from itertools import product import numpy as np import random import functools import pytest from numpy.testing import (assert_, assert_equal, assert_allclose, assert_almost_equal) # avoid new uses from pytest import raises as assert_raises import scipy.stats as stats from scipy.stats import distributions from scipy.stats._hypotests import (epps_singleton_2samp, cramervonmises, _cdf_cvm, cramervonmises_2samp, _pval_cvm_2samp_exact, barnard_exact, boschloo_exact) from scipy.stats._mannwhitneyu import mannwhitneyu, _mwu_state from .common_tests import check_named_results from scipy._lib._testutils import _TestPythranFunc class TestEppsSingleton: def test_statistic_1(self): # first example in Goerg & Kaiser, also in original paper of # Epps & Singleton. Note: values do not match exactly, the # value of the interquartile range varies depending on how # quantiles are computed x = np.array([-0.35, 2.55, 1.73, 0.73, 0.35, 2.69, 0.46, -0.94, -0.37, 12.07]) y = np.array([-1.15, -0.15, 2.48, 3.25, 3.71, 4.29, 5.00, 7.74, 8.38, 8.60]) w, p = epps_singleton_2samp(x, y) assert_almost_equal(w, 15.14, decimal=1) assert_almost_equal(p, 0.00442, decimal=3) def test_statistic_2(self): # second example in Goerg & Kaiser, again not a perfect match x = np.array((0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 6, 10, 10, 10, 10)) y = np.array((10, 4, 0, 5, 10, 10, 0, 5, 6, 7, 10, 3, 1, 7, 0, 8, 1, 5, 8, 10)) w, p = epps_singleton_2samp(x, y) assert_allclose(w, 8.900, atol=0.001) assert_almost_equal(p, 0.06364, decimal=3) def test_epps_singleton_array_like(self): np.random.seed(1234) x, y = np.arange(30), np.arange(28) w1, p1 = epps_singleton_2samp(list(x), list(y)) w2, p2 = epps_singleton_2samp(tuple(x), tuple(y)) w3, p3 = epps_singleton_2samp(x, y) assert_(w1 == w2 == w3) assert_(p1 == p2 == p3) def test_epps_singleton_size(self): # raise error if less than 5 elements x, y = (1, 2, 3, 4), np.arange(10) assert_raises(ValueError, epps_singleton_2samp, x, y) def test_epps_singleton_nonfinite(self): # raise error if there are non-finite values x, y = (1, 2, 3, 4, 5, np.inf), np.arange(10) assert_raises(ValueError, epps_singleton_2samp, x, y) def test_names(self): x, y = np.arange(20), np.arange(30) res = epps_singleton_2samp(x, y) attributes = ('statistic', 'pvalue') check_named_results(res, attributes) class TestCvm: # the expected values of the cdfs are taken from Table 1 in # Csorgo / Faraway: The Exact and Asymptotic Distribution of # Cramér-von Mises Statistics, 1996. def test_cdf_4(self): assert_allclose( _cdf_cvm([0.02983, 0.04111, 0.12331, 0.94251], 4), [0.01, 0.05, 0.5, 0.999], atol=1e-4) def test_cdf_10(self): assert_allclose( _cdf_cvm([0.02657, 0.03830, 0.12068, 0.56643], 10), [0.01, 0.05, 0.5, 0.975], atol=1e-4) def test_cdf_1000(self): assert_allclose( _cdf_cvm([0.02481, 0.03658, 0.11889, 1.16120], 1000), [0.01, 0.05, 0.5, 0.999], atol=1e-4) def test_cdf_inf(self): assert_allclose( _cdf_cvm([0.02480, 0.03656, 0.11888, 1.16204]), [0.01, 0.05, 0.5, 0.999], atol=1e-4) def test_cdf_support(self): # cdf has support on [1/(12*n), n/3] assert_equal(_cdf_cvm([1/(12*533), 533/3], 533), [0, 1]) assert_equal(_cdf_cvm([1/(12*(27 + 1)), (27 + 1)/3], 27), [0, 1]) def test_cdf_large_n(self): # test that asymptotic cdf and cdf for large samples are close assert_allclose( _cdf_cvm([0.02480, 0.03656, 0.11888, 1.16204, 100], 10000), _cdf_cvm([0.02480, 0.03656, 0.11888, 1.16204, 100]), atol=1e-4) def test_large_x(self): # for large values of x and n, the series used to compute the cdf # converges slowly. # this leads to bug in R package goftest and MAPLE code that is # the basis of the implementation in scipy # note: cdf = 1 for x >= 1000/3 and n = 1000 assert_(0.99999 < _cdf_cvm(333.3, 1000) < 1.0) assert_(0.99999 < _cdf_cvm(333.3) < 1.0) def test_low_p(self): # _cdf_cvm can return values larger than 1. In that case, we just # return a p-value of zero. n = 12 res = cramervonmises(np.ones(n)*0.8, 'norm') assert_(_cdf_cvm(res.statistic, n) > 1.0) assert_equal(res.pvalue, 0) def test_invalid_input(self): assert_raises(ValueError, cramervonmises, [1.5], "norm") assert_raises(ValueError, cramervonmises, (), "norm") def test_values_R(self): # compared against R package goftest, version 1.1.1 # goftest::cvm.test(c(-1.7, 2, 0, 1.3, 4, 0.1, 0.6), "pnorm") res = cramervonmises([-1.7, 2, 0, 1.3, 4, 0.1, 0.6], "norm") assert_allclose(res.statistic, 0.288156, atol=1e-6) assert_allclose(res.pvalue, 0.1453465, atol=1e-6) # goftest::cvm.test(c(-1.7, 2, 0, 1.3, 4, 0.1, 0.6), # "pnorm", mean = 3, sd = 1.5) res = cramervonmises([-1.7, 2, 0, 1.3, 4, 0.1, 0.6], "norm", (3, 1.5)) assert_allclose(res.statistic, 0.9426685, atol=1e-6) assert_allclose(res.pvalue, 0.002026417, atol=1e-6) # goftest::cvm.test(c(1, 2, 5, 1.4, 0.14, 11, 13, 0.9, 7.5), "pexp") res = cramervonmises([1, 2, 5, 1.4, 0.14, 11, 13, 0.9, 7.5], "expon") assert_allclose(res.statistic, 0.8421854, atol=1e-6) assert_allclose(res.pvalue, 0.004433406, atol=1e-6) def test_callable_cdf(self): x, args = np.arange(5), (1.4, 0.7) r1 = cramervonmises(x, distributions.expon.cdf) r2 = cramervonmises(x, "expon") assert_equal((r1.statistic, r1.pvalue), (r2.statistic, r2.pvalue)) r1 = cramervonmises(x, distributions.beta.cdf, args) r2 = cramervonmises(x, "beta", args) assert_equal((r1.statistic, r1.pvalue), (r2.statistic, r2.pvalue)) class TestMannWhitneyU: def setup_method(self): _mwu_state._recursive = True # All magic numbers are from R wilcox.test unless otherwise specified # https://rdrr.io/r/stats/wilcox.test.html # --- Test Input Validation --- def test_input_validation(self): x = np.array([1, 2]) # generic, valid inputs y = np.array([3, 4]) with assert_raises(ValueError, match="`x` and `y` must be of nonzero"): mannwhitneyu([], y) with assert_raises(ValueError, match="`x` and `y` must be of nonzero"): mannwhitneyu(x, []) with assert_raises(ValueError, match="`use_continuity` must be one"): mannwhitneyu(x, y, use_continuity='ekki') with assert_raises(ValueError, match="`alternative` must be one of"): mannwhitneyu(x, y, alternative='ekki') with assert_raises(ValueError, match="`axis` must be an integer"): mannwhitneyu(x, y, axis=1.5) with assert_raises(ValueError, match="`method` must be one of"): mannwhitneyu(x, y, method='ekki') def test_auto(self): # Test that default method ('auto') chooses intended method np.random.seed(1) n = 8 # threshold to switch from exact to asymptotic # both inputs are smaller than threshold; should use exact x = np.random.rand(n-1) y = np.random.rand(n-1) auto = mannwhitneyu(x, y) asymptotic = mannwhitneyu(x, y, method='asymptotic') exact = mannwhitneyu(x, y, method='exact') assert auto.pvalue == exact.pvalue assert auto.pvalue != asymptotic.pvalue # one input is smaller than threshold; should use exact x = np.random.rand(n-1) y = np.random.rand(n+1) auto = mannwhitneyu(x, y) asymptotic = mannwhitneyu(x, y, method='asymptotic') exact = mannwhitneyu(x, y, method='exact') assert auto.pvalue == exact.pvalue assert auto.pvalue != asymptotic.pvalue # other input is smaller than threshold; should use exact auto = mannwhitneyu(y, x) asymptotic = mannwhitneyu(x, y, method='asymptotic') exact = mannwhitneyu(x, y, method='exact') assert auto.pvalue == exact.pvalue assert auto.pvalue != asymptotic.pvalue # both inputs are larger than threshold; should use asymptotic x = np.random.rand(n+1) y = np.random.rand(n+1) auto = mannwhitneyu(x, y) asymptotic = mannwhitneyu(x, y, method='asymptotic') exact = mannwhitneyu(x, y, method='exact') assert auto.pvalue != exact.pvalue assert auto.pvalue == asymptotic.pvalue # both inputs are smaller than threshold, but there is a tie # should use asymptotic x = np.random.rand(n-1) y = np.random.rand(n-1) y[3] = x[3] auto = mannwhitneyu(x, y) asymptotic = mannwhitneyu(x, y, method='asymptotic') exact = mannwhitneyu(x, y, method='exact') assert auto.pvalue != exact.pvalue assert auto.pvalue == asymptotic.pvalue # --- Test Basic Functionality --- x = [210.052110, 110.190630, 307.918612] y = [436.08811482466416, 416.37397329768191, 179.96975939463582, 197.8118754228619, 34.038757281225756, 138.54220550921517, 128.7769351470246, 265.92721427951852, 275.6617533155341, 592.34083395416258, 448.73177590617018, 300.61495185038905, 187.97508449019588] # This test was written for mann_whitney_u in gh-4933. # Originally, the p-values for alternatives were swapped; # this has been corrected and the tests have been refactored for # compactness, but otherwise the tests are unchanged. # R code for comparison, e.g.: # options(digits = 16) # x = c(210.052110, 110.190630, 307.918612) # y = c(436.08811482466416, 416.37397329768191, 179.96975939463582, # 197.8118754228619, 34.038757281225756, 138.54220550921517, # 128.7769351470246, 265.92721427951852, 275.6617533155341, # 592.34083395416258, 448.73177590617018, 300.61495185038905, # 187.97508449019588) # wilcox.test(x, y, alternative="g", exact=TRUE) cases_basic = [[{"alternative": 'two-sided', "method": "asymptotic"}, (16, 0.6865041817876)], [{"alternative": 'less', "method": "asymptotic"}, (16, 0.3432520908938)], [{"alternative": 'greater', "method": "asymptotic"}, (16, 0.7047591913255)], [{"alternative": 'two-sided', "method": "exact"}, (16, 0.7035714285714)], [{"alternative": 'less', "method": "exact"}, (16, 0.3517857142857)], [{"alternative": 'greater', "method": "exact"}, (16, 0.6946428571429)]] @pytest.mark.parametrize(("kwds", "expected"), cases_basic) def test_basic(self, kwds, expected): res = mannwhitneyu(self.x, self.y, **kwds) assert_allclose(res, expected) cases_continuity = [[{"alternative": 'two-sided', "use_continuity": True}, (23, 0.6865041817876)], [{"alternative": 'less', "use_continuity": True}, (23, 0.7047591913255)], [{"alternative": 'greater', "use_continuity": True}, (23, 0.3432520908938)], [{"alternative": 'two-sided', "use_continuity": False}, (23, 0.6377328900502)], [{"alternative": 'less', "use_continuity": False}, (23, 0.6811335549749)], [{"alternative": 'greater', "use_continuity": False}, (23, 0.3188664450251)]] @pytest.mark.parametrize(("kwds", "expected"), cases_continuity) def test_continuity(self, kwds, expected): # When x and y are interchanged, less and greater p-values should # swap (compare to above). This wouldn't happen if the continuity # correction were applied in the wrong direction. Note that less and # greater p-values do not sum to 1 when continuity correction is on, # which is what we'd expect. Also check that results match R when # continuity correction is turned off. # Note that method='asymptotic' -> exact=FALSE # and use_continuity=False -> correct=FALSE, e.g.: # wilcox.test(x, y, alternative="t", exact=FALSE, correct=FALSE) res = mannwhitneyu(self.y, self.x, method='asymptotic', **kwds) assert_allclose(res, expected) def test_tie_correct(self): # Test tie correction against R's wilcox.test # options(digits = 16) # x = c(1, 2, 3, 4) # y = c(1, 2, 3, 4, 5) # wilcox.test(x, y, exact=FALSE) x = [1, 2, 3, 4] y0 = np.array([1, 2, 3, 4, 5]) dy = np.array([0, 1, 0, 1, 0])*0.01 dy2 = np.array([0, 0, 1, 0, 0])*0.01 y = [y0-0.01, y0-dy, y0-dy2, y0, y0+dy2, y0+dy, y0+0.01] res = mannwhitneyu(x, y, axis=-1, method="asymptotic") U_expected = [10, 9, 8.5, 8, 7.5, 7, 6] p_expected = [1, 0.9017048037317, 0.804080657472, 0.7086240584439, 0.6197963884941, 0.5368784563079, 0.3912672792826] assert_equal(res.statistic, U_expected) assert_allclose(res.pvalue, p_expected) # --- Test Exact Distribution of U --- # These are tabulated values of the CDF of the exact distribution of # the test statistic from pg 52 of reference [1] (Mann-Whitney Original) pn3 = {1: [0.25, 0.5, 0.75], 2: [0.1, 0.2, 0.4, 0.6], 3: [0.05, .1, 0.2, 0.35, 0.5, 0.65]} pn4 = {1: [0.2, 0.4, 0.6], 2: [0.067, 0.133, 0.267, 0.4, 0.6], 3: [0.028, 0.057, 0.114, 0.2, .314, 0.429, 0.571], 4: [0.014, 0.029, 0.057, 0.1, 0.171, 0.243, 0.343, 0.443, 0.557]} pm5 = {1: [0.167, 0.333, 0.5, 0.667], 2: [0.047, 0.095, 0.19, 0.286, 0.429, 0.571], 3: [0.018, 0.036, 0.071, 0.125, 0.196, 0.286, 0.393, 0.5, 0.607], 4: [0.008, 0.016, 0.032, 0.056, 0.095, 0.143, 0.206, 0.278, 0.365, 0.452, 0.548], 5: [0.004, 0.008, 0.016, 0.028, 0.048, 0.075, 0.111, 0.155, 0.21, 0.274, 0.345, .421, 0.5, 0.579]} pm6 = {1: [0.143, 0.286, 0.428, 0.571], 2: [0.036, 0.071, 0.143, 0.214, 0.321, 0.429, 0.571], 3: [0.012, 0.024, 0.048, 0.083, 0.131, 0.19, 0.274, 0.357, 0.452, 0.548], 4: [0.005, 0.01, 0.019, 0.033, 0.057, 0.086, 0.129, 0.176, 0.238, 0.305, 0.381, 0.457, 0.543], # the last element # of the previous list, 0.543, has been modified from 0.545; # I assume it was a typo 5: [0.002, 0.004, 0.009, 0.015, 0.026, 0.041, 0.063, 0.089, 0.123, 0.165, 0.214, 0.268, 0.331, 0.396, 0.465, 0.535], 6: [0.001, 0.002, 0.004, 0.008, 0.013, 0.021, 0.032, 0.047, 0.066, 0.09, 0.12, 0.155, 0.197, 0.242, 0.294, 0.350, 0.409, 0.469, 0.531]} def test_exact_distribution(self): # I considered parametrize. I decided against it. p_tables = {3: self.pn3, 4: self.pn4, 5: self.pm5, 6: self.pm6} for n, table in p_tables.items(): for m, p in table.items(): # check p-value against table u = np.arange(0, len(p)) assert_allclose(_mwu_state.cdf(k=u, m=m, n=n), p, atol=1e-3) # check identity CDF + SF - PMF = 1 # ( In this implementation, SF(U) includes PMF(U) ) u2 = np.arange(0, m*n+1) assert_allclose(_mwu_state.cdf(k=u2, m=m, n=n) + _mwu_state.sf(k=u2, m=m, n=n) - _mwu_state.pmf(k=u2, m=m, n=n), 1) # check symmetry about mean of U, i.e. pmf(U) = pmf(m*n-U) pmf = _mwu_state.pmf(k=u2, m=m, n=n) assert_allclose(pmf, pmf[::-1]) # check symmetry w.r.t. interchange of m, n pmf2 = _mwu_state.pmf(k=u2, m=n, n=m) assert_allclose(pmf, pmf2) def test_asymptotic_behavior(self): np.random.seed(0) # for small samples, the asymptotic test is not very accurate x = np.random.rand(5) y = np.random.rand(5) res1 = mannwhitneyu(x, y, method="exact") res2 = mannwhitneyu(x, y, method="asymptotic") assert res1.statistic == res2.statistic assert np.abs(res1.pvalue - res2.pvalue) > 1e-2 # for large samples, they agree reasonably well x = np.random.rand(40) y = np.random.rand(40) res1 = mannwhitneyu(x, y, method="exact") res2 = mannwhitneyu(x, y, method="asymptotic") assert res1.statistic == res2.statistic assert np.abs(res1.pvalue - res2.pvalue) < 1e-3 # --- Test Corner Cases --- def test_exact_U_equals_mean(self): # Test U == m*n/2 with exact method # Without special treatment, two-sided p-value > 1 because both # one-sided p-values are > 0.5 res_l = mannwhitneyu([1, 2, 3], [1.5, 2.5], alternative="less", method="exact") res_g = mannwhitneyu([1, 2, 3], [1.5, 2.5], alternative="greater", method="exact") assert_equal(res_l.pvalue, res_g.pvalue) assert res_l.pvalue > 0.5 res = mannwhitneyu([1, 2, 3], [1.5, 2.5], alternative="two-sided", method="exact") assert_equal(res, (3, 1)) # U == m*n/2 for asymptotic case tested in test_gh_2118 # The reason it's tricky for the asymptotic test has to do with # continuity correction. cases_scalar = [[{"alternative": 'two-sided', "method": "asymptotic"}, (0, 1)], [{"alternative": 'less', "method": "asymptotic"}, (0, 0.5)], [{"alternative": 'greater', "method": "asymptotic"}, (0, 0.977249868052)], [{"alternative": 'two-sided', "method": "exact"}, (0, 1)], [{"alternative": 'less', "method": "exact"}, (0, 0.5)], [{"alternative": 'greater', "method": "exact"}, (0, 1)]] @pytest.mark.parametrize(("kwds", "result"), cases_scalar) def test_scalar_data(self, kwds, result): # just making sure scalars work assert_allclose(mannwhitneyu(1, 2, **kwds), result) def test_equal_scalar_data(self): # when two scalars are equal, there is an -0.5/0 in the asymptotic # approximation. R gives pvalue=1.0 for alternatives 'less' and # 'greater' but NA for 'two-sided'. I don't see why, so I don't # see a need for a special case to match that behavior. assert_equal(mannwhitneyu(1, 1, method="exact"), (0.5, 1)) assert_equal(mannwhitneyu(1, 1, method="asymptotic"), (0.5, 1)) # without continuity correction, this becomes 0/0, which really # is undefined assert_equal(mannwhitneyu(1, 1, method="asymptotic", use_continuity=False), (0.5, np.nan)) # --- Test Enhancements / Bug Reports --- @pytest.mark.parametrize("method", ["asymptotic", "exact"]) def test_gh_12837_11113(self, method): # Test that behavior for broadcastable nd arrays is appropriate: # output shape is correct and all values are equal to when the test # is performed on one pair of samples at a time. # Tests that gh-12837 and gh-11113 (requests for n-d input) # are resolved np.random.seed(0) # arrays are broadcastable except for axis = -3 axis = -3 m, n = 7, 10 # sample sizes x = np.random.rand(m, 3, 8) y = np.random.rand(6, n, 1, 8) + 0.1 res = mannwhitneyu(x, y, method=method, axis=axis) shape = (6, 3, 8) # appropriate shape of outputs, given inputs assert res.pvalue.shape == shape assert res.statistic.shape == shape # move axis of test to end for simplicity x, y = np.moveaxis(x, axis, -1), np.moveaxis(y, axis, -1) x = x[None, ...] # give x a zeroth dimension assert x.ndim == y.ndim x = np.broadcast_to(x, shape + (m,)) y = np.broadcast_to(y, shape + (n,)) assert x.shape[:-1] == shape assert y.shape[:-1] == shape # loop over pairs of samples statistics = np.zeros(shape) pvalues = np.zeros(shape) for indices in product(*[range(i) for i in shape]): xi = x[indices] yi = y[indices] temp = mannwhitneyu(xi, yi, method=method) statistics[indices] = temp.statistic pvalues[indices] = temp.pvalue np.testing.assert_equal(res.pvalue, pvalues) np.testing.assert_equal(res.statistic, statistics) def test_gh_11355(self): # Test for correct behavior with NaN/Inf in input x = [1, 2, 3, 4] y = [3, 6, 7, 8, 9, 3, 2, 1, 4, 4, 5] res1 = mannwhitneyu(x, y) # Inf is not a problem. This is a rank test, and it's the largest value y[4] = np.inf res2 = mannwhitneyu(x, y) assert_equal(res1.statistic, res2.statistic) assert_equal(res1.pvalue, res2.pvalue) # NaNs should propagate by default. y[4] = np.nan res3 = mannwhitneyu(x, y) assert_equal(res3.statistic, np.nan) assert_equal(res3.pvalue, np.nan) cases_11355 = [([1, 2, 3, 4], [3, 6, 7, 8, np.inf, 3, 2, 1, 4, 4, 5], 10, 0.1297704873477), ([1, 2, 3, 4], [3, 6, 7, 8, np.inf, np.inf, 2, 1, 4, 4, 5], 8.5, 0.08735617507695), ([1, 2, np.inf, 4], [3, 6, 7, 8, np.inf, 3, 2, 1, 4, 4, 5], 17.5, 0.5988856695752), ([1, 2, np.inf, 4], [3, 6, 7, 8, np.inf, np.inf, 2, 1, 4, 4, 5], 16, 0.4687165824462), ([1, np.inf, np.inf, 4], [3, 6, 7, 8, np.inf, np.inf, 2, 1, 4, 4, 5], 24.5, 0.7912517950119)] @pytest.mark.parametrize(("x", "y", "statistic", "pvalue"), cases_11355) def test_gh_11355b(self, x, y, statistic, pvalue): # Test for correct behavior with NaN/Inf in input res = mannwhitneyu(x, y, method='asymptotic') assert_allclose(res.statistic, statistic, atol=1e-12) assert_allclose(res.pvalue, pvalue, atol=1e-12) cases_9184 = [[True, "less", "asymptotic", 0.900775348204], [True, "greater", "asymptotic", 0.1223118025635], [True, "two-sided", "asymptotic", 0.244623605127], [False, "less", "asymptotic", 0.8896643190401], [False, "greater", "asymptotic", 0.1103356809599], [False, "two-sided", "asymptotic", 0.2206713619198], [True, "less", "exact", 0.8967698967699], [True, "greater", "exact", 0.1272061272061], [True, "two-sided", "exact", 0.2544122544123]] @pytest.mark.parametrize(("use_continuity", "alternative", "method", "pvalue_exp"), cases_9184) def test_gh_9184(self, use_continuity, alternative, method, pvalue_exp): # gh-9184 might be considered a doc-only bug. Please see the # documentation to confirm that mannwhitneyu correctly notes # that the output statistic is that of the first sample (x). In any # case, check the case provided there against output from R. # R code: # options(digits=16) # x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46) # y <- c(1.15, 0.88, 0.90, 0.74, 1.21) # wilcox.test(x, y, alternative = "less", exact = FALSE) # wilcox.test(x, y, alternative = "greater", exact = FALSE) # wilcox.test(x, y, alternative = "two.sided", exact = FALSE) # wilcox.test(x, y, alternative = "less", exact = FALSE, # correct=FALSE) # wilcox.test(x, y, alternative = "greater", exact = FALSE, # correct=FALSE) # wilcox.test(x, y, alternative = "two.sided", exact = FALSE, # correct=FALSE) # wilcox.test(x, y, alternative = "less", exact = TRUE) # wilcox.test(x, y, alternative = "greater", exact = TRUE) # wilcox.test(x, y, alternative = "two.sided", exact = TRUE) statistic_exp = 35 x = (0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46) y = (1.15, 0.88, 0.90, 0.74, 1.21) res = mannwhitneyu(x, y, use_continuity=use_continuity, alternative=alternative, method=method) assert_equal(res.statistic, statistic_exp) assert_allclose(res.pvalue, pvalue_exp) def test_gh_6897(self): # Test for correct behavior with empty input with assert_raises(ValueError, match="`x` and `y` must be of nonzero"): mannwhitneyu([], []) def test_gh_4067(self): # Test for correct behavior with all NaN input - default is propagate a = np.array([np.nan, np.nan, np.nan, np.nan, np.nan]) b = np.array([np.nan, np.nan, np.nan, np.nan, np.nan]) res = mannwhitneyu(a, b) assert_equal(res.statistic, np.nan) assert_equal(res.pvalue, np.nan) # All cases checked against R wilcox.test, e.g. # options(digits=16) # x = c(1, 2, 3) # y = c(1.5, 2.5) # wilcox.test(x, y, exact=FALSE, alternative='less') cases_2118 = [[[1, 2, 3], [1.5, 2.5], "greater", (3, 0.6135850036578)], [[1, 2, 3], [1.5, 2.5], "less", (3, 0.6135850036578)], [[1, 2, 3], [1.5, 2.5], "two-sided", (3, 1.0)], [[1, 2, 3], [2], "greater", (1.5, 0.681324055883)], [[1, 2, 3], [2], "less", (1.5, 0.681324055883)], [[1, 2, 3], [2], "two-sided", (1.5, 1)], [[1, 2], [1, 2], "greater", (2, 0.667497228949)], [[1, 2], [1, 2], "less", (2, 0.667497228949)], [[1, 2], [1, 2], "two-sided", (2, 1)]] @pytest.mark.parametrize(["x", "y", "alternative", "expected"], cases_2118) def test_gh_2118(self, x, y, alternative, expected): # test cases in which U == m*n/2 when method is asymptotic # applying continuity correction could result in p-value > 1 res = mannwhitneyu(x, y, use_continuity=True, alternative=alternative, method="asymptotic") assert_allclose(res, expected, rtol=1e-12) def test_gh19692_smaller_table(self): # In gh-19692, we noted that the shape of the cache used in calculating # p-values was dependent on the order of the inputs because the sample # sizes n1 and n2 changed. This was indicative of unnecessary cache # growth and redundant calculation. Check that this is resolved. rng = np.random.default_rng(7600451795963068007) x = rng.random(size=5) y = rng.random(size=11) _mwu_state._fmnks = -np.ones((1, 1, 1)) # reset cache stats.mannwhitneyu(x, y, method='exact') shape = _mwu_state._fmnks.shape assert shape[0] <= 6 and shape[1] <= 12 # one more than sizes stats.mannwhitneyu(y, x, method='exact') assert shape == _mwu_state._fmnks.shape # unchanged when sizes are reversed # Also, we weren't exploiting the symmmetry of the null distribution # to its full potential. Ensure that the null distribution is not # evaluated explicitly for `k > m*n/2`. _mwu_state._fmnks = -np.ones((1, 1, 1)) # reset cache stats.mannwhitneyu(x, 0*y, method='exact', alternative='greater') shape = _mwu_state._fmnks.shape assert shape[-1] == 1 # k is smallest possible stats.mannwhitneyu(0*x, y, method='exact', alternative='greater') assert shape == _mwu_state._fmnks.shape @pytest.mark.parametrize('alternative', ['less', 'greater', 'two-sided']) def test_permutation_method(self, alternative): rng = np.random.default_rng(7600451795963068007) x = rng.random(size=(2, 5)) y = rng.random(size=(2, 6)) res = stats.mannwhitneyu(x, y, method=stats.PermutationMethod(), alternative=alternative, axis=1) res2 = stats.mannwhitneyu(x, y, method='exact', alternative=alternative, axis=1) assert_allclose(res.statistic, res2.statistic, rtol=1e-15) assert_allclose(res.pvalue, res2.pvalue, rtol=1e-15) def teardown_method(self): _mwu_state._recursive = None class TestMannWhitneyU_iterative(TestMannWhitneyU): def setup_method(self): _mwu_state._recursive = False def teardown_method(self): _mwu_state._recursive = None @pytest.mark.xslow def test_mann_whitney_u_switch(): # Check that mannwhiteneyu switches between recursive and iterative # implementations at n = 500 # ensure that recursion is not enforced _mwu_state._recursive = None _mwu_state._fmnks = -np.ones((1, 1, 1)) rng = np.random.default_rng(9546146887652) x = rng.random(5) # use iterative algorithm because n > 500 y = rng.random(501) stats.mannwhitneyu(x, y, method='exact') # iterative algorithm doesn't modify _mwu_state._fmnks assert np.all(_mwu_state._fmnks == -1) # use recursive algorithm because n <= 500 y = rng.random(500) stats.mannwhitneyu(x, y, method='exact') # recursive algorithm has modified _mwu_state._fmnks assert not np.all(_mwu_state._fmnks == -1) class TestSomersD(_TestPythranFunc): def setup_method(self): self.dtypes = self.ALL_INTEGER + self.ALL_FLOAT self.arguments = {0: (np.arange(10), self.ALL_INTEGER + self.ALL_FLOAT), 1: (np.arange(10), self.ALL_INTEGER + self.ALL_FLOAT)} input_array = [self.arguments[idx][0] for idx in self.arguments] # In this case, self.partialfunc can simply be stats.somersd, # since `alternative` is an optional argument. If it is required, # we can use functools.partial to freeze the value, because # we only mainly test various array inputs, not str, etc. self.partialfunc = functools.partial(stats.somersd, alternative='two-sided') self.expected = self.partialfunc(*input_array) def pythranfunc(self, *args): res = self.partialfunc(*args) assert_allclose(res.statistic, self.expected.statistic, atol=1e-15) assert_allclose(res.pvalue, self.expected.pvalue, atol=1e-15) def test_pythranfunc_keywords(self): # Not specifying the optional keyword args table = [[27, 25, 14, 7, 0], [7, 14, 18, 35, 12], [1, 3, 2, 7, 17]] res1 = stats.somersd(table) # Specifying the optional keyword args with default value optional_args = self.get_optional_args(stats.somersd) res2 = stats.somersd(table, **optional_args) # Check if the results are the same in two cases assert_allclose(res1.statistic, res2.statistic, atol=1e-15) assert_allclose(res1.pvalue, res2.pvalue, atol=1e-15) def test_like_kendalltau(self): # All tests correspond with one in test_stats.py `test_kendalltau` # case without ties, con-dis equal zero x = [5, 2, 1, 3, 6, 4, 7, 8] y = [5, 2, 6, 3, 1, 8, 7, 4] # Cross-check with result from SAS FREQ: expected = (0.000000000000000, 1.000000000000000) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # case without ties, con-dis equal zero x = [0, 5, 2, 1, 3, 6, 4, 7, 8] y = [5, 2, 0, 6, 3, 1, 8, 7, 4] # Cross-check with result from SAS FREQ: expected = (0.000000000000000, 1.000000000000000) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # case without ties, con-dis close to zero x = [5, 2, 1, 3, 6, 4, 7] y = [5, 2, 6, 3, 1, 7, 4] # Cross-check with result from SAS FREQ: expected = (-0.142857142857140, 0.630326953157670) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # simple case without ties x = np.arange(10) y = np.arange(10) # Cross-check with result from SAS FREQ: # SAS p value is not provided. expected = (1.000000000000000, 0) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # swap a couple values and a couple more x = np.arange(10) y = np.array([0, 2, 1, 3, 4, 6, 5, 7, 8, 9]) # Cross-check with result from SAS FREQ: expected = (0.911111111111110, 0.000000000000000) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # same in opposite direction x = np.arange(10) y = np.arange(10)[::-1] # Cross-check with result from SAS FREQ: # SAS p value is not provided. expected = (-1.000000000000000, 0) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # swap a couple values and a couple more x = np.arange(10) y = np.array([9, 7, 8, 6, 5, 3, 4, 2, 1, 0]) # Cross-check with result from SAS FREQ: expected = (-0.9111111111111111, 0.000000000000000) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # with some ties x1 = [12, 2, 1, 12, 2] x2 = [1, 4, 7, 1, 0] # Cross-check with result from SAS FREQ: expected = (-0.500000000000000, 0.304901788178780) res = stats.somersd(x1, x2) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # with only ties in one or both inputs # SAS will not produce an output for these: # NOTE: No statistics are computed for x * y because x has fewer # than 2 nonmissing levels. # WARNING: No OUTPUT data set is produced for this table because a # row or column variable has fewer than 2 nonmissing levels and no # statistics are computed. res = stats.somersd([2, 2, 2], [2, 2, 2]) assert_allclose(res.statistic, np.nan) assert_allclose(res.pvalue, np.nan) res = stats.somersd([2, 0, 2], [2, 2, 2]) assert_allclose(res.statistic, np.nan) assert_allclose(res.pvalue, np.nan) res = stats.somersd([2, 2, 2], [2, 0, 2]) assert_allclose(res.statistic, np.nan) assert_allclose(res.pvalue, np.nan) res = stats.somersd([0], [0]) assert_allclose(res.statistic, np.nan) assert_allclose(res.pvalue, np.nan) # empty arrays provided as input res = stats.somersd([], []) assert_allclose(res.statistic, np.nan) assert_allclose(res.pvalue, np.nan) # test unequal length inputs x = np.arange(10.) y = np.arange(20.) assert_raises(ValueError, stats.somersd, x, y) def test_asymmetry(self): # test that somersd is asymmetric w.r.t. input order and that # convention is as described: first input is row variable & independent # data is from Wikipedia: # https://en.wikipedia.org/wiki/Somers%27_D # but currently that example contradicts itself - it says X is # independent yet take D_XY x = [1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3] y = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] # Cross-check with result from SAS FREQ: d_cr = 0.272727272727270 d_rc = 0.342857142857140 p = 0.092891940883700 # same p-value for either direction res = stats.somersd(x, y) assert_allclose(res.statistic, d_cr, atol=1e-15) assert_allclose(res.pvalue, p, atol=1e-4) assert_equal(res.table.shape, (3, 2)) res = stats.somersd(y, x) assert_allclose(res.statistic, d_rc, atol=1e-15) assert_allclose(res.pvalue, p, atol=1e-15) assert_equal(res.table.shape, (2, 3)) def test_somers_original(self): # test against Somers' original paper [1] # Table 5A # Somers' convention was column IV table = np.array([[8, 2], [6, 5], [3, 4], [1, 3], [2, 3]]) # Our convention (and that of SAS FREQ) is row IV table = table.T dyx = 129/340 assert_allclose(stats.somersd(table).statistic, dyx) # table 7A - d_yx = 1 table = np.array([[25, 0], [85, 0], [0, 30]]) dxy, dyx = 3300/5425, 3300/3300 assert_allclose(stats.somersd(table).statistic, dxy) assert_allclose(stats.somersd(table.T).statistic, dyx) # table 7B - d_yx < 0 table = np.array([[25, 0], [0, 30], [85, 0]]) dyx = -1800/3300 assert_allclose(stats.somersd(table.T).statistic, dyx) def test_contingency_table_with_zero_rows_cols(self): # test that zero rows/cols in contingency table don't affect result N = 100 shape = 4, 6 size = np.prod(shape) np.random.seed(0) s = stats.multinomial.rvs(N, p=np.ones(size)/size).reshape(shape) res = stats.somersd(s) s2 = np.insert(s, 2, np.zeros(shape[1]), axis=0) res2 = stats.somersd(s2) s3 = np.insert(s, 2, np.zeros(shape[0]), axis=1) res3 = stats.somersd(s3) s4 = np.insert(s2, 2, np.zeros(shape[0]+1), axis=1) res4 = stats.somersd(s4) # Cross-check with result from SAS FREQ: assert_allclose(res.statistic, -0.116981132075470, atol=1e-15) assert_allclose(res.statistic, res2.statistic) assert_allclose(res.statistic, res3.statistic) assert_allclose(res.statistic, res4.statistic) assert_allclose(res.pvalue, 0.156376448188150, atol=1e-15) assert_allclose(res.pvalue, res2.pvalue) assert_allclose(res.pvalue, res3.pvalue) assert_allclose(res.pvalue, res4.pvalue) def test_invalid_contingency_tables(self): N = 100 shape = 4, 6 size = np.prod(shape) np.random.seed(0) # start with a valid contingency table s = stats.multinomial.rvs(N, p=np.ones(size)/size).reshape(shape) s5 = s - 2 message = "All elements of the contingency table must be non-negative" with assert_raises(ValueError, match=message): stats.somersd(s5) s6 = s + 0.01 message = "All elements of the contingency table must be integer" with assert_raises(ValueError, match=message): stats.somersd(s6) message = ("At least two elements of the contingency " "table must be nonzero.") with assert_raises(ValueError, match=message): stats.somersd([[]]) with assert_raises(ValueError, match=message): stats.somersd([[1]]) s7 = np.zeros((3, 3)) with assert_raises(ValueError, match=message): stats.somersd(s7) s7[0, 1] = 1 with assert_raises(ValueError, match=message): stats.somersd(s7) def test_only_ranks_matter(self): # only ranks of input data should matter x = [1, 2, 3] x2 = [-1, 2.1, np.inf] y = [3, 2, 1] y2 = [0, -0.5, -np.inf] res = stats.somersd(x, y) res2 = stats.somersd(x2, y2) assert_equal(res.statistic, res2.statistic) assert_equal(res.pvalue, res2.pvalue) def test_contingency_table_return(self): # check that contingency table is returned x = np.arange(10) y = np.arange(10) res = stats.somersd(x, y) assert_equal(res.table, np.eye(10)) def test_somersd_alternative(self): # Test alternative parameter, asymptotic method (due to tie) # Based on scipy.stats.test_stats.TestCorrSpearman2::test_alternative x1 = [1, 2, 3, 4, 5] x2 = [5, 6, 7, 8, 7] # strong positive correlation expected = stats.somersd(x1, x2, alternative="two-sided") assert expected.statistic > 0 # rank correlation > 0 -> large "less" p-value res = stats.somersd(x1, x2, alternative="less") assert_equal(res.statistic, expected.statistic) assert_allclose(res.pvalue, 1 - (expected.pvalue / 2)) # rank correlation > 0 -> small "greater" p-value res = stats.somersd(x1, x2, alternative="greater") assert_equal(res.statistic, expected.statistic) assert_allclose(res.pvalue, expected.pvalue / 2) # reverse the direction of rank correlation x2.reverse() # strong negative correlation expected = stats.somersd(x1, x2, alternative="two-sided") assert expected.statistic < 0 # rank correlation < 0 -> large "greater" p-value res = stats.somersd(x1, x2, alternative="greater") assert_equal(res.statistic, expected.statistic) assert_allclose(res.pvalue, 1 - (expected.pvalue / 2)) # rank correlation < 0 -> small "less" p-value res = stats.somersd(x1, x2, alternative="less") assert_equal(res.statistic, expected.statistic) assert_allclose(res.pvalue, expected.pvalue / 2) with pytest.raises(ValueError, match="`alternative` must be..."): stats.somersd(x1, x2, alternative="ekki-ekki") @pytest.mark.parametrize("positive_correlation", (False, True)) def test_somersd_perfect_correlation(self, positive_correlation): # Before the addition of `alternative`, perfect correlation was # treated as a special case. Now it is treated like any other case, but # make sure there are no divide by zero warnings or associated errors x1 = np.arange(10) x2 = x1 if positive_correlation else np.flip(x1) expected_statistic = 1 if positive_correlation else -1 # perfect correlation -> small "two-sided" p-value (0) res = stats.somersd(x1, x2, alternative="two-sided") assert res.statistic == expected_statistic assert res.pvalue == 0 # rank correlation > 0 -> large "less" p-value (1) res = stats.somersd(x1, x2, alternative="less") assert res.statistic == expected_statistic assert res.pvalue == (1 if positive_correlation else 0) # rank correlation > 0 -> small "greater" p-value (0) res = stats.somersd(x1, x2, alternative="greater") assert res.statistic == expected_statistic assert res.pvalue == (0 if positive_correlation else 1) def test_somersd_large_inputs_gh18132(self): # Test that large inputs where potential overflows could occur give # the expected output. This is tested in the case of binary inputs. # See gh-18126. # generate lists of random classes 1-2 (binary) classes = [1, 2] n_samples = 10 ** 6 random.seed(6272161) x = random.choices(classes, k=n_samples) y = random.choices(classes, k=n_samples) # get value to compare with: sklearn output # from sklearn import metrics # val_auc_sklearn = metrics.roc_auc_score(x, y) # # convert to the Gini coefficient (Gini = (AUC*2)-1) # val_sklearn = 2 * val_auc_sklearn - 1 val_sklearn = -0.001528138777036947 # calculate the Somers' D statistic, which should be equal to the # result of val_sklearn until approximately machine precision val_scipy = stats.somersd(x, y).statistic assert_allclose(val_sklearn, val_scipy, atol=1e-15) class TestBarnardExact: """Some tests to show that barnard_exact() works correctly.""" @pytest.mark.parametrize( "input_sample,expected", [ ([[43, 40], [10, 39]], (3.555406779643, 0.000362832367)), ([[100, 2], [1000, 5]], (-1.776382925679, 0.135126970878)), ([[2, 7], [8, 2]], (-2.518474945157, 0.019210815430)), ([[5, 1], [10, 10]], (1.449486150679, 0.156277546306)), ([[5, 15], [20, 20]], (-1.851640199545, 0.066363501421)), ([[5, 16], [20, 25]], (-1.609639949352, 0.116984852192)), ([[10, 5], [10, 1]], (-1.449486150679, 0.177536588915)), ([[5, 0], [1, 4]], (2.581988897472, 0.013671875000)), ([[0, 1], [3, 2]], (-1.095445115010, 0.509667991877)), ([[0, 2], [6, 4]], (-1.549193338483, 0.197019618792)), ([[2, 7], [8, 2]], (-2.518474945157, 0.019210815430)), ], ) def test_precise(self, input_sample, expected): """The expected values have been generated by R, using a resolution for the nuisance parameter of 1e-6 : ```R library(Barnard) options(digits=10) barnard.test(43, 40, 10, 39, dp=1e-6, pooled=TRUE) ``` """ res = barnard_exact(input_sample) statistic, pvalue = res.statistic, res.pvalue assert_allclose([statistic, pvalue], expected) @pytest.mark.parametrize( "input_sample,expected", [ ([[43, 40], [10, 39]], (3.920362887717, 0.000289470662)), ([[100, 2], [1000, 5]], (-1.139432816087, 0.950272080594)), ([[2, 7], [8, 2]], (-3.079373904042, 0.020172119141)), ([[5, 1], [10, 10]], (1.622375939458, 0.150599922226)), ([[5, 15], [20, 20]], (-1.974771239528, 0.063038448651)), ([[5, 16], [20, 25]], (-1.722122973346, 0.133329494287)), ([[10, 5], [10, 1]], (-1.765469659009, 0.250566655215)), ([[5, 0], [1, 4]], (5.477225575052, 0.007812500000)), ([[0, 1], [3, 2]], (-1.224744871392, 0.509667991877)), ([[0, 2], [6, 4]], (-1.732050807569, 0.197019618792)), ([[2, 7], [8, 2]], (-3.079373904042, 0.020172119141)), ], ) def test_pooled_param(self, input_sample, expected): """The expected values have been generated by R, using a resolution for the nuisance parameter of 1e-6 : ```R library(Barnard) options(digits=10) barnard.test(43, 40, 10, 39, dp=1e-6, pooled=FALSE) ``` """ res = barnard_exact(input_sample, pooled=False) statistic, pvalue = res.statistic, res.pvalue assert_allclose([statistic, pvalue], expected) def test_raises(self): # test we raise an error for wrong input number of nuisances. error_msg = ( "Number of points `n` must be strictly positive, found 0" ) with assert_raises(ValueError, match=error_msg): barnard_exact([[1, 2], [3, 4]], n=0) # test we raise an error for wrong shape of input. error_msg = "The input `table` must be of shape \\(2, 2\\)." with assert_raises(ValueError, match=error_msg): barnard_exact(np.arange(6).reshape(2, 3)) # Test all values must be positives error_msg = "All values in `table` must be nonnegative." with assert_raises(ValueError, match=error_msg): barnard_exact([[-1, 2], [3, 4]]) # Test value error on wrong alternative param error_msg = ( "`alternative` should be one of {'two-sided', 'less', 'greater'}," " found .*" ) with assert_raises(ValueError, match=error_msg): barnard_exact([[1, 2], [3, 4]], "not-correct") @pytest.mark.parametrize( "input_sample,expected", [ ([[0, 0], [4, 3]], (1.0, 0)), ], ) def test_edge_cases(self, input_sample, expected): res = barnard_exact(input_sample) statistic, pvalue = res.statistic, res.pvalue assert_equal(pvalue, expected[0]) assert_equal(statistic, expected[1]) @pytest.mark.parametrize( "input_sample,expected", [ ([[0, 5], [0, 10]], (1.0, np.nan)), ([[5, 0], [10, 0]], (1.0, np.nan)), ], ) def test_row_or_col_zero(self, input_sample, expected): res = barnard_exact(input_sample) statistic, pvalue = res.statistic, res.pvalue assert_equal(pvalue, expected[0]) assert_equal(statistic, expected[1]) @pytest.mark.parametrize( "input_sample,expected", [ ([[2, 7], [8, 2]], (-2.518474945157, 0.009886140845)), ([[7, 200], [300, 8]], (-21.320036698460, 0.0)), ([[21, 28], [1957, 6]], (-30.489638143953, 0.0)), ], ) @pytest.mark.parametrize("alternative", ["greater", "less"]) def test_less_greater(self, input_sample, expected, alternative): """ "The expected values have been generated by R, using a resolution for the nuisance parameter of 1e-6 : ```R library(Barnard) options(digits=10) a = barnard.test(2, 7, 8, 2, dp=1e-6, pooled=TRUE) a$p.value[1] ``` In this test, we are using the "one-sided" return value `a$p.value[1]` to test our pvalue. """ expected_stat, less_pvalue_expect = expected if alternative == "greater": input_sample = np.array(input_sample)[:, ::-1] expected_stat = -expected_stat res = barnard_exact(input_sample, alternative=alternative) statistic, pvalue = res.statistic, res.pvalue assert_allclose( [statistic, pvalue], [expected_stat, less_pvalue_expect], atol=1e-7 ) class TestBoschlooExact: """Some tests to show that boschloo_exact() works correctly.""" ATOL = 1e-7 @pytest.mark.parametrize( "input_sample,expected", [ ([[2, 7], [8, 2]], (0.01852173, 0.009886142)), ([[5, 1], [10, 10]], (0.9782609, 0.9450994)), ([[5, 16], [20, 25]], (0.08913823, 0.05827348)), ([[10, 5], [10, 1]], (0.1652174, 0.08565611)), ([[5, 0], [1, 4]], (1, 1)), ([[0, 1], [3, 2]], (0.5, 0.34375)), ([[2, 7], [8, 2]], (0.01852173, 0.009886142)), ([[7, 12], [8, 3]], (0.06406797, 0.03410916)), ([[10, 24], [25, 37]], (0.2009359, 0.1512882)), ], ) def test_less(self, input_sample, expected): """The expected values have been generated by R, using a resolution for the nuisance parameter of 1e-8 : ```R library(Exact) options(digits=10) data <- matrix(c(43, 10, 40, 39), 2, 2, byrow=TRUE) a = exact.test(data, method="Boschloo", alternative="less", tsmethod="central", np.interval=TRUE, beta=1e-8) ``` """ res = boschloo_exact(input_sample, alternative="less") statistic, pvalue = res.statistic, res.pvalue assert_allclose([statistic, pvalue], expected, atol=self.ATOL) @pytest.mark.parametrize( "input_sample,expected", [ ([[43, 40], [10, 39]], (0.0002875544, 0.0001615562)), ([[2, 7], [8, 2]], (0.9990149, 0.9918327)), ([[5, 1], [10, 10]], (0.1652174, 0.09008534)), ([[5, 15], [20, 20]], (0.9849087, 0.9706997)), ([[5, 16], [20, 25]], (0.972349, 0.9524124)), ([[5, 0], [1, 4]], (0.02380952, 0.006865367)), ([[0, 1], [3, 2]], (1, 1)), ([[0, 2], [6, 4]], (1, 1)), ([[2, 7], [8, 2]], (0.9990149, 0.9918327)), ([[7, 12], [8, 3]], (0.9895302, 0.9771215)), ([[10, 24], [25, 37]], (0.9012936, 0.8633275)), ], ) def test_greater(self, input_sample, expected): """The expected values have been generated by R, using a resolution for the nuisance parameter of 1e-8 : ```R library(Exact) options(digits=10) data <- matrix(c(43, 10, 40, 39), 2, 2, byrow=TRUE) a = exact.test(data, method="Boschloo", alternative="greater", tsmethod="central", np.interval=TRUE, beta=1e-8) ``` """ res = boschloo_exact(input_sample, alternative="greater") statistic, pvalue = res.statistic, res.pvalue assert_allclose([statistic, pvalue], expected, atol=self.ATOL) @pytest.mark.parametrize( "input_sample,expected", [ ([[43, 40], [10, 39]], (0.0002875544, 0.0003231115)), ([[2, 7], [8, 2]], (0.01852173, 0.01977228)), ([[5, 1], [10, 10]], (0.1652174, 0.1801707)), ([[5, 16], [20, 25]], (0.08913823, 0.116547)), ([[5, 0], [1, 4]], (0.02380952, 0.01373073)), ([[0, 1], [3, 2]], (0.5, 0.6875)), ([[2, 7], [8, 2]], (0.01852173, 0.01977228)), ([[7, 12], [8, 3]], (0.06406797, 0.06821831)), ], ) def test_two_sided(self, input_sample, expected): """The expected values have been generated by R, using a resolution for the nuisance parameter of 1e-8 : ```R library(Exact) options(digits=10) data <- matrix(c(43, 10, 40, 39), 2, 2, byrow=TRUE) a = exact.test(data, method="Boschloo", alternative="two.sided", tsmethod="central", np.interval=TRUE, beta=1e-8) ``` """ res = boschloo_exact(input_sample, alternative="two-sided", n=64) # Need n = 64 for python 32-bit statistic, pvalue = res.statistic, res.pvalue assert_allclose([statistic, pvalue], expected, atol=self.ATOL) def test_raises(self): # test we raise an error for wrong input number of nuisances. error_msg = ( "Number of points `n` must be strictly positive, found 0" ) with assert_raises(ValueError, match=error_msg): boschloo_exact([[1, 2], [3, 4]], n=0) # test we raise an error for wrong shape of input. error_msg = "The input `table` must be of shape \\(2, 2\\)." with assert_raises(ValueError, match=error_msg): boschloo_exact(np.arange(6).reshape(2, 3)) # Test all values must be positives error_msg = "All values in `table` must be nonnegative." with assert_raises(ValueError, match=error_msg): boschloo_exact([[-1, 2], [3, 4]]) # Test value error on wrong alternative param error_msg = ( r"`alternative` should be one of \('two-sided', 'less', " r"'greater'\), found .*" ) with assert_raises(ValueError, match=error_msg): boschloo_exact([[1, 2], [3, 4]], "not-correct") @pytest.mark.parametrize( "input_sample,expected", [ ([[0, 5], [0, 10]], (np.nan, np.nan)), ([[5, 0], [10, 0]], (np.nan, np.nan)), ], ) def test_row_or_col_zero(self, input_sample, expected): res = boschloo_exact(input_sample) statistic, pvalue = res.statistic, res.pvalue assert_equal(pvalue, expected[0]) assert_equal(statistic, expected[1]) def test_two_sided_gt_1(self): # Check that returned p-value does not exceed 1 even when twice # the minimum of the one-sided p-values does. See gh-15345. tbl = [[1, 1], [13, 12]] pl = boschloo_exact(tbl, alternative='less').pvalue pg = boschloo_exact(tbl, alternative='greater').pvalue assert 2*min(pl, pg) > 1 pt = boschloo_exact(tbl, alternative='two-sided').pvalue assert pt == 1.0 @pytest.mark.parametrize("alternative", ("less", "greater")) def test_against_fisher_exact(self, alternative): # Check that the statistic of `boschloo_exact` is the same as the # p-value of `fisher_exact` (for one-sided tests). See gh-15345. tbl = [[2, 7], [8, 2]] boschloo_stat = boschloo_exact(tbl, alternative=alternative).statistic fisher_p = stats.fisher_exact(tbl, alternative=alternative)[1] assert_allclose(boschloo_stat, fisher_p) class TestCvm_2samp: def test_invalid_input(self): y = np.arange(5) msg = 'x and y must contain at least two observations.' with pytest.raises(ValueError, match=msg): cramervonmises_2samp([], y) with pytest.raises(ValueError, match=msg): cramervonmises_2samp(y, [1]) msg = 'method must be either auto, exact or asymptotic' with pytest.raises(ValueError, match=msg): cramervonmises_2samp(y, y, 'xyz') def test_list_input(self): x = [2, 3, 4, 7, 6] y = [0.2, 0.7, 12, 18] r1 = cramervonmises_2samp(x, y) r2 = cramervonmises_2samp(np.array(x), np.array(y)) assert_equal((r1.statistic, r1.pvalue), (r2.statistic, r2.pvalue)) def test_example_conover(self): # Example 2 in Section 6.2 of W.J. Conover: Practical Nonparametric # Statistics, 1971. x = [7.6, 8.4, 8.6, 8.7, 9.3, 9.9, 10.1, 10.6, 11.2] y = [5.2, 5.7, 5.9, 6.5, 6.8, 8.2, 9.1, 9.8, 10.8, 11.3, 11.5, 12.3, 12.5, 13.4, 14.6] r = cramervonmises_2samp(x, y) assert_allclose(r.statistic, 0.262, atol=1e-3) assert_allclose(r.pvalue, 0.18, atol=1e-2) @pytest.mark.parametrize('statistic, m, n, pval', [(710, 5, 6, 48./462), (1897, 7, 7, 117./1716), (576, 4, 6, 2./210), (1764, 6, 7, 2./1716)]) def test_exact_pvalue(self, statistic, m, n, pval): # the exact values are taken from Anderson: On the distribution of the # two-sample Cramer-von-Mises criterion, 1962. # The values are taken from Table 2, 3, 4 and 5 assert_equal(_pval_cvm_2samp_exact(statistic, m, n), pval) def test_large_sample(self): # for large samples, the statistic U gets very large # do a sanity check that p-value is not 0, 1 or nan np.random.seed(4367) x = distributions.norm.rvs(size=1000000) y = distributions.norm.rvs(size=900000) r = cramervonmises_2samp(x, y) assert_(0 < r.pvalue < 1) r = cramervonmises_2samp(x, y+0.1) assert_(0 < r.pvalue < 1) def test_exact_vs_asymptotic(self): np.random.seed(0) x = np.random.rand(7) y = np.random.rand(8) r1 = cramervonmises_2samp(x, y, method='exact') r2 = cramervonmises_2samp(x, y, method='asymptotic') assert_equal(r1.statistic, r2.statistic) assert_allclose(r1.pvalue, r2.pvalue, atol=1e-2) def test_method_auto(self): x = np.arange(20) y = [0.5, 4.7, 13.1] r1 = cramervonmises_2samp(x, y, method='exact') r2 = cramervonmises_2samp(x, y, method='auto') assert_equal(r1.pvalue, r2.pvalue) # switch to asymptotic if one sample has more than 20 observations x = np.arange(21) r1 = cramervonmises_2samp(x, y, method='asymptotic') r2 = cramervonmises_2samp(x, y, method='auto') assert_equal(r1.pvalue, r2.pvalue) def test_same_input(self): # make sure trivial edge case can be handled # note that _cdf_cvm_inf(0) = nan. implementation avoids nan by # returning pvalue=1 for very small values of the statistic x = np.arange(15) res = cramervonmises_2samp(x, x) assert_equal((res.statistic, res.pvalue), (0.0, 1.0)) # check exact p-value res = cramervonmises_2samp(x[:4], x[:4]) assert_equal((res.statistic, res.pvalue), (0.0, 1.0)) class TestTukeyHSD: data_same_size = ([24.5, 23.5, 26.4, 27.1, 29.9], [28.4, 34.2, 29.5, 32.2, 30.1], [26.1, 28.3, 24.3, 26.2, 27.8]) data_diff_size = ([24.5, 23.5, 26.28, 26.4, 27.1, 29.9, 30.1, 30.1], [28.4, 34.2, 29.5, 32.2, 30.1], [26.1, 28.3, 24.3, 26.2, 27.8]) extreme_size = ([24.5, 23.5, 26.4], [28.4, 34.2, 29.5, 32.2, 30.1, 28.4, 34.2, 29.5, 32.2, 30.1], [26.1, 28.3, 24.3, 26.2, 27.8]) sas_same_size = """ Comparison LowerCL Difference UpperCL Significance 2 - 3 0.6908830568 4.34 7.989116943 1 2 - 1 0.9508830568 4.6 8.249116943 1 3 - 2 -7.989116943 -4.34 -0.6908830568 1 3 - 1 -3.389116943 0.26 3.909116943 0 1 - 2 -8.249116943 -4.6 -0.9508830568 1 1 - 3 -3.909116943 -0.26 3.389116943 0 """ sas_diff_size = """ Comparison LowerCL Difference UpperCL Significance 2 - 1 0.2679292645 3.645 7.022070736 1 2 - 3 0.5934764007 4.34 8.086523599 1 1 - 2 -7.022070736 -3.645 -0.2679292645 1 1 - 3 -2.682070736 0.695 4.072070736 0 3 - 2 -8.086523599 -4.34 -0.5934764007 1 3 - 1 -4.072070736 -0.695 2.682070736 0 """ sas_extreme = """ Comparison LowerCL Difference UpperCL Significance 2 - 3 1.561605075 4.34 7.118394925 1 2 - 1 2.740784879 6.08 9.419215121 1 3 - 2 -7.118394925 -4.34 -1.561605075 1 3 - 1 -1.964526566 1.74 5.444526566 0 1 - 2 -9.419215121 -6.08 -2.740784879 1 1 - 3 -5.444526566 -1.74 1.964526566 0 """ @pytest.mark.parametrize("data,res_expect_str,atol", ((data_same_size, sas_same_size, 1e-4), (data_diff_size, sas_diff_size, 1e-4), (extreme_size, sas_extreme, 1e-10), ), ids=["equal size sample", "unequal sample size", "extreme sample size differences"]) def test_compare_sas(self, data, res_expect_str, atol): ''' SAS code used to generate results for each sample: DATA ACHE; INPUT BRAND RELIEF; CARDS; 1 24.5 ... 3 27.8 ; ods graphics on; ODS RTF;ODS LISTING CLOSE; PROC ANOVA DATA=ACHE; CLASS BRAND; MODEL RELIEF=BRAND; MEANS BRAND/TUKEY CLDIFF; TITLE 'COMPARE RELIEF ACROSS MEDICINES - ANOVA EXAMPLE'; ods output CLDiffs =tc; proc print data=tc; format LowerCL 17.16 UpperCL 17.16 Difference 17.16; title "Output with many digits"; RUN; QUIT; ODS RTF close; ODS LISTING; ''' res_expect = np.asarray(res_expect_str.replace(" - ", " ").split()[5:], dtype=float).reshape((6, 6)) res_tukey = stats.tukey_hsd(*data) conf = res_tukey.confidence_interval() # loop over the comparisons for i, j, l, s, h, sig in res_expect: i, j = int(i) - 1, int(j) - 1 assert_allclose(conf.low[i, j], l, atol=atol) assert_allclose(res_tukey.statistic[i, j], s, atol=atol) assert_allclose(conf.high[i, j], h, atol=atol) assert_allclose((res_tukey.pvalue[i, j] <= .05), sig == 1) matlab_sm_siz = """ 1 2 -8.2491590248597 -4.6 -0.9508409751403 0.0144483269098 1 3 -3.9091590248597 -0.26 3.3891590248597 0.9803107240900 2 3 0.6908409751403 4.34 7.9891590248597 0.0203311368795 """ matlab_diff_sz = """ 1 2 -7.02207069748501 -3.645 -0.26792930251500 0.03371498443080 1 3 -2.68207069748500 0.695 4.07207069748500 0.85572267328807 2 3 0.59347644287720 4.34 8.08652355712281 0.02259047020620 """ @pytest.mark.parametrize("data,res_expect_str,atol", ((data_same_size, matlab_sm_siz, 1e-12), (data_diff_size, matlab_diff_sz, 1e-7)), ids=["equal size sample", "unequal size sample"]) def test_compare_matlab(self, data, res_expect_str, atol): """ vals = [24.5, 23.5, 26.4, 27.1, 29.9, 28.4, 34.2, 29.5, 32.2, 30.1, 26.1, 28.3, 24.3, 26.2, 27.8] names = {'zero', 'zero', 'zero', 'zero', 'zero', 'one', 'one', 'one', 'one', 'one', 'two', 'two', 'two', 'two', 'two'} [p,t,stats] = anova1(vals,names,"off"); [c,m,h,nms] = multcompare(stats, "CType","hsd"); """ res_expect = np.asarray(res_expect_str.split(), dtype=float).reshape((3, 6)) res_tukey = stats.tukey_hsd(*data) conf = res_tukey.confidence_interval() # loop over the comparisons for i, j, l, s, h, p in res_expect: i, j = int(i) - 1, int(j) - 1 assert_allclose(conf.low[i, j], l, atol=atol) assert_allclose(res_tukey.statistic[i, j], s, atol=atol) assert_allclose(conf.high[i, j], h, atol=atol) assert_allclose(res_tukey.pvalue[i, j], p, atol=atol) def test_compare_r(self): """ Testing against results and p-values from R: from: https://www.rdocumentation.org/packages/stats/versions/3.6.2/ topics/TukeyHSD > require(graphics) > summary(fm1 <- aov(breaks ~ tension, data = warpbreaks)) > TukeyHSD(fm1, "tension", ordered = TRUE) > plot(TukeyHSD(fm1, "tension")) Tukey multiple comparisons of means 95% family-wise confidence level factor levels have been ordered Fit: aov(formula = breaks ~ tension, data = warpbreaks) $tension """ str_res = """ diff lwr upr p adj 2 - 3 4.722222 -4.8376022 14.28205 0.4630831 1 - 3 14.722222 5.1623978 24.28205 0.0014315 1 - 2 10.000000 0.4401756 19.55982 0.0384598 """ res_expect = np.asarray(str_res.replace(" - ", " ").split()[5:], dtype=float).reshape((3, 6)) data = ([26, 30, 54, 25, 70, 52, 51, 26, 67, 27, 14, 29, 19, 29, 31, 41, 20, 44], [18, 21, 29, 17, 12, 18, 35, 30, 36, 42, 26, 19, 16, 39, 28, 21, 39, 29], [36, 21, 24, 18, 10, 43, 28, 15, 26, 20, 21, 24, 17, 13, 15, 15, 16, 28]) res_tukey = stats.tukey_hsd(*data) conf = res_tukey.confidence_interval() # loop over the comparisons for i, j, s, l, h, p in res_expect: i, j = int(i) - 1, int(j) - 1 # atols are set to the number of digits present in the r result. assert_allclose(conf.low[i, j], l, atol=1e-7) assert_allclose(res_tukey.statistic[i, j], s, atol=1e-6) assert_allclose(conf.high[i, j], h, atol=1e-5) assert_allclose(res_tukey.pvalue[i, j], p, atol=1e-7) def test_engineering_stat_handbook(self): ''' Example sourced from: https://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm ''' group1 = [6.9, 5.4, 5.8, 4.6, 4.0] group2 = [8.3, 6.8, 7.8, 9.2, 6.5] group3 = [8.0, 10.5, 8.1, 6.9, 9.3] group4 = [5.8, 3.8, 6.1, 5.6, 6.2] res = stats.tukey_hsd(group1, group2, group3, group4) conf = res.confidence_interval() lower = np.asarray([ [0, 0, 0, -2.25], [.29, 0, -2.93, .13], [1.13, 0, 0, .97], [0, 0, 0, 0]]) upper = np.asarray([ [0, 0, 0, 1.93], [4.47, 0, 1.25, 4.31], [5.31, 0, 0, 5.15], [0, 0, 0, 0]]) for (i, j) in [(1, 0), (2, 0), (0, 3), (1, 2), (2, 3)]: assert_allclose(conf.low[i, j], lower[i, j], atol=1e-2) assert_allclose(conf.high[i, j], upper[i, j], atol=1e-2) def test_rand_symm(self): # test some expected identities of the results np.random.seed(1234) data = np.random.rand(3, 100) res = stats.tukey_hsd(*data) conf = res.confidence_interval() # the confidence intervals should be negated symmetric of each other assert_equal(conf.low, -conf.high.T) # the `high` and `low` center diagonals should be the same since the # mean difference in a self comparison is 0. assert_equal(np.diagonal(conf.high), conf.high[0, 0]) assert_equal(np.diagonal(conf.low), conf.low[0, 0]) # statistic array should be antisymmetric with zeros on the diagonal assert_equal(res.statistic, -res.statistic.T) assert_equal(np.diagonal(res.statistic), 0) # p-values should be symmetric and 1 when compared to itself assert_equal(res.pvalue, res.pvalue.T) assert_equal(np.diagonal(res.pvalue), 1) def test_no_inf(self): with assert_raises(ValueError, match="...must be finite."): stats.tukey_hsd([1, 2, 3], [2, np.inf], [6, 7, 3]) def test_is_1d(self): with assert_raises(ValueError, match="...must be one-dimensional"): stats.tukey_hsd([[1, 2], [2, 3]], [2, 5], [5, 23, 6]) def test_no_empty(self): with assert_raises(ValueError, match="...must be greater than one"): stats.tukey_hsd([], [2, 5], [4, 5, 6]) @pytest.mark.parametrize("nargs", (0, 1)) def test_not_enough_treatments(self, nargs): with assert_raises(ValueError, match="...more than 1 treatment."): stats.tukey_hsd(*([[23, 7, 3]] * nargs)) @pytest.mark.parametrize("cl", [-.5, 0, 1, 2]) def test_conf_level_invalid(self, cl): with assert_raises(ValueError, match="must be between 0 and 1"): r = stats.tukey_hsd([23, 7, 3], [3, 4], [9, 4]) r.confidence_interval(cl) def test_2_args_ttest(self): # that with 2 treatments the `pvalue` is equal to that of `ttest_ind` res_tukey = stats.tukey_hsd(*self.data_diff_size[:2]) res_ttest = stats.ttest_ind(*self.data_diff_size[:2]) assert_allclose(res_ttest.pvalue, res_tukey.pvalue[0, 1]) assert_allclose(res_ttest.pvalue, res_tukey.pvalue[1, 0]) class TestPoissonMeansTest: @pytest.mark.parametrize("c1, n1, c2, n2, p_expect", ( # example from [1], 6. Illustrative examples: Example 1 [0, 100, 3, 100, 0.0884], [2, 100, 6, 100, 0.1749] )) def test_paper_examples(self, c1, n1, c2, n2, p_expect): res = stats.poisson_means_test(c1, n1, c2, n2) assert_allclose(res.pvalue, p_expect, atol=1e-4) @pytest.mark.parametrize("c1, n1, c2, n2, p_expect, alt, d", ( # These test cases are produced by the wrapped fortran code from the # original authors. Using a slightly modified version of this fortran, # found here, https://github.com/nolanbconaway/poisson-etest, # additional tests were created. [20, 10, 20, 10, 0.9999997568929630, 'two-sided', 0], [10, 10, 10, 10, 0.9999998403241203, 'two-sided', 0], [50, 15, 1, 1, 0.09920321053409643, 'two-sided', .05], [3, 100, 20, 300, 0.12202725450896404, 'two-sided', 0], [3, 12, 4, 20, 0.40416087318539173, 'greater', 0], [4, 20, 3, 100, 0.008053640402974236, 'greater', 0], # publishing paper does not include a `less` alternative, # so it was calculated with switched argument order and # alternative="greater" [4, 20, 3, 10, 0.3083216325432898, 'less', 0], [1, 1, 50, 15, 0.09322998607245102, 'less', 0] )) def test_fortran_authors(self, c1, n1, c2, n2, p_expect, alt, d): res = stats.poisson_means_test(c1, n1, c2, n2, alternative=alt, diff=d) assert_allclose(res.pvalue, p_expect, atol=2e-6, rtol=1e-16) def test_different_results(self): # The implementation in Fortran is known to break down at higher # counts and observations, so we expect different results. By # inspection we can infer the p-value to be near one. count1, count2 = 10000, 10000 nobs1, nobs2 = 10000, 10000 res = stats.poisson_means_test(count1, nobs1, count2, nobs2) assert_allclose(res.pvalue, 1) def test_less_than_zero_lambda_hat2(self): # demonstrates behavior that fixes a known fault from original Fortran. # p-value should clearly be near one. count1, count2 = 0, 0 nobs1, nobs2 = 1, 1 res = stats.poisson_means_test(count1, nobs1, count2, nobs2) assert_allclose(res.pvalue, 1) def test_input_validation(self): count1, count2 = 0, 0 nobs1, nobs2 = 1, 1 # test non-integral events message = '`k1` and `k2` must be integers.' with assert_raises(TypeError, match=message): stats.poisson_means_test(.7, nobs1, count2, nobs2) with assert_raises(TypeError, match=message): stats.poisson_means_test(count1, nobs1, .7, nobs2) # test negative events message = '`k1` and `k2` must be greater than or equal to 0.' with assert_raises(ValueError, match=message): stats.poisson_means_test(-1, nobs1, count2, nobs2) with assert_raises(ValueError, match=message): stats.poisson_means_test(count1, nobs1, -1, nobs2) # test negative sample size message = '`n1` and `n2` must be greater than 0.' with assert_raises(ValueError, match=message): stats.poisson_means_test(count1, -1, count2, nobs2) with assert_raises(ValueError, match=message): stats.poisson_means_test(count1, nobs1, count2, -1) # test negative difference message = 'diff must be greater than or equal to 0.' with assert_raises(ValueError, match=message): stats.poisson_means_test(count1, nobs1, count2, nobs2, diff=-1) # test invalid alternatvie message = 'Alternative must be one of ...' with assert_raises(ValueError, match=message): stats.poisson_means_test(1, 2, 1, 2, alternative='error') class TestBWSTest: def test_bws_input_validation(self): rng = np.random.default_rng(4571775098104213308) x, y = rng.random(size=(2, 7)) message = '`x` and `y` must be exactly one-dimensional.' with pytest.raises(ValueError, match=message): stats.bws_test([x, x], [y, y]) message = '`x` and `y` must not contain NaNs.' with pytest.raises(ValueError, match=message): stats.bws_test([np.nan], y) message = '`x` and `y` must be of nonzero size.' with pytest.raises(ValueError, match=message): stats.bws_test(x, []) message = 'alternative` must be one of...' with pytest.raises(ValueError, match=message): stats.bws_test(x, y, alternative='ekki-ekki') message = 'method` must be an instance of...' with pytest.raises(ValueError, match=message): stats.bws_test(x, y, method=42) def test_against_published_reference(self): # Test against Example 2 in bws_test Reference [1], pg 9 # https://link.springer.com/content/pdf/10.1007/BF02762032.pdf x = [1, 2, 3, 4, 6, 7, 8] y = [5, 9, 10, 11, 12, 13, 14] res = stats.bws_test(x, y, alternative='two-sided') assert_allclose(res.statistic, 5.132, atol=1e-3) assert_equal(res.pvalue, 10/3432) @pytest.mark.parametrize(('alternative', 'statistic', 'pvalue'), [('two-sided', 1.7510204081633, 0.1264422777777), ('less', -1.7510204081633, 0.05754662004662), ('greater', -1.7510204081633, 0.9424533799534)]) def test_against_R(self, alternative, statistic, pvalue): # Test against R library BWStest function bws_test # library(BWStest) # options(digits=16) # x = c(...) # y = c(...) # bws_test(x, y, alternative='two.sided') rng = np.random.default_rng(4571775098104213308) x, y = rng.random(size=(2, 7)) res = stats.bws_test(x, y, alternative=alternative) assert_allclose(res.statistic, statistic, rtol=1e-13) assert_allclose(res.pvalue, pvalue, atol=1e-2, rtol=1e-1) @pytest.mark.parametrize(('alternative', 'statistic', 'pvalue'), [('two-sided', 1.142629265891, 0.2903950180801), ('less', 0.99629665877411, 0.8545660222131), ('greater', 0.99629665877411, 0.1454339777869)]) def test_against_R_imbalanced(self, alternative, statistic, pvalue): # Test against R library BWStest function bws_test # library(BWStest) # options(digits=16) # x = c(...) # y = c(...) # bws_test(x, y, alternative='two.sided') rng = np.random.default_rng(5429015622386364034) x = rng.random(size=9) y = rng.random(size=8) res = stats.bws_test(x, y, alternative=alternative) assert_allclose(res.statistic, statistic, rtol=1e-13) assert_allclose(res.pvalue, pvalue, atol=1e-2, rtol=1e-1) def test_method(self): # Test that `method` parameter has the desired effect rng = np.random.default_rng(1520514347193347862) x, y = rng.random(size=(2, 10)) rng = np.random.default_rng(1520514347193347862) method = stats.PermutationMethod(n_resamples=10, random_state=rng) res1 = stats.bws_test(x, y, method=method) assert len(res1.null_distribution) == 10 rng = np.random.default_rng(1520514347193347862) method = stats.PermutationMethod(n_resamples=10, random_state=rng) res2 = stats.bws_test(x, y, method=method) assert_allclose(res1.null_distribution, res2.null_distribution) rng = np.random.default_rng(5205143471933478621) method = stats.PermutationMethod(n_resamples=10, random_state=rng) res3 = stats.bws_test(x, y, method=method) assert not np.allclose(res3.null_distribution, res1.null_distribution) def test_directions(self): # Sanity check of the sign of the one-sided statistic rng = np.random.default_rng(1520514347193347862) x = rng.random(size=5) y = x - 1 res = stats.bws_test(x, y, alternative='greater') assert res.statistic > 0 assert_equal(res.pvalue, 1 / len(res.null_distribution)) res = stats.bws_test(x, y, alternative='less') assert res.statistic > 0 assert_equal(res.pvalue, 1) res = stats.bws_test(y, x, alternative='less') assert res.statistic < 0 assert_equal(res.pvalue, 1 / len(res.null_distribution)) res = stats.bws_test(y, x, alternative='greater') assert res.statistic < 0 assert_equal(res.pvalue, 1)