""" Feature agglomeration. Base classes and functions for performing feature agglomeration. """ # Author: V. Michel, A. Gramfort # License: BSD 3 clause import numpy as np from scipy.sparse import issparse from ..base import TransformerMixin from ..utils import metadata_routing from ..utils.deprecation import _deprecate_Xt_in_inverse_transform from ..utils.validation import check_is_fitted ############################################################################### # Mixin class for feature agglomeration. class AgglomerationTransform(TransformerMixin): """ A class for feature agglomeration via the transform interface. """ # This prevents ``set_split_inverse_transform`` to be generated for the # non-standard ``Xt`` arg on ``inverse_transform``. # TODO(1.7): remove when Xt is removed for inverse_transform. __metadata_request__inverse_transform = {"Xt": metadata_routing.UNUSED} def transform(self, X): """ Transform a new matrix using the built clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) or \ (n_samples, n_samples) A M by N array of M observations in N dimensions or a length M array of M one-dimensional observations. Returns ------- Y : ndarray of shape (n_samples, n_clusters) or (n_clusters,) The pooled values for each feature cluster. """ check_is_fitted(self) X = self._validate_data(X, reset=False) if self.pooling_func == np.mean and not issparse(X): size = np.bincount(self.labels_) n_samples = X.shape[0] # a fast way to compute the mean of grouped features nX = np.array( [np.bincount(self.labels_, X[i, :]) / size for i in range(n_samples)] ) else: nX = [ self.pooling_func(X[:, self.labels_ == l], axis=1) for l in np.unique(self.labels_) ] nX = np.array(nX).T return nX def inverse_transform(self, X=None, *, Xt=None): """ Inverse the transformation and return a vector of size `n_features`. Parameters ---------- X : array-like of shape (n_samples, n_clusters) or (n_clusters,) The values to be assigned to each cluster of samples. Xt : array-like of shape (n_samples, n_clusters) or (n_clusters,) The values to be assigned to each cluster of samples. .. deprecated:: 1.5 `Xt` was deprecated in 1.5 and will be removed in 1.7. Use `X` instead. Returns ------- X : ndarray of shape (n_samples, n_features) or (n_features,) A vector of size `n_samples` with the values of `Xred` assigned to each of the cluster of samples. """ X = _deprecate_Xt_in_inverse_transform(X, Xt) check_is_fitted(self) unil, inverse = np.unique(self.labels_, return_inverse=True) return X[..., inverse]