"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.security.fuzzing.py import annotation_types as _atypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar, List, Any from typing_extensions import Annotated _DenseCountSparseOutputOutput = collections.namedtuple( "DenseCountSparseOutput", ["output_indices", "output_values", "output_dense_shape"]) TV_DenseCountSparseOutput_T = TypeVar("TV_DenseCountSparseOutput_T", _atypes.Int32, _atypes.Int64) TV_DenseCountSparseOutput_output_type = TypeVar("TV_DenseCountSparseOutput_output_type", _atypes.Float32, _atypes.Float64, _atypes.Int32, _atypes.Int64) def dense_count_sparse_output(values: Annotated[Any, TV_DenseCountSparseOutput_T], weights: Annotated[Any, TV_DenseCountSparseOutput_output_type], binary_output: bool, minlength:int=-1, maxlength:int=-1, name=None): r"""Performs sparse-output bin counting for a tf.tensor input. Counts the number of times each value occurs in the input. Args: values: A `Tensor`. Must be one of the following types: `int32`, `int64`. Tensor containing data to count. weights: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`. A Tensor of the same shape as indices containing per-index weight values. May also be the empty tensor if no weights are used. binary_output: A `bool`. Whether to output the number of occurrences of each value or 1. minlength: An optional `int` that is `>= -1`. Defaults to `-1`. Minimum value to count. Can be set to -1 for no minimum. maxlength: An optional `int` that is `>= -1`. Defaults to `-1`. Maximum value to count. Can be set to -1 for no maximum. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output_indices, output_values, output_dense_shape). output_indices: A `Tensor` of type `int64`. output_values: A `Tensor`. Has the same type as `weights`. output_dense_shape: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "DenseCountSparseOutput", name, values, weights, "minlength", minlength, "maxlength", maxlength, "binary_output", binary_output) _result = _DenseCountSparseOutputOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return dense_count_sparse_output_eager_fallback( values, weights, minlength=minlength, maxlength=maxlength, binary_output=binary_output, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. binary_output = _execute.make_bool(binary_output, "binary_output") if minlength is None: minlength = -1 minlength = _execute.make_int(minlength, "minlength") if maxlength is None: maxlength = -1 maxlength = _execute.make_int(maxlength, "maxlength") _, _, _op, _outputs = _op_def_library._apply_op_helper( "DenseCountSparseOutput", values=values, weights=weights, binary_output=binary_output, minlength=minlength, maxlength=maxlength, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "minlength", _op._get_attr_int("minlength"), "maxlength", _op._get_attr_int("maxlength"), "binary_output", _op._get_attr_bool("binary_output"), "output_type", _op._get_attr_type("output_type")) _inputs_flat = _op.inputs _execute.record_gradient( "DenseCountSparseOutput", _inputs_flat, _attrs, _result) _result = _DenseCountSparseOutputOutput._make(_result) return _result DenseCountSparseOutput = tf_export("raw_ops.DenseCountSparseOutput")(_ops.to_raw_op(dense_count_sparse_output)) def dense_count_sparse_output_eager_fallback(values: Annotated[Any, TV_DenseCountSparseOutput_T], weights: Annotated[Any, TV_DenseCountSparseOutput_output_type], binary_output: bool, minlength: int, maxlength: int, name, ctx): binary_output = _execute.make_bool(binary_output, "binary_output") if minlength is None: minlength = -1 minlength = _execute.make_int(minlength, "minlength") if maxlength is None: maxlength = -1 maxlength = _execute.make_int(maxlength, "maxlength") _attr_T, (values,) = _execute.args_to_matching_eager([values], ctx, [_dtypes.int32, _dtypes.int64, ]) _attr_output_type, (weights,) = _execute.args_to_matching_eager([weights], ctx, [_dtypes.int32, _dtypes.int64, _dtypes.float32, _dtypes.float64, ]) _inputs_flat = [values, weights] _attrs = ("T", _attr_T, "minlength", minlength, "maxlength", maxlength, "binary_output", binary_output, "output_type", _attr_output_type) _result = _execute.execute(b"DenseCountSparseOutput", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "DenseCountSparseOutput", _inputs_flat, _attrs, _result) _result = _DenseCountSparseOutputOutput._make(_result) return _result _RaggedCountSparseOutputOutput = collections.namedtuple( "RaggedCountSparseOutput", ["output_indices", "output_values", "output_dense_shape"]) TV_RaggedCountSparseOutput_T = TypeVar("TV_RaggedCountSparseOutput_T", _atypes.Int32, _atypes.Int64) TV_RaggedCountSparseOutput_output_type = TypeVar("TV_RaggedCountSparseOutput_output_type", _atypes.Float32, _atypes.Float64, _atypes.Int32, _atypes.Int64) def ragged_count_sparse_output(splits: Annotated[Any, _atypes.Int64], values: Annotated[Any, TV_RaggedCountSparseOutput_T], weights: Annotated[Any, TV_RaggedCountSparseOutput_output_type], binary_output: bool, minlength:int=-1, maxlength:int=-1, name=None): r"""Performs sparse-output bin counting for a ragged tensor input. Counts the number of times each value occurs in the input. Args: splits: A `Tensor` of type `int64`. Tensor containing the row splits of the ragged tensor to count. values: A `Tensor`. Must be one of the following types: `int32`, `int64`. Tensor containing values of the sparse tensor to count. weights: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`. A Tensor of the same shape as indices containing per-index weight values. May also be the empty tensor if no weights are used. binary_output: A `bool`. Whether to output the number of occurrences of each value or 1. minlength: An optional `int` that is `>= -1`. Defaults to `-1`. Minimum value to count. Can be set to -1 for no minimum. maxlength: An optional `int` that is `>= -1`. Defaults to `-1`. Maximum value to count. Can be set to -1 for no maximum. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output_indices, output_values, output_dense_shape). output_indices: A `Tensor` of type `int64`. output_values: A `Tensor`. Has the same type as `weights`. output_dense_shape: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RaggedCountSparseOutput", name, splits, values, weights, "minlength", minlength, "maxlength", maxlength, "binary_output", binary_output) _result = _RaggedCountSparseOutputOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return ragged_count_sparse_output_eager_fallback( splits, values, weights, minlength=minlength, maxlength=maxlength, binary_output=binary_output, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. binary_output = _execute.make_bool(binary_output, "binary_output") if minlength is None: minlength = -1 minlength = _execute.make_int(minlength, "minlength") if maxlength is None: maxlength = -1 maxlength = _execute.make_int(maxlength, "maxlength") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RaggedCountSparseOutput", splits=splits, values=values, weights=weights, binary_output=binary_output, minlength=minlength, maxlength=maxlength, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "minlength", _op._get_attr_int("minlength"), "maxlength", _op._get_attr_int("maxlength"), "binary_output", _op._get_attr_bool("binary_output"), "output_type", _op._get_attr_type("output_type")) _inputs_flat = _op.inputs _execute.record_gradient( "RaggedCountSparseOutput", _inputs_flat, _attrs, _result) _result = _RaggedCountSparseOutputOutput._make(_result) return _result RaggedCountSparseOutput = tf_export("raw_ops.RaggedCountSparseOutput")(_ops.to_raw_op(ragged_count_sparse_output)) def ragged_count_sparse_output_eager_fallback(splits: Annotated[Any, _atypes.Int64], values: Annotated[Any, TV_RaggedCountSparseOutput_T], weights: Annotated[Any, TV_RaggedCountSparseOutput_output_type], binary_output: bool, minlength: int, maxlength: int, name, ctx): binary_output = _execute.make_bool(binary_output, "binary_output") if minlength is None: minlength = -1 minlength = _execute.make_int(minlength, "minlength") if maxlength is None: maxlength = -1 maxlength = _execute.make_int(maxlength, "maxlength") _attr_T, (values,) = _execute.args_to_matching_eager([values], ctx, [_dtypes.int32, _dtypes.int64, ]) _attr_output_type, (weights,) = _execute.args_to_matching_eager([weights], ctx, [_dtypes.int32, _dtypes.int64, _dtypes.float32, _dtypes.float64, ]) splits = _ops.convert_to_tensor(splits, _dtypes.int64) _inputs_flat = [splits, values, weights] _attrs = ("T", _attr_T, "minlength", minlength, "maxlength", maxlength, "binary_output", binary_output, "output_type", _attr_output_type) _result = _execute.execute(b"RaggedCountSparseOutput", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RaggedCountSparseOutput", _inputs_flat, _attrs, _result) _result = _RaggedCountSparseOutputOutput._make(_result) return _result _SparseCountSparseOutputOutput = collections.namedtuple( "SparseCountSparseOutput", ["output_indices", "output_values", "output_dense_shape"]) TV_SparseCountSparseOutput_T = TypeVar("TV_SparseCountSparseOutput_T", _atypes.Int32, _atypes.Int64) TV_SparseCountSparseOutput_output_type = TypeVar("TV_SparseCountSparseOutput_output_type", _atypes.Float32, _atypes.Float64, _atypes.Int32, _atypes.Int64) def sparse_count_sparse_output(indices: Annotated[Any, _atypes.Int64], values: Annotated[Any, TV_SparseCountSparseOutput_T], dense_shape: Annotated[Any, _atypes.Int64], weights: Annotated[Any, TV_SparseCountSparseOutput_output_type], binary_output: bool, minlength:int=-1, maxlength:int=-1, name=None): r"""Performs sparse-output bin counting for a sparse tensor input. Counts the number of times each value occurs in the input. Args: indices: A `Tensor` of type `int64`. Tensor containing the indices of the sparse tensor to count. values: A `Tensor`. Must be one of the following types: `int32`, `int64`. Tensor containing values of the sparse tensor to count. dense_shape: A `Tensor` of type `int64`. Tensor containing the dense shape of the sparse tensor to count. weights: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`. A Tensor of the same shape as indices containing per-index weight values. May also be the empty tensor if no weights are used. binary_output: A `bool`. Whether to output the number of occurrences of each value or 1. minlength: An optional `int` that is `>= -1`. Defaults to `-1`. Minimum value to count. Can be set to -1 for no minimum. maxlength: An optional `int` that is `>= -1`. Defaults to `-1`. Maximum value to count. Can be set to -1 for no maximum. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (output_indices, output_values, output_dense_shape). output_indices: A `Tensor` of type `int64`. output_values: A `Tensor`. Has the same type as `weights`. output_dense_shape: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "SparseCountSparseOutput", name, indices, values, dense_shape, weights, "minlength", minlength, "maxlength", maxlength, "binary_output", binary_output) _result = _SparseCountSparseOutputOutput._make(_result) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return sparse_count_sparse_output_eager_fallback( indices, values, dense_shape, weights, minlength=minlength, maxlength=maxlength, binary_output=binary_output, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. binary_output = _execute.make_bool(binary_output, "binary_output") if minlength is None: minlength = -1 minlength = _execute.make_int(minlength, "minlength") if maxlength is None: maxlength = -1 maxlength = _execute.make_int(maxlength, "maxlength") _, _, _op, _outputs = _op_def_library._apply_op_helper( "SparseCountSparseOutput", indices=indices, values=values, dense_shape=dense_shape, weights=weights, binary_output=binary_output, minlength=minlength, maxlength=maxlength, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T"), "minlength", _op._get_attr_int("minlength"), "maxlength", _op._get_attr_int("maxlength"), "binary_output", _op._get_attr_bool("binary_output"), "output_type", _op._get_attr_type("output_type")) _inputs_flat = _op.inputs _execute.record_gradient( "SparseCountSparseOutput", _inputs_flat, _attrs, _result) _result = _SparseCountSparseOutputOutput._make(_result) return _result SparseCountSparseOutput = tf_export("raw_ops.SparseCountSparseOutput")(_ops.to_raw_op(sparse_count_sparse_output)) def sparse_count_sparse_output_eager_fallback(indices: Annotated[Any, _atypes.Int64], values: Annotated[Any, TV_SparseCountSparseOutput_T], dense_shape: Annotated[Any, _atypes.Int64], weights: Annotated[Any, TV_SparseCountSparseOutput_output_type], binary_output: bool, minlength: int, maxlength: int, name, ctx): binary_output = _execute.make_bool(binary_output, "binary_output") if minlength is None: minlength = -1 minlength = _execute.make_int(minlength, "minlength") if maxlength is None: maxlength = -1 maxlength = _execute.make_int(maxlength, "maxlength") _attr_T, (values,) = _execute.args_to_matching_eager([values], ctx, [_dtypes.int32, _dtypes.int64, ]) _attr_output_type, (weights,) = _execute.args_to_matching_eager([weights], ctx, [_dtypes.int32, _dtypes.int64, _dtypes.float32, _dtypes.float64, ]) indices = _ops.convert_to_tensor(indices, _dtypes.int64) dense_shape = _ops.convert_to_tensor(dense_shape, _dtypes.int64) _inputs_flat = [indices, values, dense_shape, weights] _attrs = ("T", _attr_T, "minlength", minlength, "maxlength", maxlength, "binary_output", binary_output, "output_type", _attr_output_type) _result = _execute.execute(b"SparseCountSparseOutput", 3, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "SparseCountSparseOutput", _inputs_flat, _attrs, _result) _result = _SparseCountSparseOutputOutput._make(_result) return _result