""" Nearest Centroid Classification """ # Author: Robert Layton # Olivier Grisel # # License: BSD 3 clause from numbers import Real import numpy as np from scipy import sparse as sp from ..base import BaseEstimator, ClassifierMixin, _fit_context from ..metrics.pairwise import pairwise_distances_argmin from ..preprocessing import LabelEncoder from ..utils._param_validation import Interval, StrOptions from ..utils.multiclass import check_classification_targets from ..utils.sparsefuncs import csc_median_axis_0 from ..utils.validation import check_is_fitted class NearestCentroid(ClassifierMixin, BaseEstimator): """Nearest centroid classifier. Each class is represented by its centroid, with test samples classified to the class with the nearest centroid. Read more in the :ref:`User Guide `. Parameters ---------- metric : {"euclidean", "manhattan"}, default="euclidean" Metric to use for distance computation. If `metric="euclidean"`, the centroid for the samples corresponding to each class is the arithmetic mean, which minimizes the sum of squared L1 distances. If `metric="manhattan"`, the centroid is the feature-wise median, which minimizes the sum of L1 distances. .. versionchanged:: 1.5 All metrics but `"euclidean"` and `"manhattan"` were deprecated and now raise an error. .. versionchanged:: 0.19 `metric='precomputed'` was deprecated and now raises an error shrink_threshold : float, default=None Threshold for shrinking centroids to remove features. Attributes ---------- centroids_ : array-like of shape (n_classes, n_features) Centroid of each class. classes_ : array of shape (n_classes,) The unique classes labels. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- KNeighborsClassifier : Nearest neighbors classifier. Notes ----- When used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier. References ---------- Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6567-6572. The National Academy of Sciences. Examples -------- >>> from sklearn.neighbors import NearestCentroid >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = NearestCentroid() >>> clf.fit(X, y) NearestCentroid() >>> print(clf.predict([[-0.8, -1]])) [1] """ _parameter_constraints: dict = { "metric": [StrOptions({"manhattan", "euclidean"})], "shrink_threshold": [Interval(Real, 0, None, closed="neither"), None], } def __init__(self, metric="euclidean", *, shrink_threshold=None): self.metric = metric self.shrink_threshold = shrink_threshold @_fit_context(prefer_skip_nested_validation=True) def fit(self, X, y): """ Fit the NearestCentroid model according to the given training data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. Note that centroid shrinking cannot be used with sparse matrices. y : array-like of shape (n_samples,) Target values. Returns ------- self : object Fitted estimator. """ # If X is sparse and the metric is "manhattan", store it in a csc # format is easier to calculate the median. if self.metric == "manhattan": X, y = self._validate_data(X, y, accept_sparse=["csc"]) else: X, y = self._validate_data(X, y, accept_sparse=["csr", "csc"]) is_X_sparse = sp.issparse(X) if is_X_sparse and self.shrink_threshold: raise ValueError("threshold shrinking not supported for sparse input") check_classification_targets(y) n_samples, n_features = X.shape le = LabelEncoder() y_ind = le.fit_transform(y) self.classes_ = classes = le.classes_ n_classes = classes.size if n_classes < 2: raise ValueError( "The number of classes has to be greater than one; got %d class" % (n_classes) ) # Mask mapping each class to its members. self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64) # Number of clusters in each class. nk = np.zeros(n_classes) for cur_class in range(n_classes): center_mask = y_ind == cur_class nk[cur_class] = np.sum(center_mask) if is_X_sparse: center_mask = np.where(center_mask)[0] if self.metric == "manhattan": # NumPy does not calculate median of sparse matrices. if not is_X_sparse: self.centroids_[cur_class] = np.median(X[center_mask], axis=0) else: self.centroids_[cur_class] = csc_median_axis_0(X[center_mask]) else: # metric == "euclidean" self.centroids_[cur_class] = X[center_mask].mean(axis=0) if self.shrink_threshold: if np.all(np.ptp(X, axis=0) == 0): raise ValueError("All features have zero variance. Division by zero.") dataset_centroid_ = np.mean(X, axis=0) # m parameter for determining deviation m = np.sqrt((1.0 / nk) - (1.0 / n_samples)) # Calculate deviation using the standard deviation of centroids. variance = (X - self.centroids_[y_ind]) ** 2 variance = variance.sum(axis=0) s = np.sqrt(variance / (n_samples - n_classes)) s += np.median(s) # To deter outliers from affecting the results. mm = m.reshape(len(m), 1) # Reshape to allow broadcasting. ms = mm * s deviation = (self.centroids_ - dataset_centroid_) / ms # Soft thresholding: if the deviation crosses 0 during shrinking, # it becomes zero. signs = np.sign(deviation) deviation = np.abs(deviation) - self.shrink_threshold np.clip(deviation, 0, None, out=deviation) deviation *= signs # Now adjust the centroids using the deviation msd = ms * deviation self.centroids_ = dataset_centroid_[np.newaxis, :] + msd return self def predict(self, X): """Perform classification on an array of test vectors `X`. The predicted class `C` for each sample in `X` is returned. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Test samples. Returns ------- C : ndarray of shape (n_samples,) The predicted classes. """ check_is_fitted(self) X = self._validate_data(X, accept_sparse="csr", reset=False) return self.classes_[ pairwise_distances_argmin(X, self.centroids_, metric=self.metric) ]