1020 lines
38 KiB
Python
1020 lines
38 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Script Language Operators."""
|
||
|
|
||
|
# pylint: disable=g-bad-name
|
||
|
import functools
|
||
|
import threading
|
||
|
|
||
|
|
||
|
# Used by py_util.cc to get tracebacks.
|
||
|
import traceback # pylint: disable=unused-import
|
||
|
import weakref
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from tensorflow.python.autograph.impl import api as autograph
|
||
|
from tensorflow.python.eager import backprop
|
||
|
from tensorflow.python.eager import backprop_util
|
||
|
from tensorflow.python.eager import context
|
||
|
from tensorflow.python.eager import record
|
||
|
from tensorflow.python.framework import composite_tensor
|
||
|
from tensorflow.python.framework import constant_op
|
||
|
from tensorflow.python.framework import dtypes
|
||
|
from tensorflow.python.framework import func_graph
|
||
|
from tensorflow.python.framework import function
|
||
|
from tensorflow.python.framework import ops
|
||
|
from tensorflow.python.framework import tensor_spec
|
||
|
from tensorflow.python.framework import type_spec
|
||
|
from tensorflow.python.lib.core import _pywrap_py_func
|
||
|
from tensorflow.python.ops import autograph_ops # pylint: disable=unused-import
|
||
|
from tensorflow.python.ops import gen_script_ops
|
||
|
from tensorflow.python.ops import resource_variable_ops
|
||
|
from tensorflow.python.util import compat
|
||
|
from tensorflow.python.util import deprecation
|
||
|
from tensorflow.python.util import dispatch
|
||
|
from tensorflow.python.util import nest
|
||
|
from tensorflow.python.util import tf_inspect
|
||
|
from tensorflow.python.util import variable_utils
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
|
||
|
# Map from EagerPyFunc token to tuple (tape, eager args, eager outputs);
|
||
|
# used for differentiation.
|
||
|
tape_cache = {}
|
||
|
|
||
|
|
||
|
def _maybe_copy_to_context_device(tensor, device_name):
|
||
|
"""Copy an EagerTensor to the current device if it's not on `device_name`."""
|
||
|
in_device = tensor.backing_device
|
||
|
if device_name == in_device:
|
||
|
return tensor
|
||
|
else:
|
||
|
# Note that EagerTensor._copy bypasses the placer and copies to the context
|
||
|
# device, which means e.g. int32 Tensors which would normally be forced onto
|
||
|
# the CPU can instead be placed on the GPU. This is necessary so that the
|
||
|
# PyFunc kernel always returns Tensors on the device it's executing on.
|
||
|
return tensor._copy() # pylint: disable=protected-access
|
||
|
|
||
|
|
||
|
class EagerFunc:
|
||
|
"""A wrapper for a function owned by an EagerPyFunc."""
|
||
|
|
||
|
def __init__(self, func, Tout, is_grad_func):
|
||
|
"""Constructs an EagerFunc.
|
||
|
|
||
|
Args:
|
||
|
func: The function to wrap.
|
||
|
Tout: A list of datatypes for the output; an empty list if the output is
|
||
|
None.
|
||
|
is_grad_func: Whether this EagerFunc is the gradient of another
|
||
|
EagerPyFunc.
|
||
|
"""
|
||
|
self._func = func
|
||
|
self._out_dtypes = Tout
|
||
|
self._is_grad_func = is_grad_func
|
||
|
self._support_graph_mode_gradient = False
|
||
|
|
||
|
def set_support_graph_mode_gradient(self):
|
||
|
"""Indicates the object shall support gradient ops.
|
||
|
|
||
|
This function is internally used by _EagerPyFuncGrad to support
|
||
|
graph mode gradient of EagerFunc via tf.gradient().
|
||
|
"""
|
||
|
self._support_graph_mode_gradient = True
|
||
|
|
||
|
def _convert(self, value, dtype):
|
||
|
"""Converts `value` to a tensor of type `dtype`, with error checking.
|
||
|
|
||
|
Args:
|
||
|
value: The tensor to convert.
|
||
|
dtype: The desired dtype.
|
||
|
|
||
|
Returns:
|
||
|
A tensor of type `dtype`, or a zeros tensor if value is None and
|
||
|
this function is in fact a gradient function.
|
||
|
|
||
|
Raises:
|
||
|
RuntimeError: if `value` is a variable.
|
||
|
"""
|
||
|
|
||
|
if isinstance(value, resource_variable_ops.ResourceVariable):
|
||
|
raise RuntimeError(
|
||
|
"Attempting to return a variable from an eagerly executed py_func. "
|
||
|
"Only numeric data structures like Tensors or NumPy arrays should "
|
||
|
"be returned; to return the value of a variable, make sure to obtain "
|
||
|
"the Tensor backing it by calling `.read_value()` on the variable in "
|
||
|
f"question: {value}")
|
||
|
if value is None and self._is_grad_func:
|
||
|
# Gradient functions may legitimately return a list that contains
|
||
|
# both Tensors and Python Nones. Unfortunately this breaks the
|
||
|
# OpKernel, so for now we replace None objects with zeros, which is
|
||
|
# mathematically correct but will prevent short-circuiting gradient
|
||
|
# computations.
|
||
|
#
|
||
|
# TODO(akshayka): Make it possible to return a list of both Tensors and
|
||
|
# Nones from an EagerPyFunc.
|
||
|
return constant_op.constant(0.0, dtype=dtype)
|
||
|
return ops.convert_to_tensor(value, dtype=dtype)
|
||
|
|
||
|
def __call__(self, device, token, args):
|
||
|
"""Calls `self._func` in eager mode, recording the tape if needed."""
|
||
|
use_tape_cache = (
|
||
|
self._support_graph_mode_gradient or record.could_possibly_record())
|
||
|
|
||
|
if use_tape_cache:
|
||
|
with backprop.GradientTape() as tape:
|
||
|
for tensor in args:
|
||
|
for t in nest.flatten(tensor):
|
||
|
if backprop_util.IsTrainable(t):
|
||
|
tape.watch(t)
|
||
|
outputs = self._call(device, args)
|
||
|
tape_cache[compat.as_bytes(token)] = (tape, args, outputs)
|
||
|
else:
|
||
|
outputs = self._call(device, args)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
def _call(self, device, args):
|
||
|
"""Passes `args` to `self._func`, which is executed eagerly."""
|
||
|
with context.eager_mode():
|
||
|
ret = self._func(*args)
|
||
|
# copy the returned tensors to the PyFunc op's device if necessary.
|
||
|
device_name = device
|
||
|
if device_name is None:
|
||
|
# "None" here means "CPU", from the nullptr convention with C++ device
|
||
|
# pointers.
|
||
|
device_name = "/job:localhost/replica:0/task:0/device:CPU:0"
|
||
|
with ops.device(device):
|
||
|
if isinstance(ret, (tuple, list)):
|
||
|
outputs = [
|
||
|
_maybe_copy_to_context_device(self._convert(x, dtype=dtype),
|
||
|
device_name)
|
||
|
for (x, dtype) in zip(ret, self._out_dtypes)
|
||
|
]
|
||
|
elif ret is None:
|
||
|
outputs = None
|
||
|
else:
|
||
|
outputs = _maybe_copy_to_context_device(
|
||
|
self._convert(ret, dtype=self._out_dtypes[0]), device_name)
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class FuncRegistry:
|
||
|
"""A helper class to keep track of registered py functions.
|
||
|
|
||
|
FuncRegistry keeps a map from unique tokens (string) to python
|
||
|
functions, which takes numpy arrays and outputs numpy arrays.
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
self._lock = threading.Lock()
|
||
|
self._unique_id = 0 # GUARDED_BY(self._lock)
|
||
|
# Only store weakrefs to the functions. The strong reference is stored in
|
||
|
# the graph.
|
||
|
self._funcs = weakref.WeakValueDictionary()
|
||
|
|
||
|
@property
|
||
|
def _ctx(self):
|
||
|
# N.B. This is needed to support calling py_func with GPU tensors,
|
||
|
# which must be transferred to CPU if used in any of the NumPy APIs.
|
||
|
context.ensure_initialized()
|
||
|
return context.context()._handle # pylint: disable=protected-access
|
||
|
|
||
|
def insert(self, func):
|
||
|
"""Registers `func` and returns a unique token for this entry."""
|
||
|
token = self._next_unique_token()
|
||
|
# Store a weakref to the function
|
||
|
self._funcs[token] = func
|
||
|
return token
|
||
|
|
||
|
def remove(self, token):
|
||
|
"""Removes the registered function corresponding to `token`."""
|
||
|
self._funcs.pop(token, None)
|
||
|
|
||
|
def get(self, token, default=None):
|
||
|
"""Gets the registered function corresponding to `token`."""
|
||
|
return self._funcs.get(token, default)
|
||
|
|
||
|
@staticmethod
|
||
|
def _convert(value, dtype=None):
|
||
|
"""Converts an arg to numpy, avoiding dangerous string and unicode dtypes.
|
||
|
|
||
|
Numpy pads with zeros when using string and unicode dtypes if different
|
||
|
components of a tensor have different lengths. This is bad: ignoring the
|
||
|
padding is wrong for text data, and removing the padding is wrong for binary
|
||
|
data. To avoid this bug, we redo the conversion using an object dtype.
|
||
|
Additionally, we convert unicode strings to (byte-)strings for
|
||
|
compatibility.
|
||
|
|
||
|
Args:
|
||
|
value: Value to convert to a numpy array.
|
||
|
dtype: (Optional.) Desired NumPy type for the returned value.
|
||
|
|
||
|
Returns:
|
||
|
A numpy array.
|
||
|
"""
|
||
|
result = np.asarray(value, dtype=dtype, order="C")
|
||
|
if result.dtype.char == "S" and result is not value:
|
||
|
return np.asarray(value, order="C", dtype=object)
|
||
|
elif result.dtype.char == "U" and result is not value:
|
||
|
value = np.vectorize(lambda x: x.encode("utf8"))(value)
|
||
|
return np.asarray(value, order="C", dtype=object)
|
||
|
elif result.dtype.char == "U":
|
||
|
return result.astype(np.bytes_)
|
||
|
else:
|
||
|
return result
|
||
|
|
||
|
def __call__(self, token, device, args):
|
||
|
"""Calls the registered function for `token` with args.
|
||
|
|
||
|
Args:
|
||
|
token: A key into this `FuncRegistry` identifying which function to call.
|
||
|
device: Name of the device on which outputs of `token`'s corresponding
|
||
|
operation should be placed. Used iff the function registered for `token`
|
||
|
is an EagerPyFunc.
|
||
|
args: The arguments to pass to the function registered for `token`.
|
||
|
|
||
|
Returns:
|
||
|
The output of the function registered for `token`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if no function is registered for `token`.
|
||
|
"""
|
||
|
func = self.get(token, None)
|
||
|
if func is None:
|
||
|
raise ValueError(f"Could not find callback with key={token} in the "
|
||
|
"registry.")
|
||
|
if isinstance(func, EagerFunc):
|
||
|
# NB: Different invocations of the same py_func will share the same
|
||
|
# token, and the entries they stash in the tape_cache will collide.
|
||
|
# In practice, when executing a graph, this should only happen if
|
||
|
# the py_func is in a while_loop whose iterations are run in parallel
|
||
|
# or if the graph is being driven by concurrent session.run() calls.
|
||
|
#
|
||
|
# TODO(akshayka): Key the tape cache in a thread-safe way.
|
||
|
return func(device, token, args)
|
||
|
else:
|
||
|
ret = func(*args)
|
||
|
# Strings seem to lead to a memory leak here if they're not wrapped in a
|
||
|
# list.
|
||
|
if isinstance(ret, bytes):
|
||
|
ret = [ret]
|
||
|
# Ensures that we return either a single numpy array or a list of numpy
|
||
|
# arrays.
|
||
|
if isinstance(ret, (tuple, list)):
|
||
|
return [self._convert(x) for x in ret]
|
||
|
else:
|
||
|
return self._convert(ret)
|
||
|
|
||
|
def size(self):
|
||
|
"""Returns how many functions are currently registered."""
|
||
|
return len(self._funcs)
|
||
|
|
||
|
def _next_unique_token(self):
|
||
|
"""Returns a unique token."""
|
||
|
with self._lock:
|
||
|
uid = self._unique_id
|
||
|
self._unique_id += 1
|
||
|
return "pyfunc_%d" % uid
|
||
|
|
||
|
|
||
|
# Global registry for py functions.
|
||
|
_py_funcs = FuncRegistry()
|
||
|
|
||
|
_pywrap_py_func.initialize_py_trampoline(_py_funcs)
|
||
|
|
||
|
|
||
|
def _internal_py_func(func,
|
||
|
inp,
|
||
|
Tout,
|
||
|
stateful=None,
|
||
|
use_eager_py_func=False,
|
||
|
is_grad_func=False,
|
||
|
name=None):
|
||
|
"""See documentation for py_func and eager_py_func."""
|
||
|
if not callable(func):
|
||
|
raise ValueError(
|
||
|
f"Expected func to be callable. Received func={func} of type "
|
||
|
f"{type(func)}.")
|
||
|
|
||
|
original_func = func
|
||
|
func = autograph.do_not_convert(func)
|
||
|
inp = variable_utils.convert_variables_to_tensors(list(inp))
|
||
|
|
||
|
# Normalize Tout.
|
||
|
is_list_or_tuple = isinstance(Tout, (list, tuple))
|
||
|
Tout = Tout if is_list_or_tuple else [Tout]
|
||
|
Tout = [_as_dtype_or_type_spec(t) for t in Tout]
|
||
|
|
||
|
# Check if we need to handle CompositeTensor inputs or outputs.
|
||
|
handle_composite_tensors = (
|
||
|
use_eager_py_func and
|
||
|
(any(isinstance(v, composite_tensor.CompositeTensor) for v in inp) or
|
||
|
any(isinstance(t, type_spec.TypeSpec) for t in Tout)))
|
||
|
if handle_composite_tensors:
|
||
|
func, inp, Tout, out_structure = _wrap_for_composites(func, inp, Tout)
|
||
|
|
||
|
if use_eager_py_func:
|
||
|
func = EagerFunc(func, Tout, is_grad_func)
|
||
|
|
||
|
# Tying the registered function's lifetime with the current default graph is
|
||
|
# not reliable. For example, a binary may switch graphs in between model
|
||
|
# training end evaluation, via saved_model. Those binaries work because the
|
||
|
# original function is global, and break once the registered
|
||
|
# function is an anonymous lambda, like the one produced by do_not_convert.
|
||
|
# To avoid breaking those cases, we attach the wrapper to the original
|
||
|
# function so that their lifetime is connected.
|
||
|
# TODO(b/144286616): Remove this.
|
||
|
if tf_inspect.isfunction(original_func):
|
||
|
# Note: this check is needed because original_func may be a descriptor
|
||
|
# (https://docs.python.org/3/howto/descriptor.html)
|
||
|
# and we can't attach attributes to those.
|
||
|
original_func.ag_dnc_wrapper__ = func
|
||
|
|
||
|
token = _py_funcs.insert(func)
|
||
|
# We tie the registered function's lifetime with the current default graph,
|
||
|
# i.e., when the current graph is destroyed, we remove its py funcs.
|
||
|
graph = ops.get_default_graph()
|
||
|
|
||
|
while True:
|
||
|
current_graph = graph
|
||
|
if isinstance(graph, function._FuncGraph): # pylint: disable=protected-access
|
||
|
graph = graph._outer_graph # pylint: disable=protected-access
|
||
|
elif isinstance(graph, func_graph.FuncGraph):
|
||
|
graph = graph.outer_graph
|
||
|
if graph is current_graph:
|
||
|
break
|
||
|
|
||
|
# TODO(zhifengc): Consider adding a Graph method to collect
|
||
|
# `cleanup` objects in one of its member.
|
||
|
if not hasattr(graph, "_py_funcs_used_in_graph"):
|
||
|
graph._py_funcs_used_in_graph = [] # pylint: disable=protected-access
|
||
|
|
||
|
# Store a reference to the function in the graph to ensure it stays alive
|
||
|
# as long as the graph lives. When the graph is destroyed, the function
|
||
|
# is left to the garbage collector for destruction as well.
|
||
|
graph._py_funcs_used_in_graph.append(func) # pylint: disable=protected-access
|
||
|
|
||
|
if use_eager_py_func:
|
||
|
result = gen_script_ops.eager_py_func(
|
||
|
input=inp,
|
||
|
token=token,
|
||
|
is_async=context.is_async(),
|
||
|
Tout=Tout,
|
||
|
name=name)
|
||
|
else:
|
||
|
if stateful:
|
||
|
result = gen_script_ops.py_func(
|
||
|
input=inp, token=token, Tout=Tout, name=name)
|
||
|
else:
|
||
|
result = gen_script_ops.py_func_stateless(
|
||
|
input=inp, token=token, Tout=Tout, name=name)
|
||
|
|
||
|
if handle_composite_tensors and Tout:
|
||
|
result = nest.pack_sequence_as(
|
||
|
out_structure, result, expand_composites=True)
|
||
|
|
||
|
return result if is_list_or_tuple else result[0]
|
||
|
|
||
|
|
||
|
# TODO(akshayka): Implement higher-order derivatives.
|
||
|
@ops.RegisterGradient("EagerPyFunc")
|
||
|
def _EagerPyFuncGrad(op, *dy):
|
||
|
"""Computes the gradient of an EagerPyFunc."""
|
||
|
|
||
|
token = op.get_attr("token")
|
||
|
|
||
|
def eagerly_executed_grad(*dy):
|
||
|
tape, eager_inputs, eager_outputs = tape_cache.pop(compat.as_bytes(token))
|
||
|
return tape.gradient(eager_outputs, eager_inputs, output_gradients=dy)
|
||
|
|
||
|
with ops.control_dependencies(op.outputs):
|
||
|
gradient_op = _internal_py_func(
|
||
|
func=eagerly_executed_grad,
|
||
|
inp=dy,
|
||
|
Tout=[tensor.dtype for tensor in op.inputs],
|
||
|
use_eager_py_func=True,
|
||
|
is_grad_func=True)
|
||
|
|
||
|
if not context.executing_eagerly():
|
||
|
# In graph mode, we find the func object from its token and
|
||
|
# notify the eager func object it needs to support the gradients.
|
||
|
func = _py_funcs.get(token.decode())
|
||
|
assert isinstance(func, EagerFunc), (
|
||
|
f"EagerPyFuncGrad called on a non-EagerFunc object: {func}.")
|
||
|
func.set_support_graph_mode_gradient()
|
||
|
return gradient_op
|
||
|
|
||
|
|
||
|
def _check_args_and_maybe_make_decorator(
|
||
|
script_op, script_op_name, func=None, inp=None, Tout=None, **kwargs
|
||
|
):
|
||
|
"""Checks the arguments and returns a decorator if func is None."""
|
||
|
if Tout is None:
|
||
|
raise TypeError(
|
||
|
"Missing required argument: 'Tout'\n"
|
||
|
f" If using {script_op_name} as a decorator, set `Tout`\n"
|
||
|
" **by name** above the function:\n"
|
||
|
f" `@{script_op_name}(Tout=tout)`"
|
||
|
)
|
||
|
|
||
|
if func is None:
|
||
|
if inp is not None:
|
||
|
raise TypeError(
|
||
|
f"Don't set the `inp` argument when using {script_op_name} as a "
|
||
|
"decorator (`func=None`)."
|
||
|
)
|
||
|
|
||
|
def py_function_decorator(fun):
|
||
|
@functools.wraps(fun)
|
||
|
def py_function_wrapper(*args):
|
||
|
return script_op(fun, inp=args, Tout=Tout, **kwargs)
|
||
|
|
||
|
return py_function_wrapper
|
||
|
|
||
|
return py_function_decorator
|
||
|
|
||
|
if inp is None:
|
||
|
raise TypeError(
|
||
|
"Missing argument `inp`:\n"
|
||
|
" You must set the `inp` argument (the list of arguments to the\n"
|
||
|
f" function), unless you use `{script_op_name}` as a decorator"
|
||
|
"(`func=None`)."
|
||
|
)
|
||
|
|
||
|
return None
|
||
|
|
||
|
|
||
|
@tf_export("py_function")
|
||
|
@dispatch.add_dispatch_support
|
||
|
def eager_py_func(func=None, inp=None, Tout=None, name=None):
|
||
|
"""Wraps a python function into a TensorFlow op that executes it eagerly.
|
||
|
|
||
|
Using `tf.py_function` inside a `tf.function` allows you to run a python
|
||
|
function using eager execution, inside the `tf.function`'s graph.
|
||
|
This has two main effects:
|
||
|
|
||
|
1. This allows you to use nofunc=None, inp=None, Tout=None tensorflow code
|
||
|
inside your `tf.function`.
|
||
|
2. It allows you to run python control logic in a `tf.function` without
|
||
|
relying on `tf.autograph` to convert the code to use tensorflow control logic
|
||
|
(tf.cond, tf.while_loop).
|
||
|
|
||
|
Both of these features can be useful for debugging.
|
||
|
|
||
|
Since `tf.py_function` operates on `Tensor`s it is still
|
||
|
differentiable (once).
|
||
|
|
||
|
There are two ways to use this function:
|
||
|
|
||
|
### As a decorator
|
||
|
|
||
|
Use `tf.py_function` as a decorator to ensure the function always runs
|
||
|
eagerly.
|
||
|
|
||
|
When using `tf.py_function` as a decorator:
|
||
|
|
||
|
* you must set `Tout`
|
||
|
* you may set `name`
|
||
|
* you must not set `func` or `inp`
|
||
|
|
||
|
For example, you might use `tf.py_function` to
|
||
|
implement the log huber function.
|
||
|
|
||
|
>>> @tf.py_function(Tout=tf.float32)
|
||
|
... def py_log_huber(x, m):
|
||
|
... print('Running with eager execution.')
|
||
|
... if tf.abs(x) <= m:
|
||
|
... return x**2
|
||
|
... else:
|
||
|
... return m**2 * (1 - 2 * tf.math.log(m) + tf.math.log(x**2))
|
||
|
|
||
|
Under eager execution the function operates normally:
|
||
|
|
||
|
>>> x = tf.constant(1.0)
|
||
|
>>> m = tf.constant(2.0)
|
||
|
>>>
|
||
|
>>> print(py_log_huber(x,m).numpy())
|
||
|
Running with eager execution.
|
||
|
1.0
|
||
|
|
||
|
Inside a `tf.function` the `tf.py_function` is not converted to a `tf.Graph`.:
|
||
|
|
||
|
>>> @tf.function
|
||
|
... def tf_wrapper(x):
|
||
|
... print('Tracing.')
|
||
|
... m = tf.constant(2.0)
|
||
|
... return py_log_huber(x,m)
|
||
|
|
||
|
The `tf.py_function` only executes eagerly, and only when the `tf.function`
|
||
|
is called:
|
||
|
|
||
|
>>> print(tf_wrapper(x).numpy())
|
||
|
Tracing.
|
||
|
Running with eager execution.
|
||
|
1.0
|
||
|
>>> print(tf_wrapper(x).numpy())
|
||
|
Running with eager execution.
|
||
|
1.0
|
||
|
|
||
|
|
||
|
Gradients work as expected:
|
||
|
|
||
|
>>> with tf.GradientTape() as t:
|
||
|
... t.watch(x)
|
||
|
... y = tf_wrapper(x)
|
||
|
Running with eager execution.
|
||
|
>>>
|
||
|
>>> t.gradient(y, x).numpy()
|
||
|
2.0
|
||
|
|
||
|
### Inplace
|
||
|
|
||
|
You can also skip the decorator and use `tf.py_function` in-place.
|
||
|
This form is a useful shortcut if you don't control the function's source,
|
||
|
but it is harder to read.
|
||
|
|
||
|
>>> # No decorator
|
||
|
>>> def log_huber(x, m):
|
||
|
... if tf.abs(x) <= m:
|
||
|
... return x**2
|
||
|
... else:
|
||
|
... return m**2 * (1 - 2 * tf.math.log(m) + tf.math.log(x**2))
|
||
|
>>>
|
||
|
>>> x = tf.constant(1.0)
|
||
|
>>> m = tf.constant(2.0)
|
||
|
>>>
|
||
|
>>> tf.py_function(func=log_huber, inp=[x, m], Tout=tf.float32).numpy()
|
||
|
1.0
|
||
|
|
||
|
### More info
|
||
|
|
||
|
You can also use `tf.py_function` to debug your models at runtime
|
||
|
using Python tools, i.e., you can isolate portions of your code that
|
||
|
you want to debug, wrap them in Python functions and insert `pdb` tracepoints
|
||
|
or print statements as desired, and wrap those functions in
|
||
|
`tf.py_function`.
|
||
|
|
||
|
For more information on eager execution, see the
|
||
|
[Eager guide](https://tensorflow.org/guide/eager).
|
||
|
|
||
|
`tf.py_function` is similar in spirit to `tf.numpy_function`, but unlike
|
||
|
the latter, the former lets you use TensorFlow operations in the wrapped
|
||
|
Python function. In particular, while `tf.compat.v1.py_func` only runs on CPUs
|
||
|
and wraps functions that take NumPy arrays as inputs and return NumPy arrays
|
||
|
as outputs, `tf.py_function` can be placed on GPUs and wraps functions
|
||
|
that take Tensors as inputs, execute TensorFlow operations in their bodies,
|
||
|
and return Tensors as outputs.
|
||
|
|
||
|
Note: We recommend to avoid using `tf.py_function` outside of prototyping
|
||
|
and experimentation due to the following known limitations:
|
||
|
|
||
|
* Calling `tf.py_function` will acquire the Python Global Interpreter Lock
|
||
|
(GIL) that allows only one thread to run at any point in time. This will
|
||
|
preclude efficient parallelization and distribution of the execution of the
|
||
|
program.
|
||
|
|
||
|
* The body of the function (i.e. `func`) will not be serialized in a
|
||
|
`GraphDef`. Therefore, you should not use this function if you need to
|
||
|
serialize your model and restore it in a different environment.
|
||
|
|
||
|
* The operation must run in the same address space as the Python program
|
||
|
that calls `tf.py_function()`. If you are using distributed
|
||
|
TensorFlow, you must run a `tf.distribute.Server` in the same process as the
|
||
|
program that calls `tf.py_function()` and you must pin the created
|
||
|
operation to a device in that server (e.g. using `with tf.device():`).
|
||
|
|
||
|
* Currently `tf.py_function` is not compatible with XLA. Calling
|
||
|
`tf.py_function` inside `tf.function(jit_compile=True)` will raise an
|
||
|
error.
|
||
|
|
||
|
Args:
|
||
|
func: A Python function that accepts `inp` as arguments, and returns a value
|
||
|
(or list of values) whose type is described by `Tout`. Do not set `func`
|
||
|
when using `tf.py_function` as a decorator.
|
||
|
inp: Input arguments for `func`. A list whose elements are `Tensor`s or
|
||
|
`CompositeTensors` (such as `tf.RaggedTensor`); or a single `Tensor` or
|
||
|
`CompositeTensor`. Do not set `inp` when using `tf.py_function` as a
|
||
|
decorator.
|
||
|
Tout: The type(s) of the value(s) returned by `func`. One of the following.
|
||
|
* If `func` returns a `Tensor` (or a value that can be converted to a
|
||
|
Tensor): the `tf.DType` for that value. * If `func` returns a
|
||
|
`CompositeTensor`: The `tf.TypeSpec` for that value. * If `func` returns
|
||
|
`None`: the empty list (`[]`). * If `func` returns a list of `Tensor` and
|
||
|
`CompositeTensor` values: a corresponding list of `tf.DType`s and
|
||
|
`tf.TypeSpec`s for each value.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
* If `func` is `None` this returns a decorator that will ensure the
|
||
|
decorated function will always run with eager execution even if called
|
||
|
from a `tf.function`/`tf.Graph`.
|
||
|
* If used `func` is not `None` this executes `func` with eager execution
|
||
|
and returns the result: a `Tensor`, `CompositeTensor`, or list of
|
||
|
`Tensor` and `CompositeTensor`; or an empty list if `func` returns `None`.
|
||
|
"""
|
||
|
decorator = _check_args_and_maybe_make_decorator(
|
||
|
eager_py_func, "tf.py_function", func=func, inp=inp, Tout=Tout, name=name
|
||
|
)
|
||
|
if decorator is not None:
|
||
|
return decorator
|
||
|
|
||
|
if ops.executing_eagerly_outside_functions():
|
||
|
with ops.device(context.context().host_address_space()):
|
||
|
return _internal_py_func(
|
||
|
func=func, inp=inp, Tout=Tout, use_eager_py_func=True, name=name)
|
||
|
|
||
|
return _internal_py_func(
|
||
|
func=func, inp=inp, Tout=Tout, use_eager_py_func=True, name=name)
|
||
|
|
||
|
|
||
|
def py_func_common(func, inp, Tout, stateful=True, name=None):
|
||
|
"""Wraps a python function and uses it as a TensorFlow op.
|
||
|
|
||
|
Given a python function `func`, which takes numpy arrays as its
|
||
|
arguments and returns numpy arrays as its outputs, wrap this function as an
|
||
|
operation in a TensorFlow graph. The following snippet constructs a simple
|
||
|
TensorFlow graph that invokes the `np.sinh()` NumPy function as a operation
|
||
|
in the graph:
|
||
|
|
||
|
```python
|
||
|
def my_func(x):
|
||
|
# x will be a numpy array with the contents of the placeholder below
|
||
|
return np.sinh(x)
|
||
|
input = tf.compat.v1.placeholder(tf.float32)
|
||
|
y = tf.compat.v1.py_func(my_func, [input], tf.float32)
|
||
|
```
|
||
|
|
||
|
**N.B.** The `tf.compat.v1.py_func()` operation has the following known
|
||
|
limitations:
|
||
|
|
||
|
* The body of the function (i.e. `func`) will not be serialized in a
|
||
|
`GraphDef`. Therefore, you should not use this function if you need to
|
||
|
serialize your model and restore it in a different environment.
|
||
|
|
||
|
* The operation must run in the same address space as the Python program
|
||
|
that calls `tf.compat.v1.py_func()`. If you are using distributed
|
||
|
TensorFlow, you
|
||
|
must run a `tf.distribute.Server` in the same process as the program that
|
||
|
calls
|
||
|
`tf.compat.v1.py_func()` and you must pin the created operation to a device
|
||
|
in that
|
||
|
server (e.g. using `with tf.device():`).
|
||
|
|
||
|
Note: It produces tensors of unknown shape and rank as shape inference
|
||
|
does not work on arbitrary Python code.
|
||
|
If you need the shape, you need to set it based on statically
|
||
|
available information.
|
||
|
|
||
|
E.g.
|
||
|
```python
|
||
|
import tensorflow as tf
|
||
|
import numpy as np
|
||
|
|
||
|
def make_synthetic_data(i):
|
||
|
return np.cast[np.uint8](i) * np.ones([20,256,256,3],
|
||
|
dtype=np.float32) / 10.
|
||
|
|
||
|
def preprocess_fn(i):
|
||
|
ones = tf.py_function(make_synthetic_data,[i],tf.float32)
|
||
|
ones.set_shape(tf.TensorShape([None, None, None, None]))
|
||
|
ones = tf.image.resize(ones, [224,224])
|
||
|
return ones
|
||
|
|
||
|
ds = tf.data.Dataset.range(10)
|
||
|
ds = ds.map(preprocess_fn)
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
func: A Python function, which accepts `ndarray` objects as arguments and
|
||
|
returns a list of `ndarray` objects (or a single `ndarray`). This function
|
||
|
must accept as many arguments as there are tensors in `inp`, and these
|
||
|
argument types will match the corresponding `tf.Tensor` objects in `inp`.
|
||
|
The returns `ndarray`s must match the number and types defined `Tout`.
|
||
|
Important Note: Input and output numpy `ndarray`s of `func` are not
|
||
|
guaranteed to be copies. In some cases their underlying memory will be
|
||
|
shared with the corresponding TensorFlow tensors. In-place modification or
|
||
|
storing `func` input or return values in python datastructures without
|
||
|
explicit (np.)copy can have non-deterministic consequences.
|
||
|
inp: A list of `Tensor` objects.
|
||
|
Tout: A list or tuple of tensorflow data types or a single tensorflow data
|
||
|
type if there is only one, indicating what `func` returns.
|
||
|
stateful: (Boolean.) If True, the function should be considered stateful. If
|
||
|
a function is stateless, when given the same input it will return the same
|
||
|
output and have no observable side effects. Optimizations such as common
|
||
|
sub-expression elimination are only performed on stateless operations.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A list of `Tensor` or a single `Tensor` which `func` computes.
|
||
|
|
||
|
@compatibility(TF2)
|
||
|
|
||
|
This name was deprecated and removed in TF2, but `tf.numpy_function` is a
|
||
|
near-exact replacement, just drop the `stateful` argument (all
|
||
|
`tf.numpy_function` calls are considered stateful). It is compatible with
|
||
|
eager execution and `tf.function`.
|
||
|
|
||
|
`tf.py_function` is a close but not an exact replacement, passing TensorFlow
|
||
|
tensors to the wrapped function instead of NumPy arrays, which provides
|
||
|
gradients and can take advantage of accelerators.
|
||
|
|
||
|
Before:
|
||
|
|
||
|
>>> def fn_using_numpy(x):
|
||
|
... x[0] = 0.
|
||
|
... return x
|
||
|
>>> tf.compat.v1.py_func(fn_using_numpy, inp=[tf.constant([1., 2.])],
|
||
|
... Tout=tf.float32, stateful=False)
|
||
|
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([0., 2.], dtype=float32)>
|
||
|
|
||
|
After:
|
||
|
|
||
|
>>> tf.numpy_function(fn_using_numpy, inp=[tf.constant([1., 2.])],
|
||
|
... Tout=tf.float32)
|
||
|
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([0., 2.], dtype=float32)>
|
||
|
|
||
|
@end_compatibility
|
||
|
"""
|
||
|
if context.executing_eagerly():
|
||
|
result = func(*[np.array(x) for x in inp])
|
||
|
result = nest.flatten(result)
|
||
|
|
||
|
result = [x if x is None else ops.convert_to_tensor(x) for x in result]
|
||
|
if len(result) == 1:
|
||
|
# Mimic the automatic unwrapping in graph-mode py_func
|
||
|
result, = result
|
||
|
return result
|
||
|
|
||
|
if ops.executing_eagerly_outside_functions():
|
||
|
with ops.device(context.context().host_address_space()):
|
||
|
return _internal_py_func(
|
||
|
func=func,
|
||
|
inp=inp,
|
||
|
Tout=Tout,
|
||
|
stateful=stateful,
|
||
|
use_eager_py_func=False,
|
||
|
name=name)
|
||
|
|
||
|
return _internal_py_func(
|
||
|
func=func,
|
||
|
inp=inp,
|
||
|
Tout=Tout,
|
||
|
stateful=stateful,
|
||
|
use_eager_py_func=False,
|
||
|
name=name)
|
||
|
|
||
|
|
||
|
@deprecation.deprecated(
|
||
|
date=None,
|
||
|
instructions="""tf.py_func is deprecated in TF V2. Instead, there are two
|
||
|
options available in V2.
|
||
|
- tf.py_function takes a python function which manipulates tf eager
|
||
|
tensors instead of numpy arrays. It's easy to convert a tf eager tensor to
|
||
|
an ndarray (just call tensor.numpy()) but having access to eager tensors
|
||
|
means `tf.py_function`s can use accelerators such as GPUs as well as
|
||
|
being differentiable using a gradient tape.
|
||
|
- tf.numpy_function maintains the semantics of the deprecated tf.py_func
|
||
|
(it is not differentiable, and manipulates numpy arrays). It drops the
|
||
|
stateful argument making all functions stateful.
|
||
|
""")
|
||
|
@tf_export(v1=["py_func"])
|
||
|
@dispatch.add_dispatch_support
|
||
|
def py_func(func, inp, Tout, stateful=True, name=None):
|
||
|
return py_func_common(func, inp, Tout, stateful, name=name)
|
||
|
|
||
|
|
||
|
py_func.__doc__ = "%s" % py_func_common.__doc__
|
||
|
|
||
|
|
||
|
@tf_export("numpy_function")
|
||
|
@dispatch.add_dispatch_support
|
||
|
def numpy_function(func=None, inp=None, Tout=None, stateful=True, name=None):
|
||
|
"""Wraps a python function and uses it as a TensorFlow op.
|
||
|
|
||
|
Given a python function `func` wrap this function as an operation in a
|
||
|
`tf.function`. `func` must take numpy arrays as its arguments and
|
||
|
return numpy arrays as its outputs.
|
||
|
|
||
|
There are two ways to use `tf.numpy_function`.
|
||
|
|
||
|
### As a decorator
|
||
|
|
||
|
When using `tf.numpy_function` as a decorator:
|
||
|
|
||
|
* you must set `Tout`
|
||
|
* you may set `name`
|
||
|
* you must not set `func` or `inp`
|
||
|
|
||
|
>>> @tf.numpy_function(Tout=tf.float32)
|
||
|
... def my_numpy_func(x):
|
||
|
... # x will be a numpy array with the contents of the input to the
|
||
|
... # tf.function
|
||
|
... print(f'executing eagerly, {x=}')
|
||
|
... return np.sinh(x)
|
||
|
|
||
|
The function runs eagerly:
|
||
|
|
||
|
>>> my_numpy_func(1.0).numpy()
|
||
|
executing eagerly, x=1.0
|
||
|
1.17520
|
||
|
|
||
|
The behavior doesn't change inside a `tf.function`:
|
||
|
|
||
|
>>> @tf.function(input_signature=[tf.TensorSpec(None, tf.float32)])
|
||
|
... def tf_function(input):
|
||
|
... y = tf.numpy_function(my_numpy_func, [input], tf.float32)
|
||
|
... return y
|
||
|
>>> tf_function(tf.constant(1.)).numpy()
|
||
|
executing eagerly, x=array(1.)
|
||
|
1.17520
|
||
|
|
||
|
### Inplace
|
||
|
|
||
|
This form can be useful if you don't control the function's source,
|
||
|
but it is harder to read.
|
||
|
|
||
|
Here is the same function with no decorator:
|
||
|
|
||
|
>>> def my_func(x):
|
||
|
... # x will be a numpy array with the contents of the input to the
|
||
|
... # tf.function
|
||
|
... print(f'executing eagerly, {x=}')
|
||
|
... return np.sinh(x)
|
||
|
|
||
|
To run `tf.numpy_function` in-place, pass the function, its inputs, and the
|
||
|
output type in a single call to `tf.numpy_function`:
|
||
|
|
||
|
>>> tf.numpy_function(my_func, [tf.constant(1.0)], tf.float32)
|
||
|
executing eagerly, x=array(1.)
|
||
|
1.17520
|
||
|
|
||
|
### More info
|
||
|
|
||
|
Comparison to `tf.py_function`:
|
||
|
`tf.py_function` and `tf.numpy_function` are very similar, except that
|
||
|
`tf.numpy_function` takes numpy arrays, and not `tf.Tensor`s. If you want the
|
||
|
function to contain `tf.Tensors`, and have any TensorFlow operations executed
|
||
|
in the function be differentiable, please use `tf.py_function`.
|
||
|
|
||
|
Note: We recommend to avoid using `tf.numpy_function` outside of
|
||
|
prototyping and experimentation due to the following known limitations:
|
||
|
|
||
|
* Calling `tf.numpy_function` will acquire the Python Global Interpreter Lock
|
||
|
(GIL) that allows only one thread to run at any point in time. This will
|
||
|
preclude efficient parallelization and distribution of the execution of the
|
||
|
program. Therefore, you are discouraged to use `tf.numpy_function` outside
|
||
|
of prototyping and experimentation.
|
||
|
|
||
|
* The body of the function (i.e. `func`) will not be serialized in a
|
||
|
`tf.SavedModel`. Therefore, you should not use this function if you need to
|
||
|
serialize your model and restore it in a different environment.
|
||
|
|
||
|
* The operation must run in the same address space as the Python program
|
||
|
that calls `tf.numpy_function()`. If you are using distributed
|
||
|
TensorFlow, you must run a `tf.distribute.Server` in the same process as the
|
||
|
program that calls `tf.numpy_function` you must pin the created
|
||
|
operation to a device in that server (e.g. using `with tf.device():`).
|
||
|
|
||
|
* Currently `tf.numpy_function` is not compatible with XLA. Calling
|
||
|
`tf.numpy_function` inside `tf.function(jit_compile=True)` will raise an
|
||
|
error.
|
||
|
|
||
|
* Since the function takes numpy arrays, you cannot take gradients
|
||
|
through a numpy_function. If you require something that is differentiable,
|
||
|
please consider using tf.py_function.
|
||
|
|
||
|
Args:
|
||
|
func: A Python function, which accepts `numpy.ndarray` objects as arguments
|
||
|
and returns a list of `numpy.ndarray` objects (or a single
|
||
|
`numpy.ndarray`). This function must accept as many arguments as there are
|
||
|
tensors in `inp`, and these argument types will match the corresponding
|
||
|
`tf.Tensor` objects in `inp`. The returns `numpy.ndarray`s must match the
|
||
|
number and types defined `Tout`. Important Note: Input and output
|
||
|
`numpy.ndarray`s of `func` are not guaranteed to be copies. In some cases
|
||
|
their underlying memory will be shared with the corresponding TensorFlow
|
||
|
tensors. In-place modification or storing `func` input or return values in
|
||
|
python datastructures without explicit (np.)copy can have
|
||
|
non-deterministic consequences.
|
||
|
inp: A list of `tf.Tensor` objects.
|
||
|
Tout: A list or tuple of tensorflow data types or a single tensorflow data
|
||
|
type if there is only one, indicating what `func` returns.
|
||
|
stateful: (Boolean.) Setting this argument to False tells the runtime to
|
||
|
treat the function as stateless, which enables certain optimizations. A
|
||
|
function is stateless when given the same input it will return the same
|
||
|
output and have no side effects; its only purpose is to have a return
|
||
|
value. The behavior for a stateful function with the `stateful` argument
|
||
|
False is undefined. In particular, caution should be taken when mutating
|
||
|
the input arguments as this is a stateful operation.
|
||
|
name: (Optional) A name for the operation.
|
||
|
|
||
|
Returns:
|
||
|
* If `func` is `None` this returns a decorator that will ensure the
|
||
|
decorated function will always run with eager execution even if called
|
||
|
from a `tf.function`/`tf.Graph`.
|
||
|
* If used `func` is not `None` this executes `func` with eager execution
|
||
|
and returns the result: A single or list of `tf.Tensor` which `func`
|
||
|
computes.
|
||
|
"""
|
||
|
decorator = _check_args_and_maybe_make_decorator(
|
||
|
numpy_function,
|
||
|
"tf.numpy_function",
|
||
|
func=func,
|
||
|
inp=inp,
|
||
|
Tout=Tout,
|
||
|
stateful=stateful,
|
||
|
name=name,
|
||
|
)
|
||
|
if decorator is not None:
|
||
|
return decorator
|
||
|
|
||
|
return py_func_common(func, inp, Tout, stateful=stateful, name=name)
|
||
|
|
||
|
|
||
|
def _as_dtype_or_type_spec(t):
|
||
|
return t if isinstance(t, type_spec.TypeSpec) else dtypes.as_dtype(t)
|
||
|
|
||
|
|
||
|
def _wrap_for_composites(func, inp, Tout):
|
||
|
"""Wraps user inputs to support composite tensors for `py_function`.
|
||
|
|
||
|
1. Flattens `inp` to a list of Tensors (by flattening any composite tensors).
|
||
|
2. Creates a wrapper function for `func` that expects flat inputs and:
|
||
|
- Packs the inputs into the input structure expected by `func`.
|
||
|
- Calls `func` with the packed inputs.
|
||
|
- Checks that `func`'s output matches `Tout`.
|
||
|
- Flattens func`'s output to a list of Tensors (flattening any composite
|
||
|
tensors).
|
||
|
|
||
|
Args:
|
||
|
func: The function to wrap (`func` argument to `py_function`).
|
||
|
inp: The input arguments for func (`inp` argument to `py_function`).
|
||
|
Tout: The expected output types for func (`Tout` argument to `py_function).
|
||
|
|
||
|
Returns:
|
||
|
A tuple `(func, inp, Tout, out_structure)`, where `func` is the wrapped
|
||
|
function, `inp` is the flattened inputs, `Tout` is the list of expected
|
||
|
dtypes for the flattened outputs, and `out_structure` is the expected
|
||
|
output structure (which can be used to pack the output tensors).
|
||
|
"""
|
||
|
in_structure = [
|
||
|
v if isinstance(v, composite_tensor.CompositeTensor) else 1 for v in inp
|
||
|
]
|
||
|
inp = nest.flatten_up_to(in_structure, inp, expand_composites=True)
|
||
|
out_structure = Tout
|
||
|
Tout = [
|
||
|
v.dtype if isinstance(v, tensor_spec.TensorSpec) else v
|
||
|
for v in nest.flatten(Tout, expand_composites=True)
|
||
|
]
|
||
|
|
||
|
def wrapped_func(*flat_inp):
|
||
|
structured_inp = nest.pack_sequence_as(
|
||
|
in_structure, flat_inp, expand_composites=True)
|
||
|
out = func(*structured_inp)
|
||
|
if not out_structure:
|
||
|
return [] # Ignore return value if none is requested/expected.
|
||
|
if not isinstance(out, (list, tuple)):
|
||
|
out = [out] # func may return a single value instead of a list.
|
||
|
flat_out = []
|
||
|
for elt, expected_type in zip(out, out_structure):
|
||
|
if (isinstance(expected_type, type_spec.TypeSpec) and
|
||
|
not isinstance(expected_type, tensor_spec.TensorSpec)):
|
||
|
if not expected_type.is_compatible_with(elt):
|
||
|
# pylint: disable=protected-access
|
||
|
raise ValueError(
|
||
|
f"py_function: func={func} returned {out!r}, "
|
||
|
f"which did not match Tout={out_structure!r}.\nIn particular, "
|
||
|
f"{elt!r} is not compatible with {expected_type!r}.")
|
||
|
flat_out.extend(nest.flatten(elt, expand_composites=True))
|
||
|
else:
|
||
|
# Pro-actively check if the return value is a composite tensor when
|
||
|
# we expect a Tensor. We would catch this later (when we call
|
||
|
# convert_to_tensor), but checking it here lets us give a better
|
||
|
# error message.
|
||
|
if isinstance(elt, composite_tensor.CompositeTensor):
|
||
|
raise ValueError(
|
||
|
f"py_function: func={func} returned {out!r}, "
|
||
|
f"which did not match Tout={out_structure!r}.\nIn particular, "
|
||
|
f"{elt!r} is not a Tensor.")
|
||
|
flat_out.append(elt)
|
||
|
return flat_out
|
||
|
|
||
|
return wrapped_func, inp, Tout, out_structure
|
||
|
|
||
|
|
||
|
ops.NotDifferentiable("PyFunc")
|
||
|
ops.NotDifferentiable("PyFuncStateless")
|