def _fspecial_gauss(size, sigma):
|
||
|
"""Function to mimic the 'fspecial' gaussian MATLAB function."""
|
||
|
size = ops.convert_to_tensor(size, dtypes.int32)
|
||
|
sigma = ops.convert_to_tensor(sigma)
|
||
|
|
||
|
coords = math_ops.cast(math_ops.range(size), sigma.dtype)
|
||
|
coords -= math_ops.cast(size - 1, sigma.dtype) / 2.0
|
||
|
|
||
|
g = math_ops.square(coords)
|
||
|
g *= -0.5 / math_ops.square(sigma)
|
||
|
|
||
|
g = array_ops.reshape(g, shape=[1, -1]) + array_ops.reshape(g, shape=[-1, 1])
|
||
|
g = array_ops.reshape(g, shape=[1, -1]) # For tf.nn.softmax().
|
||
|
g = nn_ops.softmax(g)
|
||
|
return array_ops.reshape(g, shape=[size, size, 1, 1])
|
||
|
|
||
|
|
||
|
def _ssim_per_channel(img1,
|
||
|
img2,
|
||
|
max_val=1.0,
|
||
|
filter_size=11,
|
||
|
filter_sigma=1.5,
|
||
|
k1=0.01,
|
||
|
k2=0.03,
|
||
|
return_index_map=False):
|
||
|
"""Computes SSIM index between img1 and img2 per color channel.
|
||
|
|
||
|
This function matches the standard SSIM implementation from:
|
||
|
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image
|
||
|
quality assessment: from error visibility to structural similarity. IEEE
|
||
|
transactions on image processing.
|
||
|
|
||
|
Details:
|
||
|
- 11x11 Gaussian filter of width 1.5 is used.
|
||
|
- k1 = 0.01, k2 = 0.03 as in the original paper.
|
||
|
|
||
|
Args:
|
||
|
img1: First image batch.
|
||
|
img2: Second image batch.
|
||
|
max_val: The dynamic range of the images (i.e., the difference between the
|
||
|
maximum the and minimum allowed values).
|
||
|
filter_size: Default value 11 (size of gaussian filter).
|
||
|
filter_sigma: Default value 1.5 (width of gaussian filter).
|
||
|
k1: Default value 0.01
|
||
|
k2: Default value 0.03 (SSIM is less sensitivity to K2 for lower values, so
|
||
|
it would be better if we took the values in the range of 0 < K2 < 0.4).
|
||
|
return_index_map: If True returns local SSIM map instead of the global mean.
|
||
|
|
||
|
Returns:
|
||
|
A pair of tensors containing and channel-wise SSIM and contrast-structure
|
||
|
values. The shape is [..., channels].
|
||
|
"""
|
||
|
filter_size = constant_op.constant(filter_size, dtype=dtypes.int32)
|
||
|
filter_sigma = constant_op.constant(filter_sigma, dtype=img1.dtype)
|
||
|
|
||
|
shape1, shape2 = array_ops.shape_n([img1, img2])
|
||
|
checks = [
|
||
|
control_flow_assert.Assert(
|
||
|
math_ops.reduce_all(
|
||
|
math_ops.greater_equal(shape1[-3:-1], filter_size)),
|
||
|
[shape1, filter_size],
|
||
|
summarize=8),
|
||
|
control_flow_assert.Assert(
|
||
|
math_ops.reduce_all(
|
||
|
math_ops.greater_equal(shape2[-3:-1], filter_size)),
|
||
|
[shape2, filter_size],
|
||
|
summarize=8)
|
||
|
]
|
||
|
|
||
|
# Enforce the check to run before computation.
|
||
|
with ops.control_dependencies(checks):
|
||
|
img1 = array_ops.identity(img1)
|
||
|
|
||
|
# TODO(sjhwang): Try to cache kernels and compensation factor.
|
||
|
kernel = _fspecial_gauss(filter_size, filter_sigma)
|
||
|
kernel = array_ops.tile(kernel, multiples=[1, 1, shape1[-1], 1])
|
||
|
|
||
|
# The correct compensation factor is `1.0 - tf.reduce_sum(tf.square(kernel))`,
|
||
|
# but to match MATLAB implementation of MS-SSIM, we use 1.0 instead.
|
||
|
compensation = 1.0
|
||
|
|
||
|
# TODO(sjhwang): Try FFT.
|
||
|
# TODO(sjhwang): Gaussian kernel is separable in space. Consider applying
|
||
|
# 1-by-n and n-by-1 Gaussian filters instead of an n-by-n filter.
|
||
|
def reducer(x):
|
||
|
shape = array_ops.shape(x)
|
||
|
x = array_ops.reshape(x, shape=array_ops.concat([[-1], shape[-3:]], 0))
|
||
|
y = nn_impl.depthwise_conv2d(
|
||
|
x, kernel, strides=[1, 1, 1, 1], padding='VALID')
|
||
|
return array_ops.reshape(
|
||
|
y, array_ops.concat([shape[:-3], array_ops.shape(y)[1:]], 0))
|
||
|
|
||
|
luminance, cs = _ssim_helper(img1, img2, reducer, max_val, compensation, k1,
|
||
|
k2)
|
||
|
|
||
|
# Average over the second and the third from the last: height, width.
|
||
|
if return_index_map:
|
||
|
ssim_val = luminance * cs
|
||
|
else:
|
||
|
axes = constant_op.constant([-3, -2], dtype=dtypes.int32)
|
||
|
ssim_val = math_ops.reduce_mean(luminance * cs, axes)
|
||
|
cs = math_ops.reduce_mean(cs, axes)
|
||
|
return ssim_val, cs
|
||
|
|
||
|
|
||
|
@tf_export('image.ssim')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def ssim(img1,
|
||
|
img2,
|
||
|
max_val,
|
||
|
filter_size=11,
|
||
|
filter_sigma=1.5,
|
||
|
k1=0.01,
|
||
|
k2=0.03,
|
||
|
return_index_map=False):
|
||
|
"""Computes SSIM index between img1 and img2.
|
||
|
|
||
|
This function is based on the standard SSIM implementation from:
|
||
|
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image
|
||
|
quality assessment: from error visibility to structural similarity. IEEE
|
||
|
transactions on image processing.
|
||
|
|
||
|
Note: The true SSIM is only defined on grayscale. This function does not
|
||
|
perform any colorspace transform. (If the input is already YUV, then it will
|
||
|
compute YUV SSIM average.)
|
||
|
|
||
|
Details:
|
||
|
- 11x11 Gaussian filter of width 1.5 is used.
|
||
|
- k1 = 0.01, k2 = 0.03 as in the original paper.
|
||
|
|
||
|
The image sizes must be at least 11x11 because of the filter size.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
# Read images (of size 255 x 255) from file.
|
||
|
im1 = tf.image.decode_image(tf.io.read_file('path/to/im1.png'))
|
||
|
im2 = tf.image.decode_image(tf.io.read_file('path/to/im2.png'))
|
||
|
tf.shape(im1) # `img1.png` has 3 channels; shape is `(255, 255, 3)`
|
||
|
tf.shape(im2) # `img2.png` has 3 channels; shape is `(255, 255, 3)`
|
||
|
# Add an outer batch for each image.
|
||
|
im1 = tf.expand_dims(im1, axis=0)
|
||
|
im2 = tf.expand_dims(im2, axis=0)
|
||
|
# Compute SSIM over tf.uint8 Tensors.
|
||
|
ssim1 = tf.image.ssim(im1, im2, max_val=255, filter_size=11,
|
||
|
filter_sigma=1.5, k1=0.01, k2=0.03)
|
||
|
|
||
|
# Compute SSIM over tf.float32 Tensors.
|
||
|
im1 = tf.image.convert_image_dtype(im1, tf.float32)
|
||
|
im2 = tf.image.convert_image_dtype(im2, tf.float32)
|
||
|
ssim2 = tf.image.ssim(im1, im2, max_val=1.0, filter_size=11,
|
||
|
filter_sigma=1.5, k1=0.01, k2=0.03)
|
||
|
# ssim1 and ssim2 both have type tf.float32 and are almost equal.
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
img1: First image batch. 4-D Tensor of shape `[batch, height, width,
|
||
|
channels]` with only Positive Pixel Values.
|
||
|
img2: Second image batch. 4-D Tensor of shape `[batch, height, width,
|
||
|
channels]` with only Positive Pixel Values.
|
||
|
max_val: The dynamic range of the images (i.e., the difference between the
|
||
|
maximum the and minimum allowed values).
|
||
|
filter_size: Default value 11 (size of gaussian filter).
|
||
|
filter_sigma: Default value 1.5 (width of gaussian filter).
|
||
|
k1: Default value 0.01
|
||
|
k2: Default value 0.03 (SSIM is less sensitivity to K2 for lower values, so
|
||
|
it would be better if we took the values in the range of 0 < K2 < 0.4).
|
||
|
return_index_map: If True returns local SSIM map instead of the global mean.
|
||
|
|
||
|
Returns:
|
||
|
A tensor containing an SSIM value for each image in batch or a tensor
|
||
|
containing an SSIM value for each pixel for each image in batch if
|
||
|
return_index_map is True. Returned SSIM values are in range (-1, 1], when
|
||
|
pixel values are non-negative. Returns a tensor with shape:
|
||
|
broadcast(img1.shape[:-3], img2.shape[:-3]) or broadcast(img1.shape[:-1],
|
||
|
img2.shape[:-1]).
|
||
|
"""
|
||
|
with ops.name_scope(None, 'SSIM', [img1, img2]):
|
||
|
# Convert to tensor if needed.
|
||
|
img1 = ops.convert_to_tensor(img1, name='img1')
|
||
|
img2 = ops.convert_to_tensor(img2, name='img2')
|
||
|
# Shape checking.
|
||
|
_, _, checks = _verify_compatible_image_shapes(img1, img2)
|
||
|
with ops.control_dependencies(checks):
|
||
|
img1 = array_ops.identity(img1)
|
||
|
|
||
|
# Need to convert the images to float32. Scale max_val accordingly so that
|
||
|
# SSIM is computed correctly.
|
||
|
max_val = math_ops.cast(max_val, img1.dtype)
|
||
|
max_val = convert_image_dtype(max_val, dtypes.float32)
|
||
|
img1 = convert_image_dtype(img1, dtypes.float32)
|
||
|
img2 = convert_image_dtype(img2, dtypes.float32)
|
||
|
ssim_per_channel, _ = _ssim_per_channel(img1, img2, max_val, filter_size,
|
||
|
filter_sigma, k1, k2,
|
||
|
return_index_map)
|
||
|
# Compute average over color channels.
|
||
|
return math_ops.reduce_mean(ssim_per_channel, [-1])
|
||
|
|
||
|
|
||
|
# Default values obtained by Wang et al.
|
||
|
_MSSSIM_WEIGHTS = (0.0448, 0.2856, 0.3001, 0.2363, 0.1333)
|
||
|
|
||
|
|
||
|
@tf_export('image.ssim_multiscale')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def ssim_multiscale(img1,
|
||
|
img2,
|
||
|
max_val,
|
||
|
power_factors=_MSSSIM_WEIGHTS,
|
||
|
filter_size=11,
|
||
|
filter_sigma=1.5,
|
||
|
k1=0.01,
|
||
|
k2=0.03):
|
||
|
"""Computes the MS-SSIM between img1 and img2.
|
||
|
|
||
|
This function assumes that `img1` and `img2` are image batches, i.e. the last
|
||
|
three dimensions are [height, width, channels].
|
||
|
|
||
|
Note: The true SSIM is only defined on grayscale. This function does not
|
||
|
perform any colorspace transform. (If the input is already YUV, then it will
|
||
|
compute YUV SSIM average.)
|
||
|
|
||
|
Original paper: Wang, Zhou, Eero P. Simoncelli, and Alan C. Bovik. "Multiscale
|
||
|
structural similarity for image quality assessment." Signals, Systems and
|
||
|
Computers, 2004.
|
||
|
|
||
|
Args:
|
||
|
img1: First image batch with only Positive Pixel Values.
|
||
|
img2: Second image batch with only Positive Pixel Values. Must have the
|
||
|
same rank as img1.
|
||
|
max_val: The dynamic range of the images (i.e., the difference between the
|
||
|
maximum the and minimum allowed values).
|
||
|
power_factors: Iterable of weights for each of the scales. The number of
|
||
|
scales used is the length of the list. Index 0 is the unscaled
|
||
|
resolution's weight and each increasing scale corresponds to the image
|
||
|
being downsampled by 2. Defaults to (0.0448, 0.2856, 0.3001, 0.2363,
|
||
|
0.1333), which are the values obtained in the original paper.
|
||
|
filter_size: Default value 11 (size of gaussian filter).
|
||
|
filter_sigma: Default value 1.5 (width of gaussian filter).
|
||
|
k1: Default value 0.01
|
||
|
k2: Default value 0.03 (SSIM is less sensitivity to K2 for lower values, so
|
||
|
it would be better if we took the values in the range of 0 < K2 < 0.4).
|
||
|
|
||
|
Returns:
|
||
|
A tensor containing an MS-SSIM value for each image in batch. The values
|
||
|
are in range [0, 1]. Returns a tensor with shape:
|
||
|
broadcast(img1.shape[:-3], img2.shape[:-3]).
|
||
|
"""
|
||
|
with ops.name_scope(None, 'MS-SSIM', [img1, img2]):
|
||
|
# Convert to tensor if needed.
|
||
|
img1 = ops.convert_to_tensor(img1, name='img1')
|
||
|
img2 = ops.convert_to_tensor(img2, name='img2')
|
||
|
# Shape checking.
|
||
|
shape1, shape2, checks = _verify_compatible_image_shapes(img1, img2)
|
||
|
with ops.control_dependencies(checks):
|
||
|
img1 = array_ops.identity(img1)
|
||
|
|
||
|
# Need to convert the images to float32. Scale max_val accordingly so that
|
||
|
# SSIM is computed correctly.
|
||
|
max_val = math_ops.cast(max_val, img1.dtype)
|
||
|
max_val = convert_image_dtype(max_val, dtypes.float32)
|
||
|
img1 = convert_image_dtype(img1, dtypes.float32)
|
||
|
img2 = convert_image_dtype(img2, dtypes.float32)
|
||
|
|
||
|
imgs = [img1, img2]
|
||
|
shapes = [shape1, shape2]
|
||
|
|
||
|
# img1 and img2 are assumed to be a (multi-dimensional) batch of
|
||
|
# 3-dimensional images (height, width, channels). `heads` contain the batch
|
||
|
# dimensions, and `tails` contain the image dimensions.
|
||
|
heads = [s[:-3] for s in shapes]
|
||
|
tails = [s[-3:] for s in shapes]
|
||
|
|
||
|
divisor = [1, 2, 2, 1]
|
||
|
divisor_tensor = constant_op.constant(divisor[1:], dtype=dtypes.int32)
|
||
|
|
||
|
def do_pad(images, remainder):
|
||
|
padding = array_ops.expand_dims(remainder, -1)
|
||
|
padding = array_ops.pad(padding, [[1, 0], [1, 0]])
|
||
|
return [array_ops.pad(x, padding, mode='SYMMETRIC') for x in images]
|
||
|
|
||
|
mcs = []
|
||
|
for k in range(len(power_factors)):
|
||
|
with ops.name_scope(None, 'Scale%d' % k, imgs):
|
||
|
if k > 0:
|
||
|
# Avg pool takes rank 4 tensors. Flatten leading dimensions.
|
||
|
flat_imgs = [
|
||
|
array_ops.reshape(x, array_ops.concat([[-1], t], 0))
|
||
|
for x, t in zip(imgs, tails)
|
||
|
]
|
||
|
|
||
|
remainder = tails[0] % divisor_tensor
|
||
|
need_padding = math_ops.reduce_any(math_ops.not_equal(remainder, 0))
|
||
|
# pylint: disable=cell-var-from-loop
|
||
|
padded = tf_cond.cond(need_padding,
|
||
|
lambda: do_pad(flat_imgs, remainder),
|
||
|
lambda: flat_imgs)
|
||
|
# pylint: enable=cell-var-from-loop
|
||
|
|
||
|
downscaled = [
|
||
|
nn_ops.avg_pool(
|
||
|
x, ksize=divisor, strides=divisor, padding='VALID')
|
||
|
for x in padded
|
||
|
]
|
||
|
tails = [x[1:] for x in array_ops.shape_n(downscaled)]
|
||
|
imgs = [
|
||
|
array_ops.reshape(x, array_ops.concat([h, t], 0))
|
||
|
for x, h, t in zip(downscaled, heads, tails)
|
||
|
]
|
||
|
|
||
|
# Overwrite previous ssim value since we only need the last one.
|
||
|
ssim_per_channel, cs = _ssim_per_channel(
|
||
|
*imgs,
|
||
|
max_val=max_val,
|
||
|
filter_size=filter_size,
|
||
|
filter_sigma=filter_sigma,
|
||
|
k1=k1,
|
||
|
k2=k2)
|
||
|
mcs.append(nn_ops.relu(cs))
|
||
|
|
||
|
# Remove the cs score for the last scale. In the MS-SSIM calculation,
|
||
|
# we use the l(p) at the highest scale. l(p) * cs(p) is ssim(p).
|
||
|
mcs.pop() # Remove the cs score for the last scale.
|
||
|
mcs_and_ssim = array_ops_stack.stack(
|
||
|
mcs + [nn_ops.relu(ssim_per_channel)], axis=-1)
|
||
|
# Take weighted geometric mean across the scale axis.
|
||
|
ms_ssim = math_ops.reduce_prod(
|
||
|
math_ops.pow(mcs_and_ssim, power_factors), [-1])
|
||
|
|
||
|
return math_ops.reduce_mean(ms_ssim, [-1]) # Avg over color channels.
|
||
|
|
||
|
|
||
|
@tf_export('image.image_gradients')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def image_gradients(image):
|
||
|
"""Returns image gradients (dy, dx) for each color channel.
|
||
|
|
||
|
Both output tensors have the same shape as the input: [batch_size, h, w,
|
||
|
d]. The gradient values are organized so that [I(x+1, y) - I(x, y)] is in
|
||
|
location (x, y). That means that dy will always have zeros in the last row,
|
||
|
and dx will always have zeros in the last column.
|
||
|
|
||
|
Usage Example:
|
||
|
```python
|
||
|
BATCH_SIZE = 1
|
||
|
IMAGE_HEIGHT = 5
|
||
|
IMAGE_WIDTH = 5
|
||
|
CHANNELS = 1
|
||
|
image = tf.reshape(tf.range(IMAGE_HEIGHT * IMAGE_WIDTH * CHANNELS,
|
||
|
delta=1, dtype=tf.float32),
|
||
|
shape=(BATCH_SIZE, IMAGE_HEIGHT, IMAGE_WIDTH, CHANNELS))
|
||
|
dy, dx = tf.image.image_gradients(image)
|
||
|
print(image[0, :,:,0])
|
||
|
tf.Tensor(
|
||
|
[[ 0. 1. 2. 3. 4.]
|
||
|
[ 5. 6. 7. 8. 9.]
|
||
|
[10. 11. 12. 13. 14.]
|
||
|
[15. 16. 17. 18. 19.]
|
||
|
[20. 21. 22. 23. 24.]], shape=(5, 5), dtype=float32)
|
||
|
print(dy[0, :,:,0])
|
||
|
tf.Tensor(
|
||
|
[[5. 5. 5. 5. 5.]
|
||
|
[5. 5. 5. 5. 5.]
|
||
|
[5. 5. 5. 5. 5.]
|
||
|
[5. 5. 5. 5. 5.]
|
||
|
[0. 0. 0. 0. 0.]], shape=(5, 5), dtype=float32)
|
||
|
print(dx[0, :,:,0])
|
||
|
tf.Tensor(
|
||
|
[[1. 1. 1. 1. 0.]
|
||
|
[1. 1. 1. 1. 0.]
|
||
|
[1. 1. 1. 1. 0.]
|
||
|
[1. 1. 1. 1. 0.]
|
||
|
[1. 1. 1. 1. 0.]], shape=(5, 5), dtype=float32)
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
image: Tensor with shape [batch_size, h, w, d].
|
||
|
|
||
|
Returns:
|
||
|
Pair of tensors (dy, dx) holding the vertical and horizontal image
|
||
|
gradients (1-step finite difference).
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If `image` is not a 4D tensor.
|
||
|
"""
|
||
|
if image.get_shape().ndims != 4:
|
||
|
raise ValueError('image_gradients expects a 4D tensor '
|
||
|
'[batch_size, h, w, d], not {}.'.format(image.get_shape()))
|
||
|
image_shape = array_ops.shape(image)
|
||
|
batch_size, height, width, depth = array_ops_stack.unstack(image_shape)
|
||
|
dy = image[:, 1:, :, :] - image[:, :-1, :, :]
|
||
|
dx = image[:, :, 1:, :] - image[:, :, :-1, :]
|
||
|
|
||
|
# Return tensors with same size as original image by concatenating
|
||
|
# zeros. Place the gradient [I(x+1,y) - I(x,y)] on the base pixel (x, y).
|
||
|
shape = array_ops_stack.stack([batch_size, 1, width, depth])
|
||
|
dy = array_ops.concat([dy, array_ops.zeros(shape, image.dtype)], 1)
|
||
|
dy = array_ops.reshape(dy, image_shape)
|
||
|
|
||
|
shape = array_ops_stack.stack([batch_size, height, 1, depth])
|
||
|
dx = array_ops.concat([dx, array_ops.zeros(shape, image.dtype)], 2)
|
||
|
dx = array_ops.reshape(dx, image_shape)
|
||
|
|
||
|
return dy, dx
|
||
|
|
||
|
|
||
|
@tf_export('image.sobel_edges')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def sobel_edges(image):
|
||
|
"""Returns a tensor holding Sobel edge maps.
|
||
|
|
||
|
Example usage:
|
||
|
|
||
|
For general usage, `image` would be loaded from a file as below:
|
||
|
|
||
|
```python
|
||
|
image_bytes = tf.io.read_file(path_to_image_file)
|
||
|
image = tf.image.decode_image(image_bytes)
|
||
|
image = tf.cast(image, tf.float32)
|
||
|
image = tf.expand_dims(image, 0)
|
||
|
```
|
||
|
But for demo purposes, we are using randomly generated values for `image`:
|
||
|
|
||
|
>>> image = tf.random.uniform(
|
||
|
... maxval=255, shape=[1, 28, 28, 3], dtype=tf.float32)
|
||
|
>>> sobel = tf.image.sobel_edges(image)
|
||
|
>>> sobel_y = np.asarray(sobel[0, :, :, :, 0]) # sobel in y-direction
|
||
|
>>> sobel_x = np.asarray(sobel[0, :, :, :, 1]) # sobel in x-direction
|
||
|
|
||
|
For displaying the sobel results, PIL's [Image Module](
|
||
|
https://pillow.readthedocs.io/en/stable/reference/Image.html) can be used:
|
||
|
|
||
|
```python
|
||
|
# Display edge maps for the first channel (at index 0)
|
||
|
Image.fromarray(sobel_y[..., 0] / 4 + 0.5).show()
|
||
|
Image.fromarray(sobel_x[..., 0] / 4 + 0.5).show()
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
image: Image tensor with shape [batch_size, h, w, d] and type float32 or
|
||
|
float64. The image(s) must be 2x2 or larger.
|
||
|
|
||
|
Returns:
|
||
|
Tensor holding edge maps for each channel. Returns a tensor with shape
|
||
|
[batch_size, h, w, d, 2] where the last two dimensions hold [[dy[0], dx[0]],
|
||
|
[dy[1], dx[1]], ..., [dy[d-1], dx[d-1]]] calculated using the Sobel filter.
|
||
|
"""
|
||
|
# Define vertical and horizontal Sobel filters.
|
||
|
static_image_shape = image.get_shape()
|
||
|
image_shape = array_ops.shape(image)
|
||
|
kernels = [[[-1, -2, -1], [0, 0, 0], [1, 2, 1]],
|
||
|
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]]
|
||
|
num_kernels = len(kernels)
|
||
|
kernels = np.transpose(np.asarray(kernels), (1, 2, 0))
|
||
|
kernels = np.expand_dims(kernels, -2)
|
||
|
kernels_tf = constant_op.constant(kernels, dtype=image.dtype)
|
||
|
|
||
|
kernels_tf = array_ops.tile(
|
||
|
kernels_tf, [1, 1, image_shape[-1], 1], name='sobel_filters')
|
||
|
|
||
|
# Use depth-wise convolution to calculate edge maps per channel.
|
||
|
pad_sizes = [[0, 0], [1, 1], [1, 1], [0, 0]]
|
||
|
padded = array_ops.pad(image, pad_sizes, mode='REFLECT')
|
||
|
|
||
|
# Output tensor has shape [batch_size, h, w, d * num_kernels].
|
||
|
strides = [1, 1, 1, 1]
|
||
|
output = nn_impl.depthwise_conv2d(padded, kernels_tf, strides, 'VALID')
|
||
|
|
||
|
# Reshape to [batch_size, h, w, d, num_kernels].
|
||
|
shape = array_ops.concat([image_shape, [num_kernels]], 0)
|
||
|
output = array_ops.reshape(output, shape=shape)
|
||
|
output.set_shape(static_image_shape.concatenate([num_kernels]))
|
||
|
return output
|
||
|
|
||
|
|
||
|
@tf_export(v1=['image.resize_bicubic'])
|
||
|
@dispatch.add_dispatch_support
|
||
|
@deprecation.deprecated(
|
||
|
date=None,
|
||
|
instructions=(
|
||
|
'Use `tf.image.resize(...method=ResizeMethod.BICUBIC...)` instead.'
|
||
|
),
|
||
|
)
|
||
|
def resize_bicubic(images,
|
||
|
size,
|
||
|
align_corners=False,
|
||
|
name=None,
|
||
|
half_pixel_centers=False):
|
||
|
return gen_image_ops.resize_bicubic(
|
||
|
images=images,
|
||
|
size=size,
|
||
|
align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers,
|
||
|
name=name)
|
||
|
|
||
|
|
||
|
@tf_export(v1=['image.resize_bilinear'])
|
||
|
@dispatch.add_dispatch_support
|
||
|
@deprecation.deprecated(
|
||
|
date=None,
|
||
|
instructions=(
|
||
|
'Use `tf.image.resize(...method=ResizeMethod.BILINEAR...)` instead.'
|
||
|
),
|
||
|
)
|
||
|
def resize_bilinear(images,
|
||
|
size,
|
||
|
align_corners=False,
|
||
|
name=None,
|
||
|
half_pixel_centers=False):
|
||
|
return gen_image_ops.resize_bilinear(
|
||
|
images=images,
|
||
|
size=size,
|
||
|
align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers,
|
||
|
name=name)
|
||
|
|
||
|
|
||
|
@tf_export(v1=['image.resize_nearest_neighbor'])
|
||
|
@dispatch.add_dispatch_support
|
||
|
@deprecation.deprecated(
|
||
|
date=None,
|
||
|
instructions=(
|
||
|
'Use `tf.image.resize(...method=ResizeMethod.NEAREST_NEIGHBOR...)` '
|
||
|
'instead.'
|
||
|
),
|
||
|
)
|
||
|
def resize_nearest_neighbor(images,
|
||
|
size,
|
||
|
align_corners=False,
|
||
|
name=None,
|
||
|
half_pixel_centers=False):
|
||
|
return gen_image_ops.resize_nearest_neighbor(
|
||
|
images=images,
|
||
|
size=size,
|
||
|
align_corners=align_corners,
|
||
|
half_pixel_centers=half_pixel_centers,
|
||
|
name=name)
|
||
|
|
||
|
|
||
|
resize_area_deprecation = deprecation.deprecated(
|
||
|
date=None,
|
||
|
instructions=(
|
||
|
'Use `tf.image.resize(...method=ResizeMethod.AREA...)` instead.'))
|
||
|
resize_area = tf_export(v1=['image.resize_area'])(
|
||
|
resize_area_deprecation(
|
||
|
dispatch.add_dispatch_support(gen_image_ops.resize_area)
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
@tf_export('image.crop_and_resize', v1=[])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def crop_and_resize_v2(image,
|
||
|
boxes,
|
||
|
box_indices,
|
||
|
crop_size,
|
||
|
method='bilinear',
|
||
|
extrapolation_value=.0,
|
||
|
name=None):
|
||
|
"""Extracts crops from the input image tensor and resizes them.
|
||
|
|
||
|
Extracts crops from the input image tensor and resizes them using bilinear
|
||
|
sampling or nearest neighbor sampling (possibly with aspect ratio change) to a
|
||
|
common output size specified by `crop_size`. This is more general than the
|
||
|
`crop_to_bounding_box` op which extracts a fixed size slice from the input
|
||
|
image and does not allow resizing or aspect ratio change. The crops occur
|
||
|
first and then the resize.
|
||
|
|
||
|
Returns a tensor with `crops` from the input `image` at positions defined at
|
||
|
the bounding box locations in `boxes`. The cropped boxes are all resized (with
|
||
|
bilinear or nearest neighbor interpolation) to a fixed
|
||
|
`size = [crop_height, crop_width]`. The result is a 4-D tensor
|
||
|
`[num_boxes, crop_height, crop_width, depth]`. The resizing is corner aligned.
|
||
|
In particular, if `boxes = [[0, 0, 1, 1]]`, the method will give identical
|
||
|
results to using `tf.compat.v1.image.resize_bilinear()` or
|
||
|
`tf.compat.v1.image.resize_nearest_neighbor()`(depends on the `method`
|
||
|
argument) with
|
||
|
`align_corners=True`.
|
||
|
|
||
|
Args:
|
||
|
image: A 4-D tensor of shape `[batch, image_height, image_width, depth]`.
|
||
|
Both `image_height` and `image_width` need to be positive.
|
||
|
boxes: A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensor
|
||
|
specifies the coordinates of a box in the `box_ind[i]` image and is
|
||
|
specified in normalized coordinates `[y1, x1, y2, x2]`. A normalized
|
||
|
coordinate value of `y` is mapped to the image coordinate at `y *
|
||
|
(image_height - 1)`, so as the `[0, 1]` interval of normalized image
|
||
|
height is mapped to `[0, image_height - 1]` in image height coordinates.
|
||
|
We do allow `y1` > `y2`, in which case the sampled crop is an up-down
|
||
|
flipped version of the original image. The width dimension is treated
|
||
|
similarly. Normalized coordinates outside the `[0, 1]` range are allowed,
|
||
|
in which case we use `extrapolation_value` to extrapolate the input image
|
||
|
values.
|
||
|
box_indices: A 1-D tensor of shape `[num_boxes]` with int32 values in `[0,
|
||
|
batch)`. The value of `box_ind[i]` specifies the image that the `i`-th box
|
||
|
refers to.
|
||
|
crop_size: A 1-D tensor of 2 elements, `size = [crop_height, crop_width]`.
|
||
|
All cropped image patches are resized to this size. The aspect ratio of
|
||
|
the image content is not preserved. Both `crop_height` and `crop_width`
|
||
|
need to be positive.
|
||
|
method: An optional string specifying the sampling method for resizing. It
|
||
|
can be either `"bilinear"` or `"nearest"` and default to `"bilinear"`.
|
||
|
Currently two sampling methods are supported: Bilinear and Nearest
|
||
|
Neighbor.
|
||
|
extrapolation_value: An optional `float`. Defaults to `0.0`. Value used for
|
||
|
extrapolation, when applicable.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A 4-D tensor of shape `[num_boxes, crop_height, crop_width, depth]`.
|
||
|
|
||
|
Usage example:
|
||
|
|
||
|
>>> BATCH_SIZE = 1
|
||
|
>>> NUM_BOXES = 5
|
||
|
>>> IMAGE_HEIGHT = 256
|
||
|
>>> IMAGE_WIDTH = 256
|
||
|
>>> CHANNELS = 3
|
||
|
>>> CROP_SIZE = (24, 24)
|
||
|
|
||
|
>>> image = tf.random.normal(shape=(
|
||
|
... BATCH_SIZE, IMAGE_HEIGHT, IMAGE_WIDTH, CHANNELS) )
|
||
|
>>> boxes = tf.random.uniform(shape=(NUM_BOXES, 4))
|
||
|
>>> box_indices = tf.random.uniform(shape=(NUM_BOXES,), minval=0,
|
||
|
... maxval=BATCH_SIZE, dtype=tf.int32)
|
||
|
>>> output = tf.image.crop_and_resize(image, boxes, box_indices, CROP_SIZE)
|
||
|
>>> output.shape
|
||
|
TensorShape([5, 24, 24, 3])
|
||
|
|
||
|
Example with linear interpolation:
|
||
|
|
||
|
>>> image = np.arange(0, 18, 2).astype('float32').reshape(3, 3)
|
||
|
>>> result = tf.image.crop_and_resize(
|
||
|
... image[None, :, :, None],
|
||
|
... np.asarray([[0.5,0.5,1,1]]), [0], [3, 3], method='bilinear')
|
||
|
>>> result[0][:, :, 0]
|
||
|
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
|
||
|
array([[ 8., 9., 10.],
|
||
|
[11., 12., 13.],
|
||
|
[14., 15., 16.]], dtype=float32)>
|
||
|
|
||
|
Example with nearest interpolation:
|
||
|
|
||
|
>>> image = np.arange(0, 18, 2).astype('float32').reshape(3, 3)
|
||
|
>>> result = tf.image.crop_and_resize(
|
||
|
... image[None, :, :, None],
|
||
|
... np.asarray([[0.5,0.5,1,1]]), [0], [3, 3], method='nearest')
|
||
|
>>> result[0][:, :, 0]
|
||
|
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
|
||
|
array([[ 8., 10., 10.],
|
||
|
[14., 16., 16.],
|
||
|
[14., 16., 16.]], dtype=float32)>
|
||
|
|
||
|
|
||
|
"""
|
||
|
return gen_image_ops.crop_and_resize(image, boxes, box_indices, crop_size,
|
||
|
method, extrapolation_value, name)
|
||
|
|
||
|
|
||
|
@tf_export(v1=['image.crop_and_resize'])
|
||
|
@dispatch.add_dispatch_support
|
||
|
@deprecation.deprecated_args(None,
|
||
|
'box_ind is deprecated, use box_indices instead',
|
||
|
'box_ind')
|
||
|
def crop_and_resize_v1( # pylint: disable=missing-docstring
|
||
|
image,
|
||
|
boxes,
|
||
|
box_ind=None,
|
||
|
crop_size=None,
|
||
|
method='bilinear',
|
||
|
extrapolation_value=0,
|
||
|
name=None,
|
||
|
box_indices=None):
|
||
|
box_ind = deprecation.deprecated_argument_lookup('box_indices', box_indices,
|
||
|
'box_ind', box_ind)
|
||
|
return gen_image_ops.crop_and_resize(image, boxes, box_ind, crop_size, method,
|
||
|
extrapolation_value, name)
|
||
|
|
||
|
|
||
|
crop_and_resize_v1.__doc__ = gen_image_ops.crop_and_resize.__doc__
|
||
|
|
||
|
|
||
|
@tf_export(v1=['image.extract_glimpse'])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def extract_glimpse(
|
||
|
input, # pylint: disable=redefined-builtin
|
||
|
size,
|
||
|
offsets,
|
||
|
centered=True,
|
||
|
normalized=True,
|
||
|
uniform_noise=True,
|
||
|
name=None):
|
||
|
"""Extracts a glimpse from the input tensor.
|
||
|
|
||
|
Returns a set of windows called glimpses extracted at location
|
||
|
`offsets` from the input tensor. If the windows only partially
|
||
|
overlaps the inputs, the non-overlapping areas will be filled with
|
||
|
random noise.
|
||
|
|
||
|
The result is a 4-D tensor of shape `[batch_size, glimpse_height,
|
||
|
glimpse_width, channels]`. The channels and batch dimensions are the
|
||
|
same as that of the input tensor. The height and width of the output
|
||
|
windows are specified in the `size` parameter.
|
||
|
|
||
|
The argument `normalized` and `centered` controls how the windows are built:
|
||
|
|
||
|
* If the coordinates are normalized but not centered, 0.0 and 1.0
|
||
|
correspond to the minimum and maximum of each height and width
|
||
|
dimension.
|
||
|
* If the coordinates are both normalized and centered, they range from
|
||
|
-1.0 to 1.0. The coordinates (-1.0, -1.0) correspond to the upper
|
||
|
left corner, the lower right corner is located at (1.0, 1.0) and the
|
||
|
center is at (0, 0).
|
||
|
* If the coordinates are not normalized they are interpreted as
|
||
|
numbers of pixels.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[[0.0],
|
||
|
... [1.0],
|
||
|
... [2.0]],
|
||
|
... [[3.0],
|
||
|
... [4.0],
|
||
|
... [5.0]],
|
||
|
... [[6.0],
|
||
|
... [7.0],
|
||
|
... [8.0]]]]
|
||
|
>>> tf.compat.v1.image.extract_glimpse(x, size=(2, 2), offsets=[[1, 1]],
|
||
|
... centered=False, normalized=False)
|
||
|
<tf.Tensor: shape=(1, 2, 2, 1), dtype=float32, numpy=
|
||
|
array([[[[0.],
|
||
|
[1.]],
|
||
|
[[3.],
|
||
|
[4.]]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor` of type `float32`. A 4-D float tensor of shape
|
||
|
`[batch_size, height, width, channels]`.
|
||
|
size: A `Tensor` of type `int32`. A 1-D tensor of 2 elements containing the
|
||
|
size of the glimpses to extract. The glimpse height must be specified
|
||
|
first, following by the glimpse width.
|
||
|
offsets: A `Tensor` of type `float32`. A 2-D integer tensor of shape
|
||
|
`[batch_size, 2]` containing the y, x locations of the center of each
|
||
|
window.
|
||
|
centered: An optional `bool`. Defaults to `True`. indicates if the offset
|
||
|
coordinates are centered relative to the image, in which case the (0, 0)
|
||
|
offset is relative to the center of the input images. If false, the (0,0)
|
||
|
offset corresponds to the upper left corner of the input images.
|
||
|
normalized: An optional `bool`. Defaults to `True`. indicates if the offset
|
||
|
coordinates are normalized.
|
||
|
uniform_noise: An optional `bool`. Defaults to `True`. indicates if the
|
||
|
noise should be generated using a uniform distribution or a Gaussian
|
||
|
distribution.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
return gen_image_ops.extract_glimpse(
|
||
|
input=input,
|
||
|
size=size,
|
||
|
offsets=offsets,
|
||
|
centered=centered,
|
||
|
normalized=normalized,
|
||
|
uniform_noise=uniform_noise,
|
||
|
name=name)
|
||
|
|
||
|
|
||
|
@tf_export('image.extract_glimpse', v1=[])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def extract_glimpse_v2(
|
||
|
input, # pylint: disable=redefined-builtin
|
||
|
size,
|
||
|
offsets,
|
||
|
centered=True,
|
||
|
normalized=True,
|
||
|
noise='uniform',
|
||
|
name=None):
|
||
|
"""Extracts a glimpse from the input tensor.
|
||
|
|
||
|
Returns a set of windows called glimpses extracted at location
|
||
|
`offsets` from the input tensor. If the windows only partially
|
||
|
overlaps the inputs, the non-overlapping areas will be filled with
|
||
|
random noise.
|
||
|
|
||
|
The result is a 4-D tensor of shape `[batch_size, glimpse_height,
|
||
|
glimpse_width, channels]`. The channels and batch dimensions are the
|
||
|
same as that of the input tensor. The height and width of the output
|
||
|
windows are specified in the `size` parameter.
|
||
|
|
||
|
The argument `normalized` and `centered` controls how the windows are built:
|
||
|
|
||
|
* If the coordinates are normalized but not centered, 0.0 and 1.0
|
||
|
correspond to the minimum and maximum of each height and width
|
||
|
dimension.
|
||
|
* If the coordinates are both normalized and centered, they range from
|
||
|
-1.0 to 1.0. The coordinates (-1.0, -1.0) correspond to the upper
|
||
|
left corner, the lower right corner is located at (1.0, 1.0) and the
|
||
|
center is at (0, 0).
|
||
|
* If the coordinates are not normalized they are interpreted as
|
||
|
numbers of pixels.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> x = [[[[0.0],
|
||
|
... [1.0],
|
||
|
... [2.0]],
|
||
|
... [[3.0],
|
||
|
... [4.0],
|
||
|
... [5.0]],
|
||
|
... [[6.0],
|
||
|
... [7.0],
|
||
|
... [8.0]]]]
|
||
|
>>> tf.image.extract_glimpse(x, size=(2, 2), offsets=[[1, 1]],
|
||
|
... centered=False, normalized=False)
|
||
|
<tf.Tensor: shape=(1, 2, 2, 1), dtype=float32, numpy=
|
||
|
array([[[[4.],
|
||
|
[5.]],
|
||
|
[[7.],
|
||
|
[8.]]]], dtype=float32)>
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor` of type `float32`. A 4-D float tensor of shape
|
||
|
`[batch_size, height, width, channels]`.
|
||
|
size: A `Tensor` of type `int32`. A 1-D tensor of 2 elements containing the
|
||
|
size of the glimpses to extract. The glimpse height must be specified
|
||
|
first, following by the glimpse width.
|
||
|
offsets: A `Tensor` of type `float32`. A 2-D integer tensor of shape
|
||
|
`[batch_size, 2]` containing the y, x locations of the center of each
|
||
|
window.
|
||
|
centered: An optional `bool`. Defaults to `True`. indicates if the offset
|
||
|
coordinates are centered relative to the image, in which case the (0, 0)
|
||
|
offset is relative to the center of the input images. If false, the (0,0)
|
||
|
offset corresponds to the upper left corner of the input images.
|
||
|
normalized: An optional `bool`. Defaults to `True`. indicates if the offset
|
||
|
coordinates are normalized.
|
||
|
noise: An optional `string`. Defaults to `uniform`. indicates if the noise
|
||
|
should be `uniform` (uniform distribution), `gaussian` (gaussian
|
||
|
distribution), or `zero` (zero padding).
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `float32`.
|
||
|
"""
|
||
|
return gen_image_ops.extract_glimpse_v2(
|
||
|
input=input,
|
||
|
size=size,
|
||
|
offsets=offsets,
|
||
|
centered=centered,
|
||
|
normalized=normalized,
|
||
|
noise=noise,
|
||
|
uniform_noise=False,
|
||
|
name=name)
|
||
|
|
||
|
|
||
|
@tf_export('image.combined_non_max_suppression')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def combined_non_max_suppression(boxes,
|
||
|
scores,
|
||
|
max_output_size_per_class,
|
||
|
max_total_size,
|
||
|
iou_threshold=0.5,
|
||
|
score_threshold=float('-inf'),
|
||
|
pad_per_class=False,
|
||
|
clip_boxes=True,
|
||
|
name=None):
|
||
|
"""Greedily selects a subset of bounding boxes in descending order of score.
|
||
|
|
||
|
This operation performs non_max_suppression on the inputs per batch, across
|
||
|
all classes.
|
||
|
Prunes away boxes that have high intersection-over-union (IOU) overlap
|
||
|
with previously selected boxes. Bounding boxes are supplied as
|
||
|
[y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any
|
||
|
diagonal pair of box corners and the coordinates can be provided as normalized
|
||
|
(i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm
|
||
|
is agnostic to where the origin is in the coordinate system. Also note that
|
||
|
this algorithm is invariant to orthogonal transformations and translations
|
||
|
of the coordinate system; thus translating or reflections of the coordinate
|
||
|
system result in the same boxes being selected by the algorithm.
|
||
|
The output of this operation is the final boxes, scores and classes tensor
|
||
|
returned after performing non_max_suppression.
|
||
|
|
||
|
Args:
|
||
|
boxes: A 4-D float `Tensor` of shape `[batch_size, num_boxes, q, 4]`. If `q`
|
||
|
is 1 then same boxes are used for all classes otherwise, if `q` is equal
|
||
|
to number of classes, class-specific boxes are used.
|
||
|
scores: A 3-D float `Tensor` of shape `[batch_size, num_boxes, num_classes]`
|
||
|
representing a single score corresponding to each box (each row of boxes).
|
||
|
max_output_size_per_class: A scalar integer `Tensor` representing the
|
||
|
maximum number of boxes to be selected by non-max suppression per class
|
||
|
max_total_size: A int32 scalar representing maximum number of boxes retained
|
||
|
over all classes. Note that setting this value to a large number may
|
||
|
result in OOM error depending on the system workload.
|
||
|
iou_threshold: A float representing the threshold for deciding whether boxes
|
||
|
overlap too much with respect to IOU.
|
||
|
score_threshold: A float representing the threshold for deciding when to
|
||
|
remove boxes based on score.
|
||
|
pad_per_class: If false, the output nmsed boxes, scores and classes are
|
||
|
padded/clipped to `max_total_size`. If true, the output nmsed boxes,
|
||
|
scores and classes are padded to be of length
|
||
|
`max_size_per_class`*`num_classes`, unless it exceeds `max_total_size` in
|
||
|
which case it is clipped to `max_total_size`. Defaults to false.
|
||
|
clip_boxes: If true, the coordinates of output nmsed boxes will be clipped
|
||
|
to [0, 1]. If false, output the box coordinates as it is. Defaults to
|
||
|
true.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
'nmsed_boxes': A [batch_size, max_detections, 4] float32 tensor
|
||
|
containing the non-max suppressed boxes.
|
||
|
'nmsed_scores': A [batch_size, max_detections] float32 tensor containing
|
||
|
the scores for the boxes.
|
||
|
'nmsed_classes': A [batch_size, max_detections] float32 tensor
|
||
|
containing the class for boxes.
|
||
|
'valid_detections': A [batch_size] int32 tensor indicating the number of
|
||
|
valid detections per batch item. Only the top valid_detections[i] entries
|
||
|
in nms_boxes[i], nms_scores[i] and nms_class[i] are valid. The rest of the
|
||
|
entries are zero paddings.
|
||
|
"""
|
||
|
with ops.name_scope(name, 'combined_non_max_suppression'):
|
||
|
iou_threshold = ops.convert_to_tensor(
|
||
|
iou_threshold, dtype=dtypes.float32, name='iou_threshold')
|
||
|
score_threshold = ops.convert_to_tensor(
|
||
|
score_threshold, dtype=dtypes.float32, name='score_threshold')
|
||
|
|
||
|
# Convert `max_total_size` to tensor *without* setting the `dtype` param.
|
||
|
# This allows us to catch `int32` overflow case with `max_total_size`
|
||
|
# whose expected dtype is `int32` by the op registration. Any number within
|
||
|
# `int32` will get converted to `int32` tensor. Anything larger will get
|
||
|
# converted to `int64`. Passing in `int64` for `max_total_size` to the op
|
||
|
# will throw dtype mismatch exception.
|
||
|
# TODO(b/173251596): Once there is a more general solution to warn against
|
||
|
# int overflow conversions, revisit this check.
|
||
|
max_total_size = ops.convert_to_tensor(max_total_size)
|
||
|
|
||
|
return gen_image_ops.combined_non_max_suppression(
|
||
|
boxes, scores, max_output_size_per_class, max_total_size, iou_threshold,
|
||
|
score_threshold, pad_per_class, clip_boxes)
|
||
|
|
||
|
|
||
|
def _bbox_overlap(boxes_a, boxes_b):
|
||
|
"""Calculates the overlap (iou - intersection over union) between boxes_a and boxes_b.
|
||
|
|
||
|
Args:
|
||
|
boxes_a: a tensor with a shape of [batch_size, N, 4]. N is the number of
|
||
|
boxes per image. The last dimension is the pixel coordinates in
|
||
|
[ymin, xmin, ymax, xmax] form.
|
||
|
boxes_b: a tensor with a shape of [batch_size, M, 4]. M is the number of
|
||
|
boxes. The last dimension is the pixel coordinates in
|
||
|
[ymin, xmin, ymax, xmax] form.
|
||
|
Returns:
|
||
|
intersection_over_union: a tensor with as a shape of [batch_size, N, M],
|
||
|
representing the ratio of intersection area over union area (IoU) between
|
||
|
two boxes
|
||
|
"""
|
||
|
with ops.name_scope('bbox_overlap'):
|
||
|
a_y_min, a_x_min, a_y_max, a_x_max = array_ops.split(
|
||
|
value=boxes_a, num_or_size_splits=4, axis=2)
|
||
|
b_y_min, b_x_min, b_y_max, b_x_max = array_ops.split(
|
||
|
value=boxes_b, num_or_size_splits=4, axis=2)
|
||
|
|
||
|
# Calculates the intersection area.
|
||
|
i_xmin = math_ops.maximum(
|
||
|
a_x_min, array_ops.transpose(b_x_min, [0, 2, 1]))
|
||
|
i_xmax = math_ops.minimum(
|
||
|
a_x_max, array_ops.transpose(b_x_max, [0, 2, 1]))
|
||
|
i_ymin = math_ops.maximum(
|
||
|
a_y_min, array_ops.transpose(b_y_min, [0, 2, 1]))
|
||
|
i_ymax = math_ops.minimum(
|
||
|
a_y_max, array_ops.transpose(b_y_max, [0, 2, 1]))
|
||
|
i_area = math_ops.maximum(
|
||
|
(i_xmax - i_xmin), 0) * math_ops.maximum((i_ymax - i_ymin), 0)
|
||
|
|
||
|
# Calculates the union area.
|
||
|
a_area = (a_y_max - a_y_min) * (a_x_max - a_x_min)
|
||
|
b_area = (b_y_max - b_y_min) * (b_x_max - b_x_min)
|
||
|
EPSILON = 1e-8
|
||
|
# Adds a small epsilon to avoid divide-by-zero.
|
||
|
u_area = a_area + array_ops.transpose(b_area, [0, 2, 1]) - i_area + EPSILON
|
||
|
|
||
|
# Calculates IoU.
|
||
|
intersection_over_union = i_area / u_area
|
||
|
|
||
|
return intersection_over_union
|
||
|
|
||
|
|
||
|
def _self_suppression(iou, _, iou_sum, iou_threshold):
|
||
|
"""Suppress boxes in the same tile.
|
||
|
|
||
|
Compute boxes that cannot be suppressed by others (i.e.,
|
||
|
can_suppress_others), and then use them to suppress boxes in the same tile.
|
||
|
|
||
|
Args:
|
||
|
iou: a tensor of shape [batch_size, num_boxes_with_padding] representing
|
||
|
intersection over union.
|
||
|
iou_sum: a scalar tensor.
|
||
|
iou_threshold: a scalar tensor.
|
||
|
|
||
|
Returns:
|
||
|
iou_suppressed: a tensor of shape [batch_size, num_boxes_with_padding].
|
||
|
iou_diff: a scalar tensor representing whether any box is supressed in
|
||
|
this step.
|
||
|
iou_sum_new: a scalar tensor of shape [batch_size] that represents
|
||
|
the iou sum after suppression.
|
||
|
iou_threshold: a scalar tensor.
|
||
|
"""
|
||
|
batch_size = array_ops.shape(iou)[0]
|
||
|
can_suppress_others = math_ops.cast(
|
||
|
array_ops.reshape(
|
||
|
math_ops.reduce_max(iou, 1) < iou_threshold, [batch_size, -1, 1]),
|
||
|
iou.dtype)
|
||
|
iou_after_suppression = array_ops.reshape(
|
||
|
math_ops.cast(
|
||
|
math_ops.reduce_max(can_suppress_others * iou, 1) < iou_threshold,
|
||
|
iou.dtype),
|
||
|
[batch_size, -1, 1]) * iou
|
||
|
iou_sum_new = math_ops.reduce_sum(iou_after_suppression, [1, 2])
|
||
|
return [
|
||
|
iou_after_suppression,
|
||
|
math_ops.reduce_any(iou_sum - iou_sum_new > iou_threshold), iou_sum_new,
|
||
|
iou_threshold
|
||
|
]
|
||
|
|
||
|
|
||
|
def _cross_suppression(boxes, box_slice, iou_threshold, inner_idx, tile_size):
|
||
|
"""Suppress boxes between different tiles.
|
||
|
|
||
|
Args:
|
||
|
boxes: a tensor of shape [batch_size, num_boxes_with_padding, 4]
|
||
|
box_slice: a tensor of shape [batch_size, tile_size, 4]
|
||
|
iou_threshold: a scalar tensor
|
||
|
inner_idx: a scalar tensor representing the tile index of the tile
|
||
|
that is used to supress box_slice
|
||
|
tile_size: an integer representing the number of boxes in a tile
|
||
|
|
||
|
Returns:
|
||
|
boxes: unchanged boxes as input
|
||
|
box_slice_after_suppression: box_slice after suppression
|
||
|
iou_threshold: unchanged
|
||
|
"""
|
||
|
batch_size = array_ops.shape(boxes)[0]
|
||
|
new_slice = array_ops.slice(
|
||
|
boxes, [0, inner_idx * tile_size, 0],
|
||
|
[batch_size, tile_size, 4])
|
||
|
iou = _bbox_overlap(new_slice, box_slice)
|
||
|
box_slice_after_suppression = array_ops.expand_dims(
|
||
|
math_ops.cast(math_ops.reduce_all(iou < iou_threshold, [1]),
|
||
|
box_slice.dtype),
|
||
|
2) * box_slice
|
||
|
return boxes, box_slice_after_suppression, iou_threshold, inner_idx + 1
|
||
|
|
||
|
|
||
|
def _suppression_loop_body(boxes, iou_threshold, output_size, idx, tile_size):
|
||
|
"""Process boxes in the range [idx*tile_size, (idx+1)*tile_size).
|
||
|
|
||
|
Args:
|
||
|
boxes: a tensor with a shape of [batch_size, anchors, 4].
|
||
|
iou_threshold: a float representing the threshold for deciding whether boxes
|
||
|
overlap too much with respect to IOU.
|
||
|
output_size: an int32 tensor of size [batch_size]. Representing the number
|
||
|
of selected boxes for each batch.
|
||
|
idx: an integer scalar representing induction variable.
|
||
|
tile_size: an integer representing the number of boxes in a tile
|
||
|
|
||
|
Returns:
|
||
|
boxes: updated boxes.
|
||
|
iou_threshold: pass down iou_threshold to the next iteration.
|
||
|
output_size: the updated output_size.
|
||
|
idx: the updated induction variable.
|
||
|
"""
|
||
|
with ops.name_scope('suppression_loop_body'):
|
||
|
num_tiles = array_ops.shape(boxes)[1] // tile_size
|
||
|
batch_size = array_ops.shape(boxes)[0]
|
||
|
|
||
|
def cross_suppression_func(boxes, box_slice, iou_threshold, inner_idx):
|
||
|
return _cross_suppression(boxes, box_slice, iou_threshold, inner_idx,
|
||
|
tile_size)
|
||
|
|
||
|
# Iterates over tiles that can possibly suppress the current tile.
|
||
|
box_slice = array_ops.slice(boxes, [0, idx * tile_size, 0],
|
||
|
[batch_size, tile_size, 4])
|
||
|
_, box_slice, _, _ = while_loop.while_loop(
|
||
|
lambda _boxes, _box_slice, _threshold, inner_idx: inner_idx < idx,
|
||
|
cross_suppression_func,
|
||
|
[boxes, box_slice, iou_threshold,
|
||
|
constant_op.constant(0)])
|
||
|
|
||
|
# Iterates over the current tile to compute self-suppression.
|
||
|
iou = _bbox_overlap(box_slice, box_slice)
|
||
|
mask = array_ops.expand_dims(
|
||
|
array_ops.reshape(
|
||
|
math_ops.range(tile_size), [1, -1]) > array_ops.reshape(
|
||
|
math_ops.range(tile_size), [-1, 1]), 0)
|
||
|
iou *= math_ops.cast(
|
||
|
math_ops.logical_and(mask, iou >= iou_threshold), iou.dtype)
|
||
|
suppressed_iou, _, _, _ = while_loop.while_loop(
|
||
|
lambda _iou, loop_condition, _iou_sum, _: loop_condition,
|
||
|
_self_suppression, [
|
||
|
iou,
|
||
|
constant_op.constant(True),
|
||
|
math_ops.reduce_sum(iou, [1, 2]), iou_threshold
|
||
|
])
|
||
|
suppressed_box = math_ops.reduce_sum(suppressed_iou, 1) > 0
|
||
|
box_slice *= array_ops.expand_dims(
|
||
|
1.0 - math_ops.cast(suppressed_box, box_slice.dtype), 2)
|
||
|
|
||
|
# Uses box_slice to update the input boxes.
|
||
|
mask = array_ops.reshape(
|
||
|
math_ops.cast(
|
||
|
math_ops.equal(math_ops.range(num_tiles), idx), boxes.dtype),
|
||
|
[1, -1, 1, 1])
|
||
|
boxes = array_ops.tile(array_ops.expand_dims(
|
||
|
box_slice, [1]), [1, num_tiles, 1, 1]) * mask + array_ops.reshape(
|
||
|
boxes, [batch_size, num_tiles, tile_size, 4]) * (1 - mask)
|
||
|
boxes = array_ops.reshape(boxes, [batch_size, -1, 4])
|
||
|
|
||
|
# Updates output_size.
|
||
|
output_size += math_ops.reduce_sum(
|
||
|
math_ops.cast(
|
||
|
math_ops.reduce_any(box_slice > 0, [2]), dtypes.int32), [1])
|
||
|
return boxes, iou_threshold, output_size, idx + 1
|
||
|
|
||
|
|
||
|
@tf_export('image.non_max_suppression_padded')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def non_max_suppression_padded(boxes,
|
||
|
scores,
|
||
|
max_output_size,
|
||
|
iou_threshold=0.5,
|
||
|
score_threshold=float('-inf'),
|
||
|
pad_to_max_output_size=False,
|
||
|
name=None,
|
||
|
sorted_input=False,
|
||
|
canonicalized_coordinates=False,
|
||
|
tile_size=512):
|
||
|
"""Greedily selects a subset of bounding boxes in descending order of score.
|
||
|
|
||
|
Performs algorithmically equivalent operation to tf.image.non_max_suppression,
|
||
|
with the addition of an optional parameter which zero-pads the output to
|
||
|
be of size `max_output_size`.
|
||
|
The output of this operation is a tuple containing the set of integers
|
||
|
indexing into the input collection of bounding boxes representing the selected
|
||
|
boxes and the number of valid indices in the index set. The bounding box
|
||
|
coordinates corresponding to the selected indices can then be obtained using
|
||
|
the `tf.slice` and `tf.gather` operations. For example:
|
||
|
```python
|
||
|
selected_indices_padded, num_valid = tf.image.non_max_suppression_padded(
|
||
|
boxes, scores, max_output_size, iou_threshold,
|
||
|
score_threshold, pad_to_max_output_size=True)
|
||
|
selected_indices = tf.slice(
|
||
|
selected_indices_padded, tf.constant([0]), num_valid)
|
||
|
selected_boxes = tf.gather(boxes, selected_indices)
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
boxes: a tensor of rank 2 or higher with a shape of [..., num_boxes, 4].
|
||
|
Dimensions except the last two are batch dimensions.
|
||
|
scores: a tensor of rank 1 or higher with a shape of [..., num_boxes].
|
||
|
max_output_size: a scalar integer `Tensor` representing the maximum number
|
||
|
of boxes to be selected by non max suppression. Note that setting this
|
||
|
value to a large number may result in OOM error depending on the system
|
||
|
workload.
|
||
|
iou_threshold: a float representing the threshold for deciding whether boxes
|
||
|
overlap too much with respect to IoU (intersection over union).
|
||
|
score_threshold: a float representing the threshold for box scores. Boxes
|
||
|
with a score that is not larger than this threshold will be suppressed.
|
||
|
pad_to_max_output_size: whether to pad the output idx to max_output_size.
|
||
|
Must be set to True when the input is a batch of images.
|
||
|
name: name of operation.
|
||
|
sorted_input: a boolean indicating whether the input boxes and scores
|
||
|
are sorted in descending order by the score.
|
||
|
canonicalized_coordinates: if box coordinates are given as
|
||
|
`[y_min, x_min, y_max, x_max]`, setting to True eliminate redundant
|
||
|
computation to canonicalize box coordinates.
|
||
|
tile_size: an integer representing the number of boxes in a tile, i.e.,
|
||
|
the maximum number of boxes per image that can be used to suppress other
|
||
|
boxes in parallel; larger tile_size means larger parallelism and
|
||
|
potentially more redundant work.
|
||
|
Returns:
|
||
|
idx: a tensor with a shape of [..., num_boxes] representing the
|
||
|
indices selected by non-max suppression. The leading dimensions
|
||
|
are the batch dimensions of the input boxes. All numbers are within
|
||
|
[0, num_boxes). For each image (i.e., idx[i]), only the first num_valid[i]
|
||
|
indices (i.e., idx[i][:num_valid[i]]) are valid.
|
||
|
num_valid: a tensor of rank 0 or higher with a shape of [...]
|
||
|
representing the number of valid indices in idx. Its dimensions are the
|
||
|
batch dimensions of the input boxes.
|
||
|
Raises:
|
||
|
ValueError: When set pad_to_max_output_size to False for batched input.
|
||
|
"""
|
||
|
with ops.name_scope(name, 'non_max_suppression_padded'):
|
||
|
if not pad_to_max_output_size:
|
||
|
# pad_to_max_output_size may be set to False only when the shape of
|
||
|
# boxes is [num_boxes, 4], i.e., a single image. We make best effort to
|
||
|
# detect violations at compile time. If `boxes` does not have a static
|
||
|
# rank, the check allows computation to proceed.
|
||
|
if boxes.get_shape().rank is not None and boxes.get_shape().rank > 2:
|
||
|
raise ValueError("'pad_to_max_output_size' (value {}) must be True for "
|
||
|
'batched input'.format(pad_to_max_output_size))
|
||
|
if name is None:
|
||
|
name = ''
|
||
|
idx, num_valid = non_max_suppression_padded_v2(
|
||
|
boxes, scores, max_output_size, iou_threshold, score_threshold,
|
||
|
sorted_input, canonicalized_coordinates, tile_size)
|
||
|
# def_function.function seems to lose shape information, so set it here.
|
||
|
if not pad_to_max_output_size:
|
||
|
idx = idx[0, :num_valid]
|
||
|
else:
|
||
|
batch_dims = array_ops.concat([
|
||
|
array_ops.shape(boxes)[:-2],
|
||
|
array_ops.expand_dims(max_output_size, 0)
|
||
|
], 0)
|
||
|
idx = array_ops.reshape(idx, batch_dims)
|
||
|
return idx, num_valid
|
||
|
|
||
|
|
||
|
# TODO(b/158709815): Improve performance regression due to
|
||
|
# def_function.function.
|
||
|
@def_function.function(
|
||
|
experimental_implements='non_max_suppression_padded_v2')
|
||
|
def non_max_suppression_padded_v2(boxes,
|
||
|
scores,
|
||
|
max_output_size,
|
||
|
iou_threshold=0.5,
|
||
|
score_threshold=float('-inf'),
|
||
|
sorted_input=False,
|
||
|
canonicalized_coordinates=False,
|
||
|
tile_size=512):
|
||
|
"""Non-maximum suppression.
|
||
|
|
||
|
Prunes away boxes that have high intersection-over-union (IOU) overlap
|
||
|
with previously selected boxes. Bounding boxes are supplied as
|
||
|
`[y1, x1, y2, x2]`, where `(y1, x1)` and `(y2, x2)` are the coordinates of any
|
||
|
diagonal pair of box corners and the coordinates can be provided as normalized
|
||
|
(i.e., lying in the interval `[0, 1]`) or absolute. The bounding box
|
||
|
coordinates are cannonicalized to `[y_min, x_min, y_max, x_max]`,
|
||
|
where `(y_min, x_min)` and `(y_max, x_mas)` are the coordinates of the lower
|
||
|
left and upper right corner. User may indiciate the input box coordinates are
|
||
|
already canonicalized to eliminate redundant work by setting
|
||
|
canonicalized_coordinates to `True`. Note that this algorithm is agnostic to
|
||
|
where the origin is in the coordinate system. Note that this algorithm is
|
||
|
invariant to orthogonal transformations and translations of the coordinate
|
||
|
system; thus translating or reflections of the coordinate system result in the
|
||
|
same boxes being selected by the algorithm.
|
||
|
|
||
|
Similar to tf.image.non_max_suppression, non_max_suppression_padded
|
||
|
implements hard NMS but can operate on a batch of images and improves
|
||
|
performance by titling the bounding boxes. Non_max_suppression_padded should
|
||
|
be preferred over tf.image_non_max_suppression when running on devices with
|
||
|
abundant parallelsim for higher computation speed. For soft NMS, refer to
|
||
|
tf.image.non_max_suppression_with_scores.
|
||
|
|
||
|
While a serial NMS algorithm iteratively uses the highest-scored unprocessed
|
||
|
box to suppress boxes, this algorithm uses many boxes to suppress other boxes
|
||
|
in parallel. The key idea is to partition boxes into tiles based on their
|
||
|
score and suppresses boxes tile by tile, thus achieving parallelism within a
|
||
|
tile. The tile size determines the degree of parallelism.
|
||
|
|
||
|
In cross suppression (using boxes of tile A to suppress boxes of tile B),
|
||
|
all boxes in A can independently suppress boxes in B.
|
||
|
|
||
|
Self suppression (suppressing boxes of the same tile) needs to be iteratively
|
||
|
applied until there's no more suppression. In each iteration, boxes that
|
||
|
cannot be suppressed are used to suppress boxes in the same tile.
|
||
|
|
||
|
boxes = boxes.pad_to_multiply_of(tile_size)
|
||
|
num_tiles = len(boxes) // tile_size
|
||
|
output_boxes = []
|
||
|
for i in range(num_tiles):
|
||
|
box_tile = boxes[i*tile_size : (i+1)*tile_size]
|
||
|
for j in range(i - 1):
|
||
|
# in parallel suppress boxes in box_tile using boxes from suppressing_tile
|
||
|
suppressing_tile = boxes[j*tile_size : (j+1)*tile_size]
|
||
|
iou = _bbox_overlap(box_tile, suppressing_tile)
|
||
|
# if the box is suppressed in iou, clear it to a dot
|
||
|
box_tile *= _update_boxes(iou)
|
||
|
# Iteratively handle the diagnal tile.
|
||
|
iou = _box_overlap(box_tile, box_tile)
|
||
|
iou_changed = True
|
||
|
while iou_changed:
|
||
|
# boxes that are not suppressed by anything else
|
||
|
suppressing_boxes = _get_suppressing_boxes(iou)
|
||
|
# boxes that are suppressed by suppressing_boxes
|
||
|
suppressed_boxes = _get_suppressed_boxes(iou, suppressing_boxes)
|
||
|
# clear iou to 0 for boxes that are suppressed, as they cannot be used
|
||
|
# to suppress other boxes any more
|
||
|
new_iou = _clear_iou(iou, suppressed_boxes)
|
||
|
iou_changed = (new_iou != iou)
|
||
|
iou = new_iou
|
||
|
# remaining boxes that can still suppress others, are selected boxes.
|
||
|
output_boxes.append(_get_suppressing_boxes(iou))
|
||
|
if len(output_boxes) >= max_output_size:
|
||
|
break
|
||
|
|
||
|
Args:
|
||
|
boxes: a tensor of rank 2 or higher with a shape of [..., num_boxes, 4].
|
||
|
Dimensions except the last two are batch dimensions. The last dimension
|
||
|
represents box coordinates, given as [y_1, x_1, y_2, x_2]. The coordinates
|
||
|
on each dimension can be given in any order
|
||
|
(see also `canonicalized_coordinates`) but must describe a box with
|
||
|
a positive area.
|
||
|
scores: a tensor of rank 1 or higher with a shape of [..., num_boxes].
|
||
|
max_output_size: a scalar integer `Tensor` representing the maximum number
|
||
|
of boxes to be selected by non max suppression.
|
||
|
iou_threshold: a float representing the threshold for deciding whether boxes
|
||
|
overlap too much with respect to IoU (intersection over union).
|
||
|
score_threshold: a float representing the threshold for box scores. Boxes
|
||
|
with a score that is not larger than this threshold will be suppressed.
|
||
|
sorted_input: a boolean indicating whether the input boxes and scores
|
||
|
are sorted in descending order by the score.
|
||
|
canonicalized_coordinates: if box coordinates are given as
|
||
|
`[y_min, x_min, y_max, x_max]`, setting to True eliminate redundant
|
||
|
computation to canonicalize box coordinates.
|
||
|
tile_size: an integer representing the number of boxes in a tile, i.e.,
|
||
|
the maximum number of boxes per image that can be used to suppress other
|
||
|
boxes in parallel; larger tile_size means larger parallelism and
|
||
|
potentially more redundant work.
|
||
|
Returns:
|
||
|
idx: a tensor with a shape of [..., num_boxes] representing the
|
||
|
indices selected by non-max suppression. The leading dimensions
|
||
|
are the batch dimensions of the input boxes. All numbers are within
|
||
|
[0, num_boxes). For each image (i.e., idx[i]), only the first num_valid[i]
|
||
|
indices (i.e., idx[i][:num_valid[i]]) are valid.
|
||
|
num_valid: a tensor of rank 0 or higher with a shape of [...]
|
||
|
representing the number of valid indices in idx. Its dimensions are the
|
||
|
batch dimensions of the input boxes.
|
||
|
Raises:
|
||
|
ValueError: When set pad_to_max_output_size to False for batched input.
|
||
|
"""
|
||
|
def _sort_scores_and_boxes(scores, boxes):
|
||
|
"""Sort boxes based their score from highest to lowest.
|
||
|
|
||
|
Args:
|
||
|
scores: a tensor with a shape of [batch_size, num_boxes] representing
|
||
|
the scores of boxes.
|
||
|
boxes: a tensor with a shape of [batch_size, num_boxes, 4] representing
|
||
|
the boxes.
|
||
|
Returns:
|
||
|
sorted_scores: a tensor with a shape of [batch_size, num_boxes]
|
||
|
representing the sorted scores.
|
||
|
sorted_boxes: a tensor representing the sorted boxes.
|
||
|
sorted_scores_indices: a tensor with a shape of [batch_size, num_boxes]
|
||
|
representing the index of the scores in a sorted descending order.
|
||
|
"""
|
||
|
with ops.name_scope('sort_scores_and_boxes'):
|
||
|
sorted_scores_indices = sort_ops.argsort(
|
||
|
scores, axis=1, direction='DESCENDING')
|
||
|
sorted_scores = array_ops.gather(
|
||
|
scores, sorted_scores_indices, axis=1, batch_dims=1
|
||
|
)
|
||
|
sorted_boxes = array_ops.gather(
|
||
|
boxes, sorted_scores_indices, axis=1, batch_dims=1
|
||
|
)
|
||
|
return sorted_scores, sorted_boxes, sorted_scores_indices
|
||
|
|
||
|
batch_dims = array_ops.shape(boxes)[:-2]
|
||
|
num_boxes = array_ops.shape(boxes)[-2]
|
||
|
boxes = array_ops.reshape(boxes, [-1, num_boxes, 4])
|
||
|
scores = array_ops.reshape(scores, [-1, num_boxes])
|
||
|
batch_size = array_ops.shape(boxes)[0]
|
||
|
if score_threshold != float('-inf'):
|
||
|
with ops.name_scope('filter_by_score'):
|
||
|
score_mask = math_ops.cast(scores > score_threshold, scores.dtype)
|
||
|
scores *= score_mask
|
||
|
box_mask = array_ops.expand_dims(
|
||
|
math_ops.cast(score_mask, boxes.dtype), 2)
|
||
|
boxes *= box_mask
|
||
|
|
||
|
if not canonicalized_coordinates:
|
||
|
with ops.name_scope('canonicalize_coordinates'):
|
||
|
y_1, x_1, y_2, x_2 = array_ops.split(
|
||
|
value=boxes, num_or_size_splits=4, axis=2)
|
||
|
y_1_is_min = math_ops.reduce_all(
|
||
|
math_ops.less_equal(y_1[0, 0, 0], y_2[0, 0, 0]))
|
||
|
y_min, y_max = tf_cond.cond(
|
||
|
y_1_is_min, lambda: (y_1, y_2), lambda: (y_2, y_1))
|
||
|
x_1_is_min = math_ops.reduce_all(
|
||
|
math_ops.less_equal(x_1[0, 0, 0], x_2[0, 0, 0]))
|
||
|
x_min, x_max = tf_cond.cond(
|
||
|
x_1_is_min, lambda: (x_1, x_2), lambda: (x_2, x_1))
|
||
|
boxes = array_ops.concat([y_min, x_min, y_max, x_max], axis=2)
|
||
|
# TODO(@bhack): https://github.com/tensorflow/tensorflow/issues/56089
|
||
|
# this will be required after deprecation
|
||
|
#else:
|
||
|
# y_1, x_1, y_2, x_2 = array_ops.split(
|
||
|
# value=boxes, num_or_size_splits=4, axis=2)
|
||
|
|
||
|
if not sorted_input:
|
||
|
scores, boxes, sorted_indices = _sort_scores_and_boxes(scores, boxes)
|
||
|
else:
|
||
|
# Default value required for Autograph.
|
||
|
sorted_indices = array_ops.zeros_like(scores, dtype=dtypes.int32)
|
||
|
|
||
|
pad = math_ops.cast(
|
||
|
math_ops.ceil(
|
||
|
math_ops.cast(
|
||
|
math_ops.maximum(num_boxes, max_output_size), dtypes.float32) /
|
||
|
math_ops.cast(tile_size, dtypes.float32)),
|
||
|
dtypes.int32) * tile_size - num_boxes
|
||
|
boxes = array_ops.pad(
|
||
|
math_ops.cast(boxes, dtypes.float32), [[0, 0], [0, pad], [0, 0]])
|
||
|
scores = array_ops.pad(
|
||
|
math_ops.cast(scores, dtypes.float32), [[0, 0], [0, pad]])
|
||
|
num_boxes_after_padding = num_boxes + pad
|
||
|
num_iterations = num_boxes_after_padding // tile_size
|
||
|
def _loop_cond(unused_boxes, unused_threshold, output_size, idx):
|
||
|
return math_ops.logical_and(
|
||
|
math_ops.reduce_min(output_size) < max_output_size,
|
||
|
idx < num_iterations)
|
||
|
|
||
|
def suppression_loop_body(boxes, iou_threshold, output_size, idx):
|
||
|
return _suppression_loop_body(
|
||
|
boxes, iou_threshold, output_size, idx, tile_size)
|
||
|
|
||
|
selected_boxes, _, output_size, _ = while_loop.while_loop(
|
||
|
_loop_cond,
|
||
|
suppression_loop_body,
|
||
|
[
|
||
|
boxes, iou_threshold,
|
||
|
array_ops.zeros([batch_size], dtypes.int32),
|
||
|
constant_op.constant(0)
|
||
|
],
|
||
|
shape_invariants=[
|
||
|
tensor_shape.TensorShape([None, None, 4]),
|
||
|
tensor_shape.TensorShape([]),
|
||
|
tensor_shape.TensorShape([None]),
|
||
|
tensor_shape.TensorShape([]),
|
||
|
],
|
||
|
)
|
||
|
num_valid = math_ops.minimum(output_size, max_output_size)
|
||
|
idx = num_boxes_after_padding - math_ops.cast(
|
||
|
nn_ops.top_k(
|
||
|
math_ops.cast(math_ops.reduce_any(
|
||
|
selected_boxes > 0, [2]), dtypes.int32) *
|
||
|
array_ops.expand_dims(
|
||
|
math_ops.range(num_boxes_after_padding, 0, -1), 0),
|
||
|
max_output_size)[0], dtypes.int32)
|
||
|
idx = math_ops.minimum(idx, num_boxes - 1)
|
||
|
|
||
|
if not sorted_input:
|
||
|
index_offsets = math_ops.range(batch_size) * num_boxes
|
||
|
gather_idx = array_ops.reshape(
|
||
|
idx + array_ops.expand_dims(index_offsets, 1), [-1])
|
||
|
idx = array_ops.reshape(
|
||
|
array_ops.gather(array_ops.reshape(sorted_indices, [-1]),
|
||
|
gather_idx),
|
||
|
[batch_size, -1])
|
||
|
invalid_index = array_ops.zeros([batch_size, max_output_size],
|
||
|
dtype=dtypes.int32)
|
||
|
idx_index = array_ops.expand_dims(math_ops.range(max_output_size), 0)
|
||
|
num_valid_expanded = array_ops.expand_dims(num_valid, 1)
|
||
|
idx = array_ops.where(idx_index < num_valid_expanded,
|
||
|
idx, invalid_index)
|
||
|
|
||
|
num_valid = array_ops.reshape(num_valid, batch_dims)
|
||
|
return idx, num_valid
|
||
|
|
||
|
|
||
|
def non_max_suppression_padded_v1(boxes,
|
||
|
scores,
|
||
|
max_output_size,
|
||
|
iou_threshold=0.5,
|
||
|
score_threshold=float('-inf'),
|
||
|
pad_to_max_output_size=False,
|
||
|
name=None):
|
||
|
"""Greedily selects a subset of bounding boxes in descending order of score.
|
||
|
|
||
|
Performs algorithmically equivalent operation to tf.image.non_max_suppression,
|
||
|
with the addition of an optional parameter which zero-pads the output to
|
||
|
be of size `max_output_size`.
|
||
|
The output of this operation is a tuple containing the set of integers
|
||
|
indexing into the input collection of bounding boxes representing the selected
|
||
|
boxes and the number of valid indices in the index set. The bounding box
|
||
|
coordinates corresponding to the selected indices can then be obtained using
|
||
|
the `tf.slice` and `tf.gather` operations. For example:
|
||
|
```python
|
||
|
selected_indices_padded, num_valid = tf.image.non_max_suppression_padded(
|
||
|
boxes, scores, max_output_size, iou_threshold,
|
||
|
score_threshold, pad_to_max_output_size=True)
|
||
|
selected_indices = tf.slice(
|
||
|
selected_indices_padded, tf.constant([0]), num_valid)
|
||
|
selected_boxes = tf.gather(boxes, selected_indices)
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
boxes: A 2-D float `Tensor` of shape `[num_boxes, 4]`.
|
||
|
scores: A 1-D float `Tensor` of shape `[num_boxes]` representing a single
|
||
|
score corresponding to each box (each row of boxes).
|
||
|
max_output_size: A scalar integer `Tensor` representing the maximum number
|
||
|
of boxes to be selected by non-max suppression.
|
||
|
iou_threshold: A float representing the threshold for deciding whether boxes
|
||
|
overlap too much with respect to IOU.
|
||
|
score_threshold: A float representing the threshold for deciding when to
|
||
|
remove boxes based on score.
|
||
|
pad_to_max_output_size: bool. If True, size of `selected_indices` output is
|
||
|
padded to `max_output_size`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
selected_indices: A 1-D integer `Tensor` of shape `[M]` representing the
|
||
|
selected indices from the boxes tensor, where `M <= max_output_size`.
|
||
|
valid_outputs: A scalar integer `Tensor` denoting how many elements in
|
||
|
`selected_indices` are valid. Valid elements occur first, then padding.
|
||
|
"""
|
||
|
with ops.name_scope(name, 'non_max_suppression_padded'):
|
||
|
iou_threshold = ops.convert_to_tensor(iou_threshold, name='iou_threshold')
|
||
|
score_threshold = ops.convert_to_tensor(
|
||
|
score_threshold, name='score_threshold')
|
||
|
return gen_image_ops.non_max_suppression_v4(boxes, scores, max_output_size,
|
||
|
iou_threshold, score_threshold,
|
||
|
pad_to_max_output_size)
|
||
|
|
||
|
|
||
|
@tf_export('image.draw_bounding_boxes', v1=[])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def draw_bounding_boxes_v2(images, boxes, colors, name=None):
|
||
|
"""Draw bounding boxes on a batch of images.
|
||
|
|
||
|
Outputs a copy of `images` but draws on top of the pixels zero or more
|
||
|
bounding boxes specified by the locations in `boxes`. The coordinates of the
|
||
|
each bounding box in `boxes` are encoded as `[y_min, x_min, y_max, x_max]`.
|
||
|
The bounding box coordinates are floats in `[0.0, 1.0]` relative to the width
|
||
|
and the height of the underlying image.
|
||
|
|
||
|
For example, if an image is 100 x 200 pixels (height x width) and the bounding
|
||
|
box is `[0.1, 0.2, 0.5, 0.9]`, the upper-left and bottom-right coordinates of
|
||
|
the bounding box will be `(40, 10)` to `(180, 50)` (in (x,y) coordinates).
|
||
|
|
||
|
Parts of the bounding box may fall outside the image.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `float32`, `half`.
|
||
|
4-D with shape `[batch, height, width, depth]`. A batch of images.
|
||
|
boxes: A `Tensor` of type `float32`. 3-D with shape `[batch,
|
||
|
num_bounding_boxes, 4]` containing bounding boxes.
|
||
|
colors: A `Tensor` of type `float32`. 2-D. A list of RGBA colors to cycle
|
||
|
through for the boxes.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `images`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> # create an empty image
|
||
|
>>> img = tf.zeros([1, 3, 3, 3])
|
||
|
>>> # draw a box around the image
|
||
|
>>> box = np.array([0, 0, 1, 1])
|
||
|
>>> boxes = box.reshape([1, 1, 4])
|
||
|
>>> # alternate between red and blue
|
||
|
>>> colors = np.array([[1.0, 0.0, 0.0], [0.0, 0.0, 1.0]])
|
||
|
>>> tf.image.draw_bounding_boxes(img, boxes, colors)
|
||
|
<tf.Tensor: shape=(1, 3, 3, 3), dtype=float32, numpy=
|
||
|
array([[[[1., 0., 0.],
|
||
|
[1., 0., 0.],
|
||
|
[1., 0., 0.]],
|
||
|
[[1., 0., 0.],
|
||
|
[0., 0., 0.],
|
||
|
[1., 0., 0.]],
|
||
|
[[1., 0., 0.],
|
||
|
[1., 0., 0.],
|
||
|
[1., 0., 0.]]]], dtype=float32)>
|
||
|
"""
|
||
|
if colors is None:
|
||
|
return gen_image_ops.draw_bounding_boxes(images, boxes, name)
|
||
|
return gen_image_ops.draw_bounding_boxes_v2(images, boxes, colors, name)
|
||
|
|
||
|
|
||
|
@tf_export(v1=['image.draw_bounding_boxes'])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def draw_bounding_boxes(images, boxes, name=None, colors=None):
|
||
|
"""Draw bounding boxes on a batch of images.
|
||
|
|
||
|
Outputs a copy of `images` but draws on top of the pixels zero or more
|
||
|
bounding boxes specified by the locations in `boxes`. The coordinates of the
|
||
|
each bounding box in `boxes` are encoded as `[y_min, x_min, y_max, x_max]`.
|
||
|
The bounding box coordinates are floats in `[0.0, 1.0]` relative to the width
|
||
|
and the height of the underlying image.
|
||
|
|
||
|
For example, if an image is 100 x 200 pixels (height x width) and the bounding
|
||
|
box is `[0.1, 0.2, 0.5, 0.9]`, the upper-left and bottom-right coordinates of
|
||
|
the bounding box will be `(40, 10)` to `(180, 50)` (in (x,y) coordinates).
|
||
|
|
||
|
Parts of the bounding box may fall outside the image.
|
||
|
|
||
|
Args:
|
||
|
images: A `Tensor`. Must be one of the following types: `float32`, `half`.
|
||
|
4-D with shape `[batch, height, width, depth]`. A batch of images.
|
||
|
boxes: A `Tensor` of type `float32`. 3-D with shape `[batch,
|
||
|
num_bounding_boxes, 4]` containing bounding boxes.
|
||
|
name: A name for the operation (optional).
|
||
|
colors: A `Tensor` of type `float32`. 2-D. A list of RGBA colors to cycle
|
||
|
through for the boxes.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `images`.
|
||
|
|
||
|
Usage Example:
|
||
|
|
||
|
>>> # create an empty image
|
||
|
>>> img = tf.zeros([1, 3, 3, 3])
|
||
|
>>> # draw a box around the image
|
||
|
>>> box = np.array([0, 0, 1, 1])
|
||
|
>>> boxes = box.reshape([1, 1, 4])
|
||
|
>>> # alternate between red and blue
|
||
|
>>> colors = np.array([[1.0, 0.0, 0.0], [0.0, 0.0, 1.0]])
|
||
|
>>> tf.image.draw_bounding_boxes(img, boxes, colors)
|
||
|
<tf.Tensor: shape=(1, 3, 3, 3), dtype=float32, numpy=
|
||
|
array([[[[1., 0., 0.],
|
||
|
[1., 0., 0.],
|
||
|
[1., 0., 0.]],
|
||
|
[[1., 0., 0.],
|
||
|
[0., 0., 0.],
|
||
|
[1., 0., 0.]],
|
||
|
[[1., 0., 0.],
|
||
|
[1., 0., 0.],
|
||
|
[1., 0., 0.]]]], dtype=float32)>
|
||
|
"""
|
||
|
return draw_bounding_boxes_v2(images, boxes, colors, name)
|
||
|
|
||
|
|
||
|
@tf_export('image.generate_bounding_box_proposals')
|
||
|
@dispatch.add_dispatch_support
|
||
|
def generate_bounding_box_proposals(scores,
|
||
|
bbox_deltas,
|
||
|
image_info,
|
||
|
anchors,
|
||
|
nms_threshold=0.7,
|
||
|
pre_nms_topn=6000,
|
||
|
min_size=16,
|
||
|
post_nms_topn=300,
|
||
|
name=None):
|
||
|
"""Generate bounding box proposals from encoded bounding boxes.
|
||
|
|
||
|
Args:
|
||
|
scores: A 4-D float `Tensor` of shape
|
||
|
`[num_images, height, width, num_achors]` containing scores of
|
||
|
the boxes for given anchors, can be unsorted.
|
||
|
bbox_deltas: A 4-D float `Tensor` of shape
|
||
|
`[num_images, height, width, 4 x num_anchors]` encoding boxes
|
||
|
with respect to each anchor. Coordinates are given
|
||
|
in the form `[dy, dx, dh, dw]`.
|
||
|
image_info: A 2-D float `Tensor` of shape `[num_images, 5]`
|
||
|
containing image information Height, Width, Scale.
|
||
|
anchors: A 2-D float `Tensor` of shape `[num_anchors, 4]`
|
||
|
describing the anchor boxes.
|
||
|
Boxes are formatted in the form `[y1, x1, y2, x2]`.
|
||
|
nms_threshold: A scalar float `Tensor` for non-maximal-suppression
|
||
|
threshold. Defaults to 0.7.
|
||
|
pre_nms_topn: A scalar int `Tensor` for the number of
|
||
|
top scoring boxes to be used as input. Defaults to 6000.
|
||
|
min_size: A scalar float `Tensor`. Any box that has a smaller size
|
||
|
than min_size will be discarded. Defaults to 16.
|
||
|
post_nms_topn: An integer. Maximum number of rois in the output.
|
||
|
name: A name for this operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
rois: Region of interest boxes sorted by their scores.
|
||
|
roi_probabilities: scores of the ROI boxes in the ROIs' `Tensor`.
|
||
|
"""
|
||
|
return gen_image_ops.generate_bounding_box_proposals(
|
||
|
scores=scores,
|
||
|
bbox_deltas=bbox_deltas,
|
||
|
image_info=image_info,
|
||
|
anchors=anchors,
|
||
|
nms_threshold=nms_threshold,
|
||
|
pre_nms_topn=pre_nms_topn,
|
||
|
min_size=min_size,
|
||
|
post_nms_topn=post_nms_topn,
|
||
|
name=name)
|