304 lines
12 KiB
Python
304 lines
12 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Adam for TensorFlow."""
|
||
|
from tensorflow.python.eager import context
|
||
|
from tensorflow.python.framework import ops
|
||
|
from tensorflow.python.ops import control_flow_ops
|
||
|
from tensorflow.python.ops import gen_training_ops
|
||
|
from tensorflow.python.ops import math_ops
|
||
|
from tensorflow.python.ops import resource_variable_ops
|
||
|
from tensorflow.python.ops import state_ops
|
||
|
from tensorflow.python.training import optimizer
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
|
||
|
@tf_export(v1=["train.AdamOptimizer"])
|
||
|
class AdamOptimizer(optimizer.Optimizer):
|
||
|
"""Optimizer that implements the Adam algorithm.
|
||
|
|
||
|
References:
|
||
|
Adam - A Method for Stochastic Optimization:
|
||
|
[Kingma et al., 2015](https://arxiv.org/abs/1412.6980)
|
||
|
([pdf](https://arxiv.org/pdf/1412.6980.pdf))
|
||
|
|
||
|
@compatibility(TF2)
|
||
|
tf.compat.v1.train.AdamOptimizer is compatible with eager mode and
|
||
|
`tf.function`.
|
||
|
When eager execution is enabled, `learning_rate`, `beta1`, `beta2`, and
|
||
|
`epsilon` can each be a callable that takes no arguments and returns the
|
||
|
actual value to use. This can be useful for changing these values across
|
||
|
different invocations of optimizer functions.
|
||
|
|
||
|
To switch to native TF2 style, use [`tf.keras.optimizers.Adam`]
|
||
|
(https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam)
|
||
|
instead. Please notice that due to the implementation differences,
|
||
|
`tf.keras.optimizers.Adam` and
|
||
|
`tf.compat.v1.train.AdamOptimizer` may have slight differences in
|
||
|
floating point numerics even though the formula used for the variable
|
||
|
updates still matches.
|
||
|
|
||
|
#### Structural Mapping to Native TF2
|
||
|
|
||
|
Before:
|
||
|
|
||
|
```python
|
||
|
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=0.001)
|
||
|
```
|
||
|
|
||
|
After:
|
||
|
|
||
|
```python
|
||
|
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
|
||
|
```
|
||
|
|
||
|
#### How to Map Arguments
|
||
|
|TF1 Arg Name |TF2 Arg Name |Note |
|
||
|
|----------------------|-------------|----------------------|
|
||
|
|learning_rate |learning_rate|Be careful of setting learning_rate as a
|
||
|
: : : tensor value computed from the global
|
||
|
: : : step. In TF1 this was usually meant to
|
||
|
: : : imply a dynamic learning rate and would
|
||
|
: : : recompute in each step. In TF2 (eager +
|
||
|
: : : function) it will treat it as a scalar
|
||
|
: : : value that only gets computed once
|
||
|
: : : instead of a symbolic placeholder to be
|
||
|
: : : computed each time. :
|
||
|
|beta1 |beta_1 | |
|
||
|
|beta2 |beta_2 | |
|
||
|
|epsilon |epsilon | Default value is 1e-08 in TF1, but
|
||
|
: : : 1e-07 in TF2. :
|
||
|
|use_locking |N/A |Not applicable in TF2. |
|
||
|
|
||
|
#### Before & After Usage Example
|
||
|
Before:
|
||
|
|
||
|
```python
|
||
|
x = tf.Variable([1,2,3], dtype=tf.float32)
|
||
|
grad = tf.constant([0.1, 0.2, 0.3])
|
||
|
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=0.001)
|
||
|
optimizer.apply_gradients(zip([grad], [x]))
|
||
|
```
|
||
|
|
||
|
After:
|
||
|
|
||
|
```python
|
||
|
x = tf.Variable([1,2,3], dtype=tf.float32)
|
||
|
grad = tf.constant([0.1, 0.2, 0.3])
|
||
|
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
|
||
|
optimizer.apply_gradients(zip([grad], [x]))
|
||
|
```
|
||
|
|
||
|
@end_compatibility
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
learning_rate=0.001,
|
||
|
beta1=0.9,
|
||
|
beta2=0.999,
|
||
|
epsilon=1e-8,
|
||
|
use_locking=False,
|
||
|
name="Adam"):
|
||
|
r"""Construct a new Adam optimizer.
|
||
|
|
||
|
Initialization:
|
||
|
|
||
|
$$m_0 := 0 \text{(Initialize initial 1st moment vector)}$$
|
||
|
$$v_0 := 0 \text{(Initialize initial 2nd moment vector)}$$
|
||
|
$$t := 0 \text{(Initialize timestep)}$$
|
||
|
|
||
|
The update rule for `variable` with gradient `g` uses an optimization
|
||
|
described at the end of section 2 of the paper:
|
||
|
|
||
|
$$t := t + 1$$
|
||
|
$$\text{lr}_t := \mathrm{learning_rate} *
|
||
|
\sqrt{1 - \beta_2^t} / (1 - \beta_1^t)$$
|
||
|
|
||
|
$$m_t := \beta_1 * m_{t-1} + (1 - \beta_1) * g$$
|
||
|
$$v_t := \beta_2 * v_{t-1} + (1 - \beta_2) * g * g$$
|
||
|
$$\text{variable} := \text{variable} -
|
||
|
\text{lr}_t * m_t / (\sqrt{v_t} + \epsilon)$$
|
||
|
|
||
|
The default value of 1e-8 for epsilon might not be a good default in
|
||
|
general. For example, when training an Inception network on ImageNet a
|
||
|
current good choice is 1.0 or 0.1. Note that since AdamOptimizer uses the
|
||
|
formulation just before Section 2.1 of the Kingma and Ba paper rather than
|
||
|
the formulation in Algorithm 1, the "epsilon" referred to here is "epsilon
|
||
|
hat" in the paper.
|
||
|
|
||
|
The sparse implementation of this algorithm (used when the gradient is an
|
||
|
IndexedSlices object, typically because of `tf.gather` or an embedding
|
||
|
lookup in the forward pass) does apply momentum to variable slices even if
|
||
|
they were not used in the forward pass (meaning they have a gradient equal
|
||
|
to zero). Momentum decay (beta1) is also applied to the entire momentum
|
||
|
accumulator. This means that the sparse behavior is equivalent to the dense
|
||
|
behavior (in contrast to some momentum implementations which ignore momentum
|
||
|
unless a variable slice was actually used).
|
||
|
|
||
|
Args:
|
||
|
learning_rate: A Tensor or a floating point value. The learning rate.
|
||
|
beta1: A float value or a constant float tensor. The exponential decay
|
||
|
rate for the 1st moment estimates.
|
||
|
beta2: A float value or a constant float tensor. The exponential decay
|
||
|
rate for the 2nd moment estimates.
|
||
|
epsilon: A small constant for numerical stability. This epsilon is
|
||
|
"epsilon hat" in the Kingma and Ba paper (in the formula just before
|
||
|
Section 2.1), not the epsilon in Algorithm 1 of the paper.
|
||
|
use_locking: If True use locks for update operations.
|
||
|
name: Optional name for the operations created when applying gradients.
|
||
|
Defaults to "Adam".
|
||
|
|
||
|
|
||
|
"""
|
||
|
|
||
|
super(AdamOptimizer, self).__init__(use_locking, name)
|
||
|
self._lr = learning_rate
|
||
|
self._beta1 = beta1
|
||
|
self._beta2 = beta2
|
||
|
self._epsilon = epsilon
|
||
|
|
||
|
# Tensor versions of the constructor arguments, created in _prepare().
|
||
|
self._lr_t = None
|
||
|
self._beta1_t = None
|
||
|
self._beta2_t = None
|
||
|
self._epsilon_t = None
|
||
|
|
||
|
def _get_beta_accumulators(self):
|
||
|
with ops.init_scope():
|
||
|
if context.executing_eagerly():
|
||
|
graph = None
|
||
|
else:
|
||
|
graph = ops.get_default_graph()
|
||
|
return (self._get_non_slot_variable("beta1_power", graph=graph),
|
||
|
self._get_non_slot_variable("beta2_power", graph=graph))
|
||
|
|
||
|
def _create_slots(self, var_list):
|
||
|
# Create the beta1 and beta2 accumulators on the same device as the first
|
||
|
# variable. Sort the var_list to make sure this device is consistent across
|
||
|
# workers (these need to go on the same PS, otherwise some updates are
|
||
|
# silently ignored).
|
||
|
first_var = min(var_list, key=lambda x: x.name)
|
||
|
self._create_non_slot_variable(
|
||
|
initial_value=self._beta1, name="beta1_power", colocate_with=first_var)
|
||
|
self._create_non_slot_variable(
|
||
|
initial_value=self._beta2, name="beta2_power", colocate_with=first_var)
|
||
|
|
||
|
# Create slots for the first and second moments.
|
||
|
for v in var_list:
|
||
|
self._zeros_slot(v, "m", self._name)
|
||
|
self._zeros_slot(v, "v", self._name)
|
||
|
|
||
|
def _prepare(self):
|
||
|
lr = self._call_if_callable(self._lr)
|
||
|
beta1 = self._call_if_callable(self._beta1)
|
||
|
beta2 = self._call_if_callable(self._beta2)
|
||
|
epsilon = self._call_if_callable(self._epsilon)
|
||
|
|
||
|
self._lr_t = ops.convert_to_tensor(lr, name="learning_rate")
|
||
|
self._beta1_t = ops.convert_to_tensor(beta1, name="beta1")
|
||
|
self._beta2_t = ops.convert_to_tensor(beta2, name="beta2")
|
||
|
self._epsilon_t = ops.convert_to_tensor(epsilon, name="epsilon")
|
||
|
|
||
|
def _apply_dense(self, grad, var):
|
||
|
m = self.get_slot(var, "m")
|
||
|
v = self.get_slot(var, "v")
|
||
|
beta1_power, beta2_power = self._get_beta_accumulators()
|
||
|
return gen_training_ops.apply_adam(
|
||
|
var,
|
||
|
m,
|
||
|
v,
|
||
|
math_ops.cast(beta1_power, var.dtype.base_dtype),
|
||
|
math_ops.cast(beta2_power, var.dtype.base_dtype),
|
||
|
math_ops.cast(self._lr_t, var.dtype.base_dtype),
|
||
|
math_ops.cast(self._beta1_t, var.dtype.base_dtype),
|
||
|
math_ops.cast(self._beta2_t, var.dtype.base_dtype),
|
||
|
math_ops.cast(self._epsilon_t, var.dtype.base_dtype),
|
||
|
grad,
|
||
|
use_locking=self._use_locking).op
|
||
|
|
||
|
def _resource_apply_dense(self, grad, var):
|
||
|
m = self.get_slot(var, "m")
|
||
|
v = self.get_slot(var, "v")
|
||
|
beta1_power, beta2_power = self._get_beta_accumulators()
|
||
|
return gen_training_ops.resource_apply_adam(
|
||
|
var.handle,
|
||
|
m.handle,
|
||
|
v.handle,
|
||
|
math_ops.cast(beta1_power, grad.dtype.base_dtype),
|
||
|
math_ops.cast(beta2_power, grad.dtype.base_dtype),
|
||
|
math_ops.cast(self._lr_t, grad.dtype.base_dtype),
|
||
|
math_ops.cast(self._beta1_t, grad.dtype.base_dtype),
|
||
|
math_ops.cast(self._beta2_t, grad.dtype.base_dtype),
|
||
|
math_ops.cast(self._epsilon_t, grad.dtype.base_dtype),
|
||
|
grad,
|
||
|
use_locking=self._use_locking)
|
||
|
|
||
|
def _apply_sparse_shared(self, grad, var, indices, scatter_add):
|
||
|
beta1_power, beta2_power = self._get_beta_accumulators()
|
||
|
beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
|
||
|
beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype)
|
||
|
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
|
||
|
beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
|
||
|
beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
|
||
|
epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)
|
||
|
lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power))
|
||
|
# m_t = beta1 * m + (1 - beta1) * g_t
|
||
|
m = self.get_slot(var, "m")
|
||
|
m_scaled_g_values = grad * (1 - beta1_t)
|
||
|
m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking)
|
||
|
with ops.control_dependencies([m_t]):
|
||
|
m_t = scatter_add(m, indices, m_scaled_g_values)
|
||
|
# v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
|
||
|
v = self.get_slot(var, "v")
|
||
|
v_scaled_g_values = (grad * grad) * (1 - beta2_t)
|
||
|
v_t = state_ops.assign(v, v * beta2_t, use_locking=self._use_locking)
|
||
|
with ops.control_dependencies([v_t]):
|
||
|
v_t = scatter_add(v, indices, v_scaled_g_values)
|
||
|
v_sqrt = math_ops.sqrt(v_t)
|
||
|
var_update = state_ops.assign_sub(
|
||
|
var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking)
|
||
|
return control_flow_ops.group(*[var_update, m_t, v_t])
|
||
|
|
||
|
def _apply_sparse(self, grad, var):
|
||
|
return self._apply_sparse_shared(
|
||
|
grad.values,
|
||
|
var,
|
||
|
grad.indices,
|
||
|
lambda x, i, v: state_ops.scatter_add( # pylint: disable=g-long-lambda
|
||
|
x,
|
||
|
i,
|
||
|
v,
|
||
|
use_locking=self._use_locking))
|
||
|
|
||
|
def _resource_scatter_add(self, x, i, v):
|
||
|
with ops.control_dependencies(
|
||
|
[resource_variable_ops.resource_scatter_add(x.handle, i, v)]):
|
||
|
return x.value()
|
||
|
|
||
|
def _resource_apply_sparse(self, grad, var, indices):
|
||
|
return self._apply_sparse_shared(grad, var, indices,
|
||
|
self._resource_scatter_add)
|
||
|
|
||
|
def _finish(self, update_ops, name_scope):
|
||
|
# Update the power accumulators.
|
||
|
with ops.control_dependencies(update_ops):
|
||
|
beta1_power, beta2_power = self._get_beta_accumulators()
|
||
|
with ops.colocate_with(beta1_power):
|
||
|
update_beta1 = beta1_power.assign(
|
||
|
beta1_power * self._beta1_t, use_locking=self._use_locking)
|
||
|
update_beta2 = beta2_power.assign(
|
||
|
beta2_power * self._beta2_t, use_locking=self._use_locking)
|
||
|
return control_flow_ops.group(
|
||
|
*update_ops + [update_beta1, update_beta2], name=name_scope)
|