from datetime import ( datetime, timezone, ) import numpy as np import pytest from pandas.errors import InvalidIndexError from pandas import ( CategoricalDtype, CategoricalIndex, DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, ) import pandas._testing as tm def test_at_timezone(): # https://github.com/pandas-dev/pandas/issues/33544 result = DataFrame({"foo": [datetime(2000, 1, 1)]}) with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): result.at[0, "foo"] = datetime(2000, 1, 2, tzinfo=timezone.utc) expected = DataFrame( {"foo": [datetime(2000, 1, 2, tzinfo=timezone.utc)]}, dtype=object ) tm.assert_frame_equal(result, expected) def test_selection_methods_of_assigned_col(): # GH 29282 df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]}) df2 = DataFrame(data={"c": [7, 8, 9]}, index=[2, 1, 0]) df["c"] = df2["c"] df.at[1, "c"] = 11 result = df expected = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [9, 11, 7]}) tm.assert_frame_equal(result, expected) result = df.at[1, "c"] assert result == 11 result = df["c"] expected = Series([9, 11, 7], name="c") tm.assert_series_equal(result, expected) result = df[["c"]] expected = DataFrame({"c": [9, 11, 7]}) tm.assert_frame_equal(result, expected) class TestAtSetItem: def test_at_setitem_item_cache_cleared(self): # GH#22372 Note the multi-step construction is necessary to trigger # the original bug. pandas/issues/22372#issuecomment-413345309 df = DataFrame(index=[0]) df["x"] = 1 df["cost"] = 2 # accessing df["cost"] adds "cost" to the _item_cache df["cost"] # This loc[[0]] lookup used to call _consolidate_inplace at the # BlockManager level, which failed to clear the _item_cache df.loc[[0]] df.at[0, "x"] = 4 df.at[0, "cost"] = 789 expected = DataFrame( {"x": [4], "cost": 789}, index=[0], columns=Index(["x", "cost"], dtype=object), ) tm.assert_frame_equal(df, expected) # And in particular, check that the _item_cache has updated correctly. tm.assert_series_equal(df["cost"], expected["cost"]) def test_at_setitem_mixed_index_assignment(self): # GH#19860 ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2]) ser.at["a"] = 11 assert ser.iat[0] == 11 ser.at[1] = 22 assert ser.iat[3] == 22 def test_at_setitem_categorical_missing(self): df = DataFrame( index=range(3), columns=range(3), dtype=CategoricalDtype(["foo", "bar"]) ) df.at[1, 1] = "foo" expected = DataFrame( [ [np.nan, np.nan, np.nan], [np.nan, "foo", np.nan], [np.nan, np.nan, np.nan], ], dtype=CategoricalDtype(["foo", "bar"]), ) tm.assert_frame_equal(df, expected) def test_at_setitem_multiindex(self): df = DataFrame( np.zeros((3, 2), dtype="int64"), columns=MultiIndex.from_tuples([("a", 0), ("a", 1)]), ) df.at[0, "a"] = 10 expected = DataFrame( [[10, 10], [0, 0], [0, 0]], columns=MultiIndex.from_tuples([("a", 0), ("a", 1)]), ) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("row", (Timestamp("2019-01-01"), "2019-01-01")) def test_at_datetime_index(self, row): # Set float64 dtype to avoid upcast when setting .5 df = DataFrame( data=[[1] * 2], index=DatetimeIndex(data=["2019-01-01", "2019-01-02"]) ).astype({0: "float64"}) expected = DataFrame( data=[[0.5, 1], [1.0, 1]], index=DatetimeIndex(data=["2019-01-01", "2019-01-02"]), ) df.at[row, 0] = 0.5 tm.assert_frame_equal(df, expected) class TestAtSetItemWithExpansion: def test_at_setitem_expansion_series_dt64tz_value(self, tz_naive_fixture): # GH#25506 ts = Timestamp("2017-08-05 00:00:00+0100", tz=tz_naive_fixture) result = Series(ts) result.at[1] = ts expected = Series([ts, ts]) tm.assert_series_equal(result, expected) class TestAtWithDuplicates: def test_at_with_duplicate_axes_requires_scalar_lookup(self): # GH#33041 check that falling back to loc doesn't allow non-scalar # args to slip in arr = np.random.default_rng(2).standard_normal(6).reshape(3, 2) df = DataFrame(arr, columns=["A", "A"]) msg = "Invalid call for scalar access" with pytest.raises(ValueError, match=msg): df.at[[1, 2]] with pytest.raises(ValueError, match=msg): df.at[1, ["A"]] with pytest.raises(ValueError, match=msg): df.at[:, "A"] with pytest.raises(ValueError, match=msg): df.at[[1, 2]] = 1 with pytest.raises(ValueError, match=msg): df.at[1, ["A"]] = 1 with pytest.raises(ValueError, match=msg): df.at[:, "A"] = 1 class TestAtErrors: # TODO: De-duplicate/parametrize # test_at_series_raises_key_error2, test_at_frame_raises_key_error2 def test_at_series_raises_key_error(self, indexer_al): # GH#31724 .at should match .loc ser = Series([1, 2, 3], index=[3, 2, 1]) result = indexer_al(ser)[1] assert result == 3 with pytest.raises(KeyError, match="a"): indexer_al(ser)["a"] def test_at_frame_raises_key_error(self, indexer_al): # GH#31724 .at should match .loc df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1]) result = indexer_al(df)[1, 0] assert result == 3 with pytest.raises(KeyError, match="a"): indexer_al(df)["a", 0] with pytest.raises(KeyError, match="a"): indexer_al(df)[1, "a"] def test_at_series_raises_key_error2(self, indexer_al): # at should not fallback # GH#7814 # GH#31724 .at should match .loc ser = Series([1, 2, 3], index=list("abc")) result = indexer_al(ser)["a"] assert result == 1 with pytest.raises(KeyError, match="^0$"): indexer_al(ser)[0] def test_at_frame_raises_key_error2(self, indexer_al): # GH#31724 .at should match .loc df = DataFrame({"A": [1, 2, 3]}, index=list("abc")) result = indexer_al(df)["a", "A"] assert result == 1 with pytest.raises(KeyError, match="^0$"): indexer_al(df)["a", 0] def test_at_frame_multiple_columns(self): # GH#48296 - at shouldn't modify multiple columns df = DataFrame({"a": [1, 2], "b": [3, 4]}) new_row = [6, 7] with pytest.raises( InvalidIndexError, match=f"You can only assign a scalar value not a \\{type(new_row)}", ): df.at[5] = new_row def test_at_getitem_mixed_index_no_fallback(self): # GH#19860 ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2]) with pytest.raises(KeyError, match="^0$"): ser.at[0] with pytest.raises(KeyError, match="^4$"): ser.at[4] def test_at_categorical_integers(self): # CategoricalIndex with integer categories that don't happen to match # the Categorical's codes ci = CategoricalIndex([3, 4]) arr = np.arange(4).reshape(2, 2) frame = DataFrame(arr, index=ci) for df in [frame, frame.T]: for key in [0, 1]: with pytest.raises(KeyError, match=str(key)): df.at[key, key] def test_at_applied_for_rows(self): # GH#48729 .at should raise InvalidIndexError when assigning rows df = DataFrame(index=["a"], columns=["col1", "col2"]) new_row = [123, 15] with pytest.raises( InvalidIndexError, match=f"You can only assign a scalar value not a \\{type(new_row)}", ): df.at["a"] = new_row