105 lines
4.4 KiB
Python
105 lines
4.4 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
|
||
|
"""ProximalGradientDescent for TensorFlow."""
|
||
|
from tensorflow.python.framework import ops
|
||
|
from tensorflow.python.ops import gen_training_ops
|
||
|
# pylint: disable=unused-import
|
||
|
from tensorflow.python.ops import math_ops
|
||
|
# pylint: enable=unused-import
|
||
|
from tensorflow.python.training import optimizer
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
|
||
|
@tf_export(v1=["train.ProximalGradientDescentOptimizer"])
|
||
|
class ProximalGradientDescentOptimizer(optimizer.Optimizer):
|
||
|
# pylint: disable=line-too-long
|
||
|
"""Optimizer that implements the proximal gradient descent algorithm.
|
||
|
|
||
|
References:
|
||
|
Efficient Learning using Forward-Backward Splitting:
|
||
|
[Duchi et al., 2009](http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting)
|
||
|
([pdf](http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf))
|
||
|
"""
|
||
|
|
||
|
def __init__(self, learning_rate, l1_regularization_strength=0.0,
|
||
|
l2_regularization_strength=0.0, use_locking=False,
|
||
|
name="ProximalGradientDescent"):
|
||
|
"""Construct a new proximal gradient descent optimizer.
|
||
|
|
||
|
Args:
|
||
|
learning_rate: A Tensor or a floating point value. The learning
|
||
|
rate to use.
|
||
|
l1_regularization_strength: A float value, must be greater than or
|
||
|
equal to zero.
|
||
|
l2_regularization_strength: A float value, must be greater than or
|
||
|
equal to zero.
|
||
|
use_locking: If True use locks for update operations.
|
||
|
name: Optional name prefix for the operations created when applying
|
||
|
gradients. Defaults to "GradientDescent".
|
||
|
"""
|
||
|
super(ProximalGradientDescentOptimizer, self).__init__(use_locking, name)
|
||
|
self._learning_rate = learning_rate
|
||
|
self._l1_regularization_strength = l1_regularization_strength
|
||
|
self._l2_regularization_strength = l2_regularization_strength
|
||
|
self._l1_regularization_strength_tensor = None
|
||
|
self._l2_regularization_strength_tensor = None
|
||
|
|
||
|
def _apply_dense(self, grad, var):
|
||
|
return gen_training_ops.apply_proximal_gradient_descent(
|
||
|
var,
|
||
|
self._learning_rate_tensor,
|
||
|
self._l1_regularization_strength_tensor,
|
||
|
self._l2_regularization_strength_tensor,
|
||
|
grad,
|
||
|
use_locking=self._use_locking).op
|
||
|
|
||
|
def _resource_apply_dense(self, grad, var):
|
||
|
return gen_training_ops.resource_apply_proximal_gradient_descent(
|
||
|
var.handle,
|
||
|
self._learning_rate_tensor,
|
||
|
self._l1_regularization_strength_tensor,
|
||
|
self._l2_regularization_strength_tensor,
|
||
|
grad,
|
||
|
use_locking=self._use_locking)
|
||
|
|
||
|
def _apply_sparse(self, grad, var):
|
||
|
return gen_training_ops.sparse_apply_proximal_gradient_descent(
|
||
|
var,
|
||
|
self._learning_rate_tensor,
|
||
|
self._l1_regularization_strength_tensor,
|
||
|
self._l2_regularization_strength_tensor,
|
||
|
grad.values,
|
||
|
grad.indices,
|
||
|
use_locking=self._use_locking).op
|
||
|
|
||
|
def _resource_apply_sparse(self, grad, var, indices):
|
||
|
return gen_training_ops.resource_sparse_apply_proximal_gradient_descent(
|
||
|
var.handle,
|
||
|
math_ops.cast(self._learning_rate_tensor, grad.dtype),
|
||
|
math_ops.cast(self._l1_regularization_strength_tensor, grad.dtype),
|
||
|
math_ops.cast(self._l2_regularization_strength_tensor, grad.dtype),
|
||
|
grad,
|
||
|
indices,
|
||
|
use_locking=self._use_locking)
|
||
|
|
||
|
def _prepare(self):
|
||
|
self._learning_rate_tensor = ops.convert_to_tensor(self._learning_rate,
|
||
|
name="learning_rate")
|
||
|
self._l1_regularization_strength_tensor = ops.convert_to_tensor(
|
||
|
self._l1_regularization_strength, name="l1_regularization_strength")
|
||
|
self._l2_regularization_strength_tensor = ops.convert_to_tensor(
|
||
|
self._l2_regularization_strength, name="l2_regularization_strength")
|