import warnings import numpy as np import pytest from numpy.testing import assert_allclose, assert_array_almost_equal, assert_array_equal from sklearn.cross_decomposition import CCA, PLSSVD, PLSCanonical, PLSRegression from sklearn.cross_decomposition._pls import ( _center_scale_xy, _get_first_singular_vectors_power_method, _get_first_singular_vectors_svd, _svd_flip_1d, ) from sklearn.datasets import load_linnerud, make_regression from sklearn.ensemble import VotingRegressor from sklearn.exceptions import ConvergenceWarning from sklearn.linear_model import LinearRegression from sklearn.utils import check_random_state from sklearn.utils.extmath import svd_flip def assert_matrix_orthogonal(M): K = np.dot(M.T, M) assert_array_almost_equal(K, np.diag(np.diag(K))) def test_pls_canonical_basics(): # Basic checks for PLSCanonical d = load_linnerud() X = d.data Y = d.target pls = PLSCanonical(n_components=X.shape[1]) pls.fit(X, Y) assert_matrix_orthogonal(pls.x_weights_) assert_matrix_orthogonal(pls.y_weights_) assert_matrix_orthogonal(pls._x_scores) assert_matrix_orthogonal(pls._y_scores) # Check X = TP' and Y = UQ' T = pls._x_scores P = pls.x_loadings_ U = pls._y_scores Q = pls.y_loadings_ # Need to scale first Xc, Yc, x_mean, y_mean, x_std, y_std = _center_scale_xy( X.copy(), Y.copy(), scale=True ) assert_array_almost_equal(Xc, np.dot(T, P.T)) assert_array_almost_equal(Yc, np.dot(U, Q.T)) # Check that rotations on training data lead to scores Xt = pls.transform(X) assert_array_almost_equal(Xt, pls._x_scores) Xt, Yt = pls.transform(X, Y) assert_array_almost_equal(Xt, pls._x_scores) assert_array_almost_equal(Yt, pls._y_scores) # Check that inverse_transform works X_back = pls.inverse_transform(Xt) assert_array_almost_equal(X_back, X) _, Y_back = pls.inverse_transform(Xt, Yt) assert_array_almost_equal(Y_back, Y) def test_sanity_check_pls_regression(): # Sanity check for PLSRegression # The results were checked against the R-packages plspm, misOmics and pls d = load_linnerud() X = d.data Y = d.target pls = PLSRegression(n_components=X.shape[1]) X_trans, _ = pls.fit_transform(X, Y) # FIXME: one would expect y_trans == pls.y_scores_ but this is not # the case. # xref: https://github.com/scikit-learn/scikit-learn/issues/22420 assert_allclose(X_trans, pls.x_scores_) expected_x_weights = np.array( [ [-0.61330704, -0.00443647, 0.78983213], [-0.74697144, -0.32172099, -0.58183269], [-0.25668686, 0.94682413, -0.19399983], ] ) expected_x_loadings = np.array( [ [-0.61470416, -0.24574278, 0.78983213], [-0.65625755, -0.14396183, -0.58183269], [-0.51733059, 1.00609417, -0.19399983], ] ) expected_y_weights = np.array( [ [+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916], ] ) expected_y_loadings = np.array( [ [+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916], ] ) assert_array_almost_equal(np.abs(pls.x_loadings_), np.abs(expected_x_loadings)) assert_array_almost_equal(np.abs(pls.x_weights_), np.abs(expected_x_weights)) assert_array_almost_equal(np.abs(pls.y_loadings_), np.abs(expected_y_loadings)) assert_array_almost_equal(np.abs(pls.y_weights_), np.abs(expected_y_weights)) # The R / Python difference in the signs should be consistent across # loadings, weights, etc. x_loadings_sign_flip = np.sign(pls.x_loadings_ / expected_x_loadings) x_weights_sign_flip = np.sign(pls.x_weights_ / expected_x_weights) y_weights_sign_flip = np.sign(pls.y_weights_ / expected_y_weights) y_loadings_sign_flip = np.sign(pls.y_loadings_ / expected_y_loadings) assert_array_almost_equal(x_loadings_sign_flip, x_weights_sign_flip) assert_array_almost_equal(y_loadings_sign_flip, y_weights_sign_flip) def test_sanity_check_pls_regression_constant_column_Y(): # Check behavior when the first column of Y is constant # The results are checked against a modified version of plsreg2 # from the R-package plsdepot d = load_linnerud() X = d.data Y = d.target Y[:, 0] = 1 pls = PLSRegression(n_components=X.shape[1]) pls.fit(X, Y) expected_x_weights = np.array( [ [-0.6273573, 0.007081799, 0.7786994], [-0.7493417, -0.277612681, -0.6011807], [-0.2119194, 0.960666981, -0.1794690], ] ) expected_x_loadings = np.array( [ [-0.6273512, -0.22464538, 0.7786994], [-0.6643156, -0.09871193, -0.6011807], [-0.5125877, 1.01407380, -0.1794690], ] ) expected_y_loadings = np.array( [ [0.0000000, 0.0000000, 0.0000000], [0.4357300, 0.5828479, 0.2174802], [-0.1353739, -0.2486423, -0.1810386], ] ) assert_array_almost_equal(np.abs(expected_x_weights), np.abs(pls.x_weights_)) assert_array_almost_equal(np.abs(expected_x_loadings), np.abs(pls.x_loadings_)) # For the PLSRegression with default parameters, y_loadings == y_weights assert_array_almost_equal(np.abs(pls.y_loadings_), np.abs(expected_y_loadings)) assert_array_almost_equal(np.abs(pls.y_weights_), np.abs(expected_y_loadings)) x_loadings_sign_flip = np.sign(expected_x_loadings / pls.x_loadings_) x_weights_sign_flip = np.sign(expected_x_weights / pls.x_weights_) # we ignore the first full-zeros row for y y_loadings_sign_flip = np.sign(expected_y_loadings[1:] / pls.y_loadings_[1:]) assert_array_equal(x_loadings_sign_flip, x_weights_sign_flip) assert_array_equal(x_loadings_sign_flip[1:], y_loadings_sign_flip) def test_sanity_check_pls_canonical(): # Sanity check for PLSCanonical # The results were checked against the R-package plspm d = load_linnerud() X = d.data Y = d.target pls = PLSCanonical(n_components=X.shape[1]) pls.fit(X, Y) expected_x_weights = np.array( [ [-0.61330704, 0.25616119, -0.74715187], [-0.74697144, 0.11930791, 0.65406368], [-0.25668686, -0.95924297, -0.11817271], ] ) expected_x_rotations = np.array( [ [-0.61330704, 0.41591889, -0.62297525], [-0.74697144, 0.31388326, 0.77368233], [-0.25668686, -0.89237972, -0.24121788], ] ) expected_y_weights = np.array( [ [+0.58989127, 0.7890047, 0.1717553], [+0.77134053, -0.61351791, 0.16920272], [-0.23887670, -0.03267062, 0.97050016], ] ) expected_y_rotations = np.array( [ [+0.58989127, 0.7168115, 0.30665872], [+0.77134053, -0.70791757, 0.19786539], [-0.23887670, -0.00343595, 0.94162826], ] ) assert_array_almost_equal(np.abs(pls.x_rotations_), np.abs(expected_x_rotations)) assert_array_almost_equal(np.abs(pls.x_weights_), np.abs(expected_x_weights)) assert_array_almost_equal(np.abs(pls.y_rotations_), np.abs(expected_y_rotations)) assert_array_almost_equal(np.abs(pls.y_weights_), np.abs(expected_y_weights)) x_rotations_sign_flip = np.sign(pls.x_rotations_ / expected_x_rotations) x_weights_sign_flip = np.sign(pls.x_weights_ / expected_x_weights) y_rotations_sign_flip = np.sign(pls.y_rotations_ / expected_y_rotations) y_weights_sign_flip = np.sign(pls.y_weights_ / expected_y_weights) assert_array_almost_equal(x_rotations_sign_flip, x_weights_sign_flip) assert_array_almost_equal(y_rotations_sign_flip, y_weights_sign_flip) assert_matrix_orthogonal(pls.x_weights_) assert_matrix_orthogonal(pls.y_weights_) assert_matrix_orthogonal(pls._x_scores) assert_matrix_orthogonal(pls._y_scores) def test_sanity_check_pls_canonical_random(): # Sanity check for PLSCanonical on random data # The results were checked against the R-package plspm n = 500 p_noise = 10 q_noise = 5 # 2 latents vars: rng = check_random_state(11) l1 = rng.normal(size=n) l2 = rng.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + rng.normal(size=4 * n).reshape((n, 4)) Y = latents + rng.normal(size=4 * n).reshape((n, 4)) X = np.concatenate((X, rng.normal(size=p_noise * n).reshape(n, p_noise)), axis=1) Y = np.concatenate((Y, rng.normal(size=q_noise * n).reshape(n, q_noise)), axis=1) pls = PLSCanonical(n_components=3) pls.fit(X, Y) expected_x_weights = np.array( [ [0.65803719, 0.19197924, 0.21769083], [0.7009113, 0.13303969, -0.15376699], [0.13528197, -0.68636408, 0.13856546], [0.16854574, -0.66788088, -0.12485304], [-0.03232333, -0.04189855, 0.40690153], [0.1148816, -0.09643158, 0.1613305], [0.04792138, -0.02384992, 0.17175319], [-0.06781, -0.01666137, -0.18556747], [-0.00266945, -0.00160224, 0.11893098], [-0.00849528, -0.07706095, 0.1570547], [-0.00949471, -0.02964127, 0.34657036], [-0.03572177, 0.0945091, 0.3414855], [0.05584937, -0.02028961, -0.57682568], [0.05744254, -0.01482333, -0.17431274], ] ) expected_x_loadings = np.array( [ [0.65649254, 0.1847647, 0.15270699], [0.67554234, 0.15237508, -0.09182247], [0.19219925, -0.67750975, 0.08673128], [0.2133631, -0.67034809, -0.08835483], [-0.03178912, -0.06668336, 0.43395268], [0.15684588, -0.13350241, 0.20578984], [0.03337736, -0.03807306, 0.09871553], [-0.06199844, 0.01559854, -0.1881785], [0.00406146, -0.00587025, 0.16413253], [-0.00374239, -0.05848466, 0.19140336], [0.00139214, -0.01033161, 0.32239136], [-0.05292828, 0.0953533, 0.31916881], [0.04031924, -0.01961045, -0.65174036], [0.06172484, -0.06597366, -0.1244497], ] ) expected_y_weights = np.array( [ [0.66101097, 0.18672553, 0.22826092], [0.69347861, 0.18463471, -0.23995597], [0.14462724, -0.66504085, 0.17082434], [0.22247955, -0.6932605, -0.09832993], [0.07035859, 0.00714283, 0.67810124], [0.07765351, -0.0105204, -0.44108074], [-0.00917056, 0.04322147, 0.10062478], [-0.01909512, 0.06182718, 0.28830475], [0.01756709, 0.04797666, 0.32225745], ] ) expected_y_loadings = np.array( [ [0.68568625, 0.1674376, 0.0969508], [0.68782064, 0.20375837, -0.1164448], [0.11712173, -0.68046903, 0.12001505], [0.17860457, -0.6798319, -0.05089681], [0.06265739, -0.0277703, 0.74729584], [0.0914178, 0.00403751, -0.5135078], [-0.02196918, -0.01377169, 0.09564505], [-0.03288952, 0.09039729, 0.31858973], [0.04287624, 0.05254676, 0.27836841], ] ) assert_array_almost_equal(np.abs(pls.x_loadings_), np.abs(expected_x_loadings)) assert_array_almost_equal(np.abs(pls.x_weights_), np.abs(expected_x_weights)) assert_array_almost_equal(np.abs(pls.y_loadings_), np.abs(expected_y_loadings)) assert_array_almost_equal(np.abs(pls.y_weights_), np.abs(expected_y_weights)) x_loadings_sign_flip = np.sign(pls.x_loadings_ / expected_x_loadings) x_weights_sign_flip = np.sign(pls.x_weights_ / expected_x_weights) y_weights_sign_flip = np.sign(pls.y_weights_ / expected_y_weights) y_loadings_sign_flip = np.sign(pls.y_loadings_ / expected_y_loadings) assert_array_almost_equal(x_loadings_sign_flip, x_weights_sign_flip) assert_array_almost_equal(y_loadings_sign_flip, y_weights_sign_flip) assert_matrix_orthogonal(pls.x_weights_) assert_matrix_orthogonal(pls.y_weights_) assert_matrix_orthogonal(pls._x_scores) assert_matrix_orthogonal(pls._y_scores) def test_convergence_fail(): # Make sure ConvergenceWarning is raised if max_iter is too small d = load_linnerud() X = d.data Y = d.target pls_nipals = PLSCanonical(n_components=X.shape[1], max_iter=2) with pytest.warns(ConvergenceWarning): pls_nipals.fit(X, Y) @pytest.mark.parametrize("Est", (PLSSVD, PLSRegression, PLSCanonical)) def test_attibutes_shapes(Est): # Make sure attributes are of the correct shape depending on n_components d = load_linnerud() X = d.data Y = d.target n_components = 2 pls = Est(n_components=n_components) pls.fit(X, Y) assert all( attr.shape[1] == n_components for attr in (pls.x_weights_, pls.y_weights_) ) @pytest.mark.parametrize("Est", (PLSRegression, PLSCanonical, CCA)) def test_univariate_equivalence(Est): # Ensure 2D Y with 1 column is equivalent to 1D Y d = load_linnerud() X = d.data Y = d.target est = Est(n_components=1) one_d_coeff = est.fit(X, Y[:, 0]).coef_ two_d_coeff = est.fit(X, Y[:, :1]).coef_ assert one_d_coeff.shape == two_d_coeff.shape assert_array_almost_equal(one_d_coeff, two_d_coeff) @pytest.mark.parametrize("Est", (PLSRegression, PLSCanonical, CCA, PLSSVD)) def test_copy(Est): # check that the "copy" keyword works d = load_linnerud() X = d.data Y = d.target X_orig = X.copy() # copy=True won't modify inplace pls = Est(copy=True).fit(X, Y) assert_array_equal(X, X_orig) # copy=False will modify inplace with pytest.raises(AssertionError): Est(copy=False).fit(X, Y) assert_array_almost_equal(X, X_orig) if Est is PLSSVD: return # PLSSVD does not support copy param in predict or transform X_orig = X.copy() with pytest.raises(AssertionError): pls.transform(X, Y, copy=False), assert_array_almost_equal(X, X_orig) X_orig = X.copy() with pytest.raises(AssertionError): pls.predict(X, copy=False), assert_array_almost_equal(X, X_orig) # Make sure copy=True gives same transform and predictions as predict=False assert_array_almost_equal( pls.transform(X, Y, copy=True), pls.transform(X.copy(), Y.copy(), copy=False) ) assert_array_almost_equal( pls.predict(X, copy=True), pls.predict(X.copy(), copy=False) ) def _generate_test_scale_and_stability_datasets(): """Generate dataset for test_scale_and_stability""" # dataset for non-regression 7818 rng = np.random.RandomState(0) n_samples = 1000 n_targets = 5 n_features = 10 Q = rng.randn(n_targets, n_features) Y = rng.randn(n_samples, n_targets) X = np.dot(Y, Q) + 2 * rng.randn(n_samples, n_features) + 1 X *= 1000 yield X, Y # Data set where one of the features is constraint X, Y = load_linnerud(return_X_y=True) # causes X[:, -1].std() to be zero X[:, -1] = 1.0 yield X, Y X = np.array([[0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [3.0, 5.0, 4.0]]) Y = np.array([[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]) yield X, Y # Seeds that provide a non-regression test for #18746, where CCA fails seeds = [530, 741] for seed in seeds: rng = np.random.RandomState(seed) X = rng.randn(4, 3) Y = rng.randn(4, 2) yield X, Y @pytest.mark.parametrize("Est", (CCA, PLSCanonical, PLSRegression, PLSSVD)) @pytest.mark.parametrize("X, Y", _generate_test_scale_and_stability_datasets()) def test_scale_and_stability(Est, X, Y): """scale=True is equivalent to scale=False on centered/scaled data This allows to check numerical stability over platforms as well""" X_s, Y_s, *_ = _center_scale_xy(X, Y) X_score, Y_score = Est(scale=True).fit_transform(X, Y) X_s_score, Y_s_score = Est(scale=False).fit_transform(X_s, Y_s) assert_allclose(X_s_score, X_score, atol=1e-4) assert_allclose(Y_s_score, Y_score, atol=1e-4) @pytest.mark.parametrize("Estimator", (PLSSVD, PLSRegression, PLSCanonical, CCA)) def test_n_components_upper_bounds(Estimator): """Check the validation of `n_components` upper bounds for `PLS` regressors.""" rng = np.random.RandomState(0) X = rng.randn(10, 5) Y = rng.randn(10, 3) est = Estimator(n_components=10) err_msg = "`n_components` upper bound is .*. Got 10 instead. Reduce `n_components`." with pytest.raises(ValueError, match=err_msg): est.fit(X, Y) @pytest.mark.parametrize("n_samples, n_features", [(100, 10), (100, 200)]) def test_singular_value_helpers(n_samples, n_features, global_random_seed): # Make sure SVD and power method give approximately the same results X, Y = make_regression( n_samples, n_features, n_targets=5, random_state=global_random_seed ) u1, v1, _ = _get_first_singular_vectors_power_method(X, Y, norm_y_weights=True) u2, v2 = _get_first_singular_vectors_svd(X, Y) _svd_flip_1d(u1, v1) _svd_flip_1d(u2, v2) rtol = 1e-3 # Setting atol because some coordinates are very close to zero assert_allclose(u1, u2, atol=u2.max() * rtol) assert_allclose(v1, v2, atol=v2.max() * rtol) def test_one_component_equivalence(global_random_seed): # PLSSVD, PLSRegression and PLSCanonical should all be equivalent when # n_components is 1 X, Y = make_regression(100, 10, n_targets=5, random_state=global_random_seed) svd = PLSSVD(n_components=1).fit(X, Y).transform(X) reg = PLSRegression(n_components=1).fit(X, Y).transform(X) canonical = PLSCanonical(n_components=1).fit(X, Y).transform(X) rtol = 1e-3 # Setting atol because some entries are very close to zero assert_allclose(svd, reg, atol=reg.max() * rtol) assert_allclose(svd, canonical, atol=canonical.max() * rtol) def test_svd_flip_1d(): # Make sure svd_flip_1d is equivalent to svd_flip u = np.array([1, -4, 2]) v = np.array([1, 2, 3]) u_expected, v_expected = svd_flip(u.reshape(-1, 1), v.reshape(1, -1)) _svd_flip_1d(u, v) # inplace assert_allclose(u, u_expected.ravel()) assert_allclose(u, [-1, 4, -2]) assert_allclose(v, v_expected.ravel()) assert_allclose(v, [-1, -2, -3]) def test_loadings_converges(global_random_seed): """Test that CCA converges. Non-regression test for #19549.""" X, y = make_regression( n_samples=200, n_features=20, n_targets=20, random_state=global_random_seed ) cca = CCA(n_components=10, max_iter=500) with warnings.catch_warnings(): warnings.simplefilter("error", ConvergenceWarning) cca.fit(X, y) # Loadings converges to reasonable values assert np.all(np.abs(cca.x_loadings_) < 1) def test_pls_constant_y(): """Checks warning when y is constant. Non-regression test for #19831""" rng = np.random.RandomState(42) x = rng.rand(100, 3) y = np.zeros(100) pls = PLSRegression() msg = "y residual is constant at iteration" with pytest.warns(UserWarning, match=msg): pls.fit(x, y) assert_allclose(pls.x_rotations_, 0) @pytest.mark.parametrize("PLSEstimator", [PLSRegression, PLSCanonical, CCA]) def test_pls_coef_shape(PLSEstimator): """Check the shape of `coef_` attribute. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/12410 """ d = load_linnerud() X = d.data Y = d.target pls = PLSEstimator(copy=True).fit(X, Y) n_targets, n_features = Y.shape[1], X.shape[1] assert pls.coef_.shape == (n_targets, n_features) @pytest.mark.parametrize("scale", [True, False]) @pytest.mark.parametrize("PLSEstimator", [PLSRegression, PLSCanonical, CCA]) def test_pls_prediction(PLSEstimator, scale): """Check the behaviour of the prediction function.""" d = load_linnerud() X = d.data Y = d.target pls = PLSEstimator(copy=True, scale=scale).fit(X, Y) Y_pred = pls.predict(X, copy=True) y_mean = Y.mean(axis=0) X_trans = X - X.mean(axis=0) assert_allclose(pls.intercept_, y_mean) assert_allclose(Y_pred, X_trans @ pls.coef_.T + pls.intercept_) @pytest.mark.parametrize("Klass", [CCA, PLSSVD, PLSRegression, PLSCanonical]) def test_pls_feature_names_out(Klass): """Check `get_feature_names_out` cross_decomposition module.""" X, Y = load_linnerud(return_X_y=True) est = Klass().fit(X, Y) names_out = est.get_feature_names_out() class_name_lower = Klass.__name__.lower() expected_names_out = np.array( [f"{class_name_lower}{i}" for i in range(est.x_weights_.shape[1])], dtype=object, ) assert_array_equal(names_out, expected_names_out) @pytest.mark.parametrize("Klass", [CCA, PLSSVD, PLSRegression, PLSCanonical]) def test_pls_set_output(Klass): """Check `set_output` in cross_decomposition module.""" pd = pytest.importorskip("pandas") X, Y = load_linnerud(return_X_y=True, as_frame=True) est = Klass().set_output(transform="pandas").fit(X, Y) X_trans, y_trans = est.transform(X, Y) assert isinstance(y_trans, np.ndarray) assert isinstance(X_trans, pd.DataFrame) assert_array_equal(X_trans.columns, est.get_feature_names_out()) def test_pls_regression_fit_1d_y(): """Check that when fitting with 1d `y`, prediction should also be 1d. Non-regression test for Issue #26549. """ X = np.array([[1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36]]) y = np.array([2, 6, 12, 20, 30, 42]) expected = y.copy() plsr = PLSRegression().fit(X, y) y_pred = plsr.predict(X) assert y_pred.shape == expected.shape # Check that it works in VotingRegressor lr = LinearRegression().fit(X, y) vr = VotingRegressor([("lr", lr), ("plsr", plsr)]) y_pred = vr.fit(X, y).predict(X) assert y_pred.shape == expected.shape assert_allclose(y_pred, expected) def test_pls_regression_scaling_coef(): """Check that when using `scale=True`, the coefficients are using the std. dev. from both `X` and `Y`. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/27964 """ # handcrafted data where we can predict Y from X with an additional scaling factor rng = np.random.RandomState(0) coef = rng.uniform(size=(3, 5)) X = rng.normal(scale=10, size=(30, 5)) # add a std of 10 Y = X @ coef.T # we need to make sure that the dimension of the latent space is large enough to # perfectly predict `Y` from `X` (no information loss) pls = PLSRegression(n_components=5, scale=True).fit(X, Y) assert_allclose(pls.coef_, coef) # we therefore should be able to predict `Y` from `X` assert_allclose(pls.predict(X), Y) # TODO(1.7): Remove @pytest.mark.parametrize("Klass", [PLSRegression, CCA, PLSSVD, PLSCanonical]) def test_pls_fit_warning_on_deprecated_Y_argument(Klass): # Test warning message is shown when using Y instead of y d = load_linnerud() X = d.data Y = d.target y = d.target msg = "`Y` is deprecated in 1.5 and will be removed in 1.7. Use `y` instead." with pytest.warns(FutureWarning, match=msg): Klass().fit(X=X, Y=Y) err_msg1 = "Cannot use both `y` and `Y`. Use only `y` as `Y` is deprecated." with ( pytest.warns(FutureWarning, match=msg), pytest.raises(ValueError, match=err_msg1), ): Klass().fit(X, y, Y) err_msg2 = "y is required." with pytest.raises(ValueError, match=err_msg2): Klass().fit(X) # TODO(1.7): Remove @pytest.mark.parametrize("Klass", [PLSRegression, CCA, PLSSVD, PLSCanonical]) def test_pls_transform_warning_on_deprecated_Y_argument(Klass): # Test warning message is shown when using Y instead of y d = load_linnerud() X = d.data Y = d.target y = d.target plsr = Klass().fit(X, y) msg = "`Y` is deprecated in 1.5 and will be removed in 1.7. Use `y` instead." with pytest.warns(FutureWarning, match=msg): plsr.transform(X=X, Y=Y) err_msg1 = "Cannot use both `y` and `Y`. Use only `y` as `Y` is deprecated." with ( pytest.warns(FutureWarning, match=msg), pytest.raises(ValueError, match=err_msg1), ): plsr.transform(X, y, Y) # TODO(1.7): Remove @pytest.mark.parametrize("Klass", [PLSRegression, CCA, PLSCanonical]) def test_pls_inverse_transform_warning_on_deprecated_Y_argument(Klass): # Test warning message is shown when using Y instead of y d = load_linnerud() X = d.data y = d.target plsr = Klass().fit(X, y) X_transformed, y_transformed = plsr.transform(X, y) msg = "`Y` is deprecated in 1.5 and will be removed in 1.7. Use `y` instead." with pytest.warns(FutureWarning, match=msg): plsr.inverse_transform(X=X_transformed, Y=y_transformed) err_msg1 = "Cannot use both `y` and `Y`. Use only `y` as `Y` is deprecated." with ( pytest.warns(FutureWarning, match=msg), pytest.raises(ValueError, match=err_msg1), ): plsr.inverse_transform(X=X_transformed, y=y_transformed, Y=y_transformed)