"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.security.fuzzing.py import annotation_types as _atypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar, List, Any from typing_extensions import Annotated def batch_fft(input: Annotated[Any, _atypes.Complex64], name=None) -> Annotated[Any, _atypes.Complex64]: r"""TODO: add doc. Args: input: A `Tensor` of type `complex64`. name: A name for the operation (optional). Returns: A `Tensor` of type `complex64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "BatchFFT", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return batch_fft_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "BatchFFT", input=input, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "BatchFFT", _inputs_flat, _attrs, _result) _result, = _result return _result BatchFFT = tf_export("raw_ops.BatchFFT")(_ops.to_raw_op(batch_fft)) def batch_fft_eager_fallback(input: Annotated[Any, _atypes.Complex64], name, ctx) -> Annotated[Any, _atypes.Complex64]: input = _ops.convert_to_tensor(input, _dtypes.complex64) _inputs_flat = [input] _attrs = None _result = _execute.execute(b"BatchFFT", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "BatchFFT", _inputs_flat, _attrs, _result) _result, = _result return _result def batch_fft2d(input: Annotated[Any, _atypes.Complex64], name=None) -> Annotated[Any, _atypes.Complex64]: r"""TODO: add doc. Args: input: A `Tensor` of type `complex64`. name: A name for the operation (optional). Returns: A `Tensor` of type `complex64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "BatchFFT2D", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return batch_fft2d_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "BatchFFT2D", input=input, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "BatchFFT2D", _inputs_flat, _attrs, _result) _result, = _result return _result BatchFFT2D = tf_export("raw_ops.BatchFFT2D")(_ops.to_raw_op(batch_fft2d)) def batch_fft2d_eager_fallback(input: Annotated[Any, _atypes.Complex64], name, ctx) -> Annotated[Any, _atypes.Complex64]: input = _ops.convert_to_tensor(input, _dtypes.complex64) _inputs_flat = [input] _attrs = None _result = _execute.execute(b"BatchFFT2D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "BatchFFT2D", _inputs_flat, _attrs, _result) _result, = _result return _result def batch_fft3d(input: Annotated[Any, _atypes.Complex64], name=None) -> Annotated[Any, _atypes.Complex64]: r"""TODO: add doc. Args: input: A `Tensor` of type `complex64`. name: A name for the operation (optional). Returns: A `Tensor` of type `complex64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "BatchFFT3D", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return batch_fft3d_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "BatchFFT3D", input=input, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "BatchFFT3D", _inputs_flat, _attrs, _result) _result, = _result return _result BatchFFT3D = tf_export("raw_ops.BatchFFT3D")(_ops.to_raw_op(batch_fft3d)) def batch_fft3d_eager_fallback(input: Annotated[Any, _atypes.Complex64], name, ctx) -> Annotated[Any, _atypes.Complex64]: input = _ops.convert_to_tensor(input, _dtypes.complex64) _inputs_flat = [input] _attrs = None _result = _execute.execute(b"BatchFFT3D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "BatchFFT3D", _inputs_flat, _attrs, _result) _result, = _result return _result def batch_ifft(input: Annotated[Any, _atypes.Complex64], name=None) -> Annotated[Any, _atypes.Complex64]: r"""TODO: add doc. Args: input: A `Tensor` of type `complex64`. name: A name for the operation (optional). Returns: A `Tensor` of type `complex64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "BatchIFFT", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return batch_ifft_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "BatchIFFT", input=input, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "BatchIFFT", _inputs_flat, _attrs, _result) _result, = _result return _result BatchIFFT = tf_export("raw_ops.BatchIFFT")(_ops.to_raw_op(batch_ifft)) def batch_ifft_eager_fallback(input: Annotated[Any, _atypes.Complex64], name, ctx) -> Annotated[Any, _atypes.Complex64]: input = _ops.convert_to_tensor(input, _dtypes.complex64) _inputs_flat = [input] _attrs = None _result = _execute.execute(b"BatchIFFT", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "BatchIFFT", _inputs_flat, _attrs, _result) _result, = _result return _result def batch_ifft2d(input: Annotated[Any, _atypes.Complex64], name=None) -> Annotated[Any, _atypes.Complex64]: r"""TODO: add doc. Args: input: A `Tensor` of type `complex64`. name: A name for the operation (optional). Returns: A `Tensor` of type `complex64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "BatchIFFT2D", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return batch_ifft2d_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "BatchIFFT2D", input=input, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "BatchIFFT2D", _inputs_flat, _attrs, _result) _result, = _result return _result BatchIFFT2D = tf_export("raw_ops.BatchIFFT2D")(_ops.to_raw_op(batch_ifft2d)) def batch_ifft2d_eager_fallback(input: Annotated[Any, _atypes.Complex64], name, ctx) -> Annotated[Any, _atypes.Complex64]: input = _ops.convert_to_tensor(input, _dtypes.complex64) _inputs_flat = [input] _attrs = None _result = _execute.execute(b"BatchIFFT2D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "BatchIFFT2D", _inputs_flat, _attrs, _result) _result, = _result return _result def batch_ifft3d(input: Annotated[Any, _atypes.Complex64], name=None) -> Annotated[Any, _atypes.Complex64]: r"""TODO: add doc. Args: input: A `Tensor` of type `complex64`. name: A name for the operation (optional). Returns: A `Tensor` of type `complex64`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "BatchIFFT3D", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return batch_ifft3d_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. _, _, _op, _outputs = _op_def_library._apply_op_helper( "BatchIFFT3D", input=input, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "BatchIFFT3D", _inputs_flat, _attrs, _result) _result, = _result return _result BatchIFFT3D = tf_export("raw_ops.BatchIFFT3D")(_ops.to_raw_op(batch_ifft3d)) def batch_ifft3d_eager_fallback(input: Annotated[Any, _atypes.Complex64], name, ctx) -> Annotated[Any, _atypes.Complex64]: input = _ops.convert_to_tensor(input, _dtypes.complex64) _inputs_flat = [input] _attrs = None _result = _execute.execute(b"BatchIFFT3D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "BatchIFFT3D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_FFT_Tcomplex = TypeVar("TV_FFT_Tcomplex", _atypes.Complex128, _atypes.Complex64) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('signal.fft', v1=['signal.fft', 'spectral.fft', 'fft']) @deprecated_endpoints('spectral.fft', 'fft') def fft(input: Annotated[Any, TV_FFT_Tcomplex], name=None) -> Annotated[Any, TV_FFT_Tcomplex]: r"""Fast Fourier transform. Computes the 1-dimensional discrete Fourier transform over the inner-most dimension of `input`. Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. A complex tensor. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FFT", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_fft( (input, name,), None) if _result is not NotImplemented: return _result return fft_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( fft, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_fft( (input, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "FFT", input=input, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( fft, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "FFT", _inputs_flat, _attrs, _result) _result, = _result return _result FFT = tf_export("raw_ops.FFT")(_ops.to_raw_op(fft)) _dispatcher_for_fft = fft._tf_type_based_dispatcher.Dispatch def fft_eager_fallback(input: Annotated[Any, TV_FFT_Tcomplex], name, ctx) -> Annotated[Any, TV_FFT_Tcomplex]: _attr_Tcomplex, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.complex64, _dtypes.complex128, ], _dtypes.complex64) _inputs_flat = [input] _attrs = ("Tcomplex", _attr_Tcomplex) _result = _execute.execute(b"FFT", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FFT", _inputs_flat, _attrs, _result) _result, = _result return _result TV_FFT2D_Tcomplex = TypeVar("TV_FFT2D_Tcomplex", _atypes.Complex128, _atypes.Complex64) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('signal.fft2d', v1=['signal.fft2d', 'spectral.fft2d', 'fft2d']) @deprecated_endpoints('spectral.fft2d', 'fft2d') def fft2d(input: Annotated[Any, TV_FFT2D_Tcomplex], name=None) -> Annotated[Any, TV_FFT2D_Tcomplex]: r"""2D fast Fourier transform. Computes the 2-dimensional discrete Fourier transform over the inner-most 2 dimensions of `input`. Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. A complex tensor. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FFT2D", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_fft2d( (input, name,), None) if _result is not NotImplemented: return _result return fft2d_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( fft2d, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_fft2d( (input, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "FFT2D", input=input, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( fft2d, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "FFT2D", _inputs_flat, _attrs, _result) _result, = _result return _result FFT2D = tf_export("raw_ops.FFT2D")(_ops.to_raw_op(fft2d)) _dispatcher_for_fft2d = fft2d._tf_type_based_dispatcher.Dispatch def fft2d_eager_fallback(input: Annotated[Any, TV_FFT2D_Tcomplex], name, ctx) -> Annotated[Any, TV_FFT2D_Tcomplex]: _attr_Tcomplex, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.complex64, _dtypes.complex128, ], _dtypes.complex64) _inputs_flat = [input] _attrs = ("Tcomplex", _attr_Tcomplex) _result = _execute.execute(b"FFT2D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FFT2D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_FFT3D_Tcomplex = TypeVar("TV_FFT3D_Tcomplex", _atypes.Complex128, _atypes.Complex64) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('signal.fft3d', v1=['signal.fft3d', 'spectral.fft3d', 'fft3d']) @deprecated_endpoints('spectral.fft3d', 'fft3d') def fft3d(input: Annotated[Any, TV_FFT3D_Tcomplex], name=None) -> Annotated[Any, TV_FFT3D_Tcomplex]: r"""3D fast Fourier transform. Computes the 3-dimensional discrete Fourier transform over the inner-most 3 dimensions of `input`. Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. A complex tensor. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FFT3D", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_fft3d( (input, name,), None) if _result is not NotImplemented: return _result return fft3d_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( fft3d, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_fft3d( (input, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "FFT3D", input=input, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( fft3d, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "FFT3D", _inputs_flat, _attrs, _result) _result, = _result return _result FFT3D = tf_export("raw_ops.FFT3D")(_ops.to_raw_op(fft3d)) _dispatcher_for_fft3d = fft3d._tf_type_based_dispatcher.Dispatch def fft3d_eager_fallback(input: Annotated[Any, TV_FFT3D_Tcomplex], name, ctx) -> Annotated[Any, TV_FFT3D_Tcomplex]: _attr_Tcomplex, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.complex64, _dtypes.complex128, ], _dtypes.complex64) _inputs_flat = [input] _attrs = ("Tcomplex", _attr_Tcomplex) _result = _execute.execute(b"FFT3D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FFT3D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_FFTND_Tcomplex = TypeVar("TV_FFTND_Tcomplex", _atypes.Complex128, _atypes.Complex64) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('fftnd') def fftnd(input: Annotated[Any, TV_FFTND_Tcomplex], fft_length: Annotated[Any, _atypes.Int32], axes: Annotated[Any, _atypes.Int32], name=None) -> Annotated[Any, TV_FFTND_Tcomplex]: r"""ND fast Fourier transform. Computes the n-dimensional discrete Fourier transform over designated dimensions of `input`. The designated dimensions of `input` are assumed to be the result of `FFTND`. If fft_length[i]shape(input)[i], the input is padded with zeros. If fft_length is not given, the default shape(input) is used. Axes mean the dimensions to perform the transform on. Default is to perform on all axes. Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. A complex tensor. fft_length: A `Tensor` of type `int32`. An int32 tensor. The FFT length for each dimension. axes: A `Tensor` of type `int32`. An int32 tensor with a same shape as fft_length. Axes to perform the transform. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "FFTND", name, input, fft_length, axes) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_fftnd( (input, fft_length, axes, name,), None) if _result is not NotImplemented: return _result return fftnd_eager_fallback( input, fft_length, axes, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( fftnd, (), dict(input=input, fft_length=fft_length, axes=axes, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_fftnd( (input, fft_length, axes, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "FFTND", input=input, fft_length=fft_length, axes=axes, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( fftnd, (), dict(input=input, fft_length=fft_length, axes=axes, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "FFTND", _inputs_flat, _attrs, _result) _result, = _result return _result FFTND = tf_export("raw_ops.FFTND")(_ops.to_raw_op(fftnd)) _dispatcher_for_fftnd = fftnd._tf_type_based_dispatcher.Dispatch def fftnd_eager_fallback(input: Annotated[Any, TV_FFTND_Tcomplex], fft_length: Annotated[Any, _atypes.Int32], axes: Annotated[Any, _atypes.Int32], name, ctx) -> Annotated[Any, TV_FFTND_Tcomplex]: _attr_Tcomplex, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.complex64, _dtypes.complex128, ], _dtypes.complex64) fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) axes = _ops.convert_to_tensor(axes, _dtypes.int32) _inputs_flat = [input, fft_length, axes] _attrs = ("Tcomplex", _attr_Tcomplex) _result = _execute.execute(b"FFTND", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "FFTND", _inputs_flat, _attrs, _result) _result, = _result return _result TV_IFFT_Tcomplex = TypeVar("TV_IFFT_Tcomplex", _atypes.Complex128, _atypes.Complex64) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('signal.ifft', v1=['signal.ifft', 'spectral.ifft', 'ifft']) @deprecated_endpoints('spectral.ifft', 'ifft') def ifft(input: Annotated[Any, TV_IFFT_Tcomplex], name=None) -> Annotated[Any, TV_IFFT_Tcomplex]: r"""Inverse fast Fourier transform. Computes the inverse 1-dimensional discrete Fourier transform over the inner-most dimension of `input`. Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. A complex tensor. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IFFT", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_ifft( (input, name,), None) if _result is not NotImplemented: return _result return ifft_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( ifft, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_ifft( (input, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "IFFT", input=input, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( ifft, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "IFFT", _inputs_flat, _attrs, _result) _result, = _result return _result IFFT = tf_export("raw_ops.IFFT")(_ops.to_raw_op(ifft)) _dispatcher_for_ifft = ifft._tf_type_based_dispatcher.Dispatch def ifft_eager_fallback(input: Annotated[Any, TV_IFFT_Tcomplex], name, ctx) -> Annotated[Any, TV_IFFT_Tcomplex]: _attr_Tcomplex, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.complex64, _dtypes.complex128, ], _dtypes.complex64) _inputs_flat = [input] _attrs = ("Tcomplex", _attr_Tcomplex) _result = _execute.execute(b"IFFT", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IFFT", _inputs_flat, _attrs, _result) _result, = _result return _result TV_IFFT2D_Tcomplex = TypeVar("TV_IFFT2D_Tcomplex", _atypes.Complex128, _atypes.Complex64) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('signal.ifft2d', v1=['signal.ifft2d', 'spectral.ifft2d', 'ifft2d']) @deprecated_endpoints('spectral.ifft2d', 'ifft2d') def ifft2d(input: Annotated[Any, TV_IFFT2D_Tcomplex], name=None) -> Annotated[Any, TV_IFFT2D_Tcomplex]: r"""Inverse 2D fast Fourier transform. Computes the inverse 2-dimensional discrete Fourier transform over the inner-most 2 dimensions of `input`. Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. A complex tensor. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IFFT2D", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_ifft2d( (input, name,), None) if _result is not NotImplemented: return _result return ifft2d_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( ifft2d, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_ifft2d( (input, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "IFFT2D", input=input, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( ifft2d, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "IFFT2D", _inputs_flat, _attrs, _result) _result, = _result return _result IFFT2D = tf_export("raw_ops.IFFT2D")(_ops.to_raw_op(ifft2d)) _dispatcher_for_ifft2d = ifft2d._tf_type_based_dispatcher.Dispatch def ifft2d_eager_fallback(input: Annotated[Any, TV_IFFT2D_Tcomplex], name, ctx) -> Annotated[Any, TV_IFFT2D_Tcomplex]: _attr_Tcomplex, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.complex64, _dtypes.complex128, ], _dtypes.complex64) _inputs_flat = [input] _attrs = ("Tcomplex", _attr_Tcomplex) _result = _execute.execute(b"IFFT2D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IFFT2D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_IFFT3D_Tcomplex = TypeVar("TV_IFFT3D_Tcomplex", _atypes.Complex128, _atypes.Complex64) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('signal.ifft3d', v1=['signal.ifft3d', 'spectral.ifft3d', 'ifft3d']) @deprecated_endpoints('spectral.ifft3d', 'ifft3d') def ifft3d(input: Annotated[Any, TV_IFFT3D_Tcomplex], name=None) -> Annotated[Any, TV_IFFT3D_Tcomplex]: r"""Inverse 3D fast Fourier transform. Computes the inverse 3-dimensional discrete Fourier transform over the inner-most 3 dimensions of `input`. Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. A complex tensor. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IFFT3D", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_ifft3d( (input, name,), None) if _result is not NotImplemented: return _result return ifft3d_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( ifft3d, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_ifft3d( (input, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "IFFT3D", input=input, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( ifft3d, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "IFFT3D", _inputs_flat, _attrs, _result) _result, = _result return _result IFFT3D = tf_export("raw_ops.IFFT3D")(_ops.to_raw_op(ifft3d)) _dispatcher_for_ifft3d = ifft3d._tf_type_based_dispatcher.Dispatch def ifft3d_eager_fallback(input: Annotated[Any, TV_IFFT3D_Tcomplex], name, ctx) -> Annotated[Any, TV_IFFT3D_Tcomplex]: _attr_Tcomplex, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.complex64, _dtypes.complex128, ], _dtypes.complex64) _inputs_flat = [input] _attrs = ("Tcomplex", _attr_Tcomplex) _result = _execute.execute(b"IFFT3D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IFFT3D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_IFFTND_Tcomplex = TypeVar("TV_IFFTND_Tcomplex", _atypes.Complex128, _atypes.Complex64) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('ifftnd') def ifftnd(input: Annotated[Any, TV_IFFTND_Tcomplex], fft_length: Annotated[Any, _atypes.Int32], axes: Annotated[Any, _atypes.Int32], name=None) -> Annotated[Any, TV_IFFTND_Tcomplex]: r"""ND inverse fast Fourier transform. Computes the n-dimensional inverse discrete Fourier transform over designated dimensions of `input`. The designated dimensions of `input` are assumed to be the result of `IFFTND`. If fft_length[i]shape(input)[i], the input is padded with zeros. If fft_length is not given, the default shape(input) is used. Axes mean the dimensions to perform the transform on. Default is to perform on all axes. Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. A complex tensor. fft_length: A `Tensor` of type `int32`. An int32 tensor. The FFT length for each dimension. axes: A `Tensor` of type `int32`. An int32 tensor with a same shape as fft_length. Axes to perform the transform. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IFFTND", name, input, fft_length, axes) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_ifftnd( (input, fft_length, axes, name,), None) if _result is not NotImplemented: return _result return ifftnd_eager_fallback( input, fft_length, axes, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( ifftnd, (), dict(input=input, fft_length=fft_length, axes=axes, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_ifftnd( (input, fft_length, axes, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "IFFTND", input=input, fft_length=fft_length, axes=axes, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( ifftnd, (), dict(input=input, fft_length=fft_length, axes=axes, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "IFFTND", _inputs_flat, _attrs, _result) _result, = _result return _result IFFTND = tf_export("raw_ops.IFFTND")(_ops.to_raw_op(ifftnd)) _dispatcher_for_ifftnd = ifftnd._tf_type_based_dispatcher.Dispatch def ifftnd_eager_fallback(input: Annotated[Any, TV_IFFTND_Tcomplex], fft_length: Annotated[Any, _atypes.Int32], axes: Annotated[Any, _atypes.Int32], name, ctx) -> Annotated[Any, TV_IFFTND_Tcomplex]: _attr_Tcomplex, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.complex64, _dtypes.complex128, ], _dtypes.complex64) fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) axes = _ops.convert_to_tensor(axes, _dtypes.int32) _inputs_flat = [input, fft_length, axes] _attrs = ("Tcomplex", _attr_Tcomplex) _result = _execute.execute(b"IFFTND", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IFFTND", _inputs_flat, _attrs, _result) _result, = _result return _result TV_IRFFT_Treal = TypeVar("TV_IRFFT_Treal", _atypes.Float32, _atypes.Float64) TV_IRFFT_Tcomplex = TypeVar("TV_IRFFT_Tcomplex", _atypes.Complex128, _atypes.Complex64) def irfft(input: Annotated[Any, TV_IRFFT_Tcomplex], fft_length: Annotated[Any, _atypes.Int32], Treal:TV_IRFFT_Treal=_dtypes.float32, name=None) -> Annotated[Any, TV_IRFFT_Treal]: r"""Inverse real-valued fast Fourier transform. Computes the inverse 1-dimensional discrete Fourier transform of a real-valued signal over the inner-most dimension of `input`. The inner-most dimension of `input` is assumed to be the result of `RFFT`: the `fft_length / 2 + 1` unique components of the DFT of a real-valued signal. If `fft_length` is not provided, it is computed from the size of the inner-most dimension of `input` (`fft_length = 2 * (inner - 1)`). If the FFT length used to compute `input` is odd, it should be provided since it cannot be inferred properly. Along the axis `IRFFT` is computed on, if `fft_length / 2 + 1` is smaller than the corresponding dimension of `input`, the dimension is cropped. If it is larger, the dimension is padded with zeros. Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. A complex tensor. fft_length: A `Tensor` of type `int32`. An int32 tensor of shape [1]. The FFT length. Treal: An optional `tf.DType` from: `tf.float32, tf.float64`. Defaults to `tf.float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `Treal`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IRFFT", name, input, fft_length, "Treal", Treal) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return irfft_eager_fallback( input, fft_length, Treal=Treal, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if Treal is None: Treal = _dtypes.float32 Treal = _execute.make_type(Treal, "Treal") _, _, _op, _outputs = _op_def_library._apply_op_helper( "IRFFT", input=input, fft_length=fft_length, Treal=Treal, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Treal", _op._get_attr_type("Treal"), "Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "IRFFT", _inputs_flat, _attrs, _result) _result, = _result return _result IRFFT = tf_export("raw_ops.IRFFT")(_ops.to_raw_op(irfft)) def irfft_eager_fallback(input: Annotated[Any, TV_IRFFT_Tcomplex], fft_length: Annotated[Any, _atypes.Int32], Treal: TV_IRFFT_Treal, name, ctx) -> Annotated[Any, TV_IRFFT_Treal]: if Treal is None: Treal = _dtypes.float32 Treal = _execute.make_type(Treal, "Treal") _attr_Tcomplex, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.complex64, _dtypes.complex128, ], _dtypes.complex64) fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) _inputs_flat = [input, fft_length] _attrs = ("Treal", Treal, "Tcomplex", _attr_Tcomplex) _result = _execute.execute(b"IRFFT", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IRFFT", _inputs_flat, _attrs, _result) _result, = _result return _result TV_IRFFT2D_Treal = TypeVar("TV_IRFFT2D_Treal", _atypes.Float32, _atypes.Float64) TV_IRFFT2D_Tcomplex = TypeVar("TV_IRFFT2D_Tcomplex", _atypes.Complex128, _atypes.Complex64) def irfft2d(input: Annotated[Any, TV_IRFFT2D_Tcomplex], fft_length: Annotated[Any, _atypes.Int32], Treal:TV_IRFFT2D_Treal=_dtypes.float32, name=None) -> Annotated[Any, TV_IRFFT2D_Treal]: r"""Inverse 2D real-valued fast Fourier transform. Computes the inverse 2-dimensional discrete Fourier transform of a real-valued signal over the inner-most 2 dimensions of `input`. The inner-most 2 dimensions of `input` are assumed to be the result of `RFFT2D`: The inner-most dimension contains the `fft_length / 2 + 1` unique components of the DFT of a real-valued signal. If `fft_length` is not provided, it is computed from the size of the inner-most 2 dimensions of `input`. If the FFT length used to compute `input` is odd, it should be provided since it cannot be inferred properly. Along each axis `IRFFT2D` is computed on, if `fft_length` (or `fft_length / 2 + 1` for the inner-most dimension) is smaller than the corresponding dimension of `input`, the dimension is cropped. If it is larger, the dimension is padded with zeros. Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. A complex tensor. fft_length: A `Tensor` of type `int32`. An int32 tensor of shape [2]. The FFT length for each dimension. Treal: An optional `tf.DType` from: `tf.float32, tf.float64`. Defaults to `tf.float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `Treal`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IRFFT2D", name, input, fft_length, "Treal", Treal) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return irfft2d_eager_fallback( input, fft_length, Treal=Treal, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if Treal is None: Treal = _dtypes.float32 Treal = _execute.make_type(Treal, "Treal") _, _, _op, _outputs = _op_def_library._apply_op_helper( "IRFFT2D", input=input, fft_length=fft_length, Treal=Treal, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Treal", _op._get_attr_type("Treal"), "Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "IRFFT2D", _inputs_flat, _attrs, _result) _result, = _result return _result IRFFT2D = tf_export("raw_ops.IRFFT2D")(_ops.to_raw_op(irfft2d)) def irfft2d_eager_fallback(input: Annotated[Any, TV_IRFFT2D_Tcomplex], fft_length: Annotated[Any, _atypes.Int32], Treal: TV_IRFFT2D_Treal, name, ctx) -> Annotated[Any, TV_IRFFT2D_Treal]: if Treal is None: Treal = _dtypes.float32 Treal = _execute.make_type(Treal, "Treal") _attr_Tcomplex, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.complex64, _dtypes.complex128, ], _dtypes.complex64) fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) _inputs_flat = [input, fft_length] _attrs = ("Treal", Treal, "Tcomplex", _attr_Tcomplex) _result = _execute.execute(b"IRFFT2D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IRFFT2D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_IRFFT3D_Treal = TypeVar("TV_IRFFT3D_Treal", _atypes.Float32, _atypes.Float64) TV_IRFFT3D_Tcomplex = TypeVar("TV_IRFFT3D_Tcomplex", _atypes.Complex128, _atypes.Complex64) def irfft3d(input: Annotated[Any, TV_IRFFT3D_Tcomplex], fft_length: Annotated[Any, _atypes.Int32], Treal:TV_IRFFT3D_Treal=_dtypes.float32, name=None) -> Annotated[Any, TV_IRFFT3D_Treal]: r"""Inverse 3D real-valued fast Fourier transform. Computes the inverse 3-dimensional discrete Fourier transform of a real-valued signal over the inner-most 3 dimensions of `input`. The inner-most 3 dimensions of `input` are assumed to be the result of `RFFT3D`: The inner-most dimension contains the `fft_length / 2 + 1` unique components of the DFT of a real-valued signal. If `fft_length` is not provided, it is computed from the size of the inner-most 3 dimensions of `input`. If the FFT length used to compute `input` is odd, it should be provided since it cannot be inferred properly. Along each axis `IRFFT3D` is computed on, if `fft_length` (or `fft_length / 2 + 1` for the inner-most dimension) is smaller than the corresponding dimension of `input`, the dimension is cropped. If it is larger, the dimension is padded with zeros. Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. A complex tensor. fft_length: A `Tensor` of type `int32`. An int32 tensor of shape [3]. The FFT length for each dimension. Treal: An optional `tf.DType` from: `tf.float32, tf.float64`. Defaults to `tf.float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `Treal`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IRFFT3D", name, input, fft_length, "Treal", Treal) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return irfft3d_eager_fallback( input, fft_length, Treal=Treal, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if Treal is None: Treal = _dtypes.float32 Treal = _execute.make_type(Treal, "Treal") _, _, _op, _outputs = _op_def_library._apply_op_helper( "IRFFT3D", input=input, fft_length=fft_length, Treal=Treal, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Treal", _op._get_attr_type("Treal"), "Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "IRFFT3D", _inputs_flat, _attrs, _result) _result, = _result return _result IRFFT3D = tf_export("raw_ops.IRFFT3D")(_ops.to_raw_op(irfft3d)) def irfft3d_eager_fallback(input: Annotated[Any, TV_IRFFT3D_Tcomplex], fft_length: Annotated[Any, _atypes.Int32], Treal: TV_IRFFT3D_Treal, name, ctx) -> Annotated[Any, TV_IRFFT3D_Treal]: if Treal is None: Treal = _dtypes.float32 Treal = _execute.make_type(Treal, "Treal") _attr_Tcomplex, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.complex64, _dtypes.complex128, ], _dtypes.complex64) fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) _inputs_flat = [input, fft_length] _attrs = ("Treal", Treal, "Tcomplex", _attr_Tcomplex) _result = _execute.execute(b"IRFFT3D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IRFFT3D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_IRFFTND_Treal = TypeVar("TV_IRFFTND_Treal", _atypes.Float32, _atypes.Float64) TV_IRFFTND_Tcomplex = TypeVar("TV_IRFFTND_Tcomplex", _atypes.Complex128, _atypes.Complex64) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('irfftnd') def irfftnd(input: Annotated[Any, TV_IRFFTND_Tcomplex], fft_length: Annotated[Any, _atypes.Int32], axes: Annotated[Any, _atypes.Int32], Treal:TV_IRFFTND_Treal=_dtypes.float32, name=None) -> Annotated[Any, TV_IRFFTND_Treal]: r"""ND inverse real fast Fourier transform. Computes the n-dimensional inverse real discrete Fourier transform over designated dimensions of `input`. The designated dimensions of `input` are assumed to be the result of `IRFFTND`. The inner-most dimension contains the `fft_length / 2 + 1` unique components of the DFT of a real-valued signal. If fft_length[i]shape(input)[i], the input is padded with zeros. If fft_length is not given, the default shape(input) is used. Axes mean the dimensions to perform the transform on. Default is to perform on all axes. Args: input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`. A complex tensor. fft_length: A `Tensor` of type `int32`. An int32 tensor. The FFT length for each dimension. axes: A `Tensor` of type `int32`. An int32 tensor with a same shape as fft_length. Axes to perform the transform. Treal: An optional `tf.DType` from: `tf.float32, tf.float64`. Defaults to `tf.float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `Treal`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "IRFFTND", name, input, fft_length, axes, "Treal", Treal) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_irfftnd( (input, fft_length, axes, Treal, name,), None) if _result is not NotImplemented: return _result return irfftnd_eager_fallback( input, fft_length, axes, Treal=Treal, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( irfftnd, (), dict(input=input, fft_length=fft_length, axes=axes, Treal=Treal, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_irfftnd( (input, fft_length, axes, Treal, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if Treal is None: Treal = _dtypes.float32 Treal = _execute.make_type(Treal, "Treal") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "IRFFTND", input=input, fft_length=fft_length, axes=axes, Treal=Treal, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( irfftnd, (), dict(input=input, fft_length=fft_length, axes=axes, Treal=Treal, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Treal", _op._get_attr_type("Treal"), "Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "IRFFTND", _inputs_flat, _attrs, _result) _result, = _result return _result IRFFTND = tf_export("raw_ops.IRFFTND")(_ops.to_raw_op(irfftnd)) _dispatcher_for_irfftnd = irfftnd._tf_type_based_dispatcher.Dispatch def irfftnd_eager_fallback(input: Annotated[Any, TV_IRFFTND_Tcomplex], fft_length: Annotated[Any, _atypes.Int32], axes: Annotated[Any, _atypes.Int32], Treal: TV_IRFFTND_Treal, name, ctx) -> Annotated[Any, TV_IRFFTND_Treal]: if Treal is None: Treal = _dtypes.float32 Treal = _execute.make_type(Treal, "Treal") _attr_Tcomplex, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.complex64, _dtypes.complex128, ], _dtypes.complex64) fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) axes = _ops.convert_to_tensor(axes, _dtypes.int32) _inputs_flat = [input, fft_length, axes] _attrs = ("Treal", Treal, "Tcomplex", _attr_Tcomplex) _result = _execute.execute(b"IRFFTND", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "IRFFTND", _inputs_flat, _attrs, _result) _result, = _result return _result TV_RFFT_Treal = TypeVar("TV_RFFT_Treal", _atypes.Float32, _atypes.Float64) TV_RFFT_Tcomplex = TypeVar("TV_RFFT_Tcomplex", _atypes.Complex128, _atypes.Complex64) def rfft(input: Annotated[Any, TV_RFFT_Treal], fft_length: Annotated[Any, _atypes.Int32], Tcomplex:TV_RFFT_Tcomplex=_dtypes.complex64, name=None) -> Annotated[Any, TV_RFFT_Tcomplex]: r"""Real-valued fast Fourier transform. Computes the 1-dimensional discrete Fourier transform of a real-valued signal over the inner-most dimension of `input`. Since the DFT of a real signal is Hermitian-symmetric, `RFFT` only returns the `fft_length / 2 + 1` unique components of the FFT: the zero-frequency term, followed by the `fft_length / 2` positive-frequency terms. Along the axis `RFFT` is computed on, if `fft_length` is smaller than the corresponding dimension of `input`, the dimension is cropped. If it is larger, the dimension is padded with zeros. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`. A float32 tensor. fft_length: A `Tensor` of type `int32`. An int32 tensor of shape [1]. The FFT length. Tcomplex: An optional `tf.DType` from: `tf.complex64, tf.complex128`. Defaults to `tf.complex64`. name: A name for the operation (optional). Returns: A `Tensor` of type `Tcomplex`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RFFT", name, input, fft_length, "Tcomplex", Tcomplex) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return rfft_eager_fallback( input, fft_length, Tcomplex=Tcomplex, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if Tcomplex is None: Tcomplex = _dtypes.complex64 Tcomplex = _execute.make_type(Tcomplex, "Tcomplex") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RFFT", input=input, fft_length=fft_length, Tcomplex=Tcomplex, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Treal", _op._get_attr_type("Treal"), "Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "RFFT", _inputs_flat, _attrs, _result) _result, = _result return _result RFFT = tf_export("raw_ops.RFFT")(_ops.to_raw_op(rfft)) def rfft_eager_fallback(input: Annotated[Any, TV_RFFT_Treal], fft_length: Annotated[Any, _atypes.Int32], Tcomplex: TV_RFFT_Tcomplex, name, ctx) -> Annotated[Any, TV_RFFT_Tcomplex]: if Tcomplex is None: Tcomplex = _dtypes.complex64 Tcomplex = _execute.make_type(Tcomplex, "Tcomplex") _attr_Treal, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.float32, _dtypes.float64, ], _dtypes.float32) fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) _inputs_flat = [input, fft_length] _attrs = ("Treal", _attr_Treal, "Tcomplex", Tcomplex) _result = _execute.execute(b"RFFT", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RFFT", _inputs_flat, _attrs, _result) _result, = _result return _result TV_RFFT2D_Treal = TypeVar("TV_RFFT2D_Treal", _atypes.Float32, _atypes.Float64) TV_RFFT2D_Tcomplex = TypeVar("TV_RFFT2D_Tcomplex", _atypes.Complex128, _atypes.Complex64) def rfft2d(input: Annotated[Any, TV_RFFT2D_Treal], fft_length: Annotated[Any, _atypes.Int32], Tcomplex:TV_RFFT2D_Tcomplex=_dtypes.complex64, name=None) -> Annotated[Any, TV_RFFT2D_Tcomplex]: r"""2D real-valued fast Fourier transform. Computes the 2-dimensional discrete Fourier transform of a real-valued signal over the inner-most 2 dimensions of `input`. Since the DFT of a real signal is Hermitian-symmetric, `RFFT2D` only returns the `fft_length / 2 + 1` unique components of the FFT for the inner-most dimension of `output`: the zero-frequency term, followed by the `fft_length / 2` positive-frequency terms. Along each axis `RFFT2D` is computed on, if `fft_length` is smaller than the corresponding dimension of `input`, the dimension is cropped. If it is larger, the dimension is padded with zeros. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`. A float32 tensor. fft_length: A `Tensor` of type `int32`. An int32 tensor of shape [2]. The FFT length for each dimension. Tcomplex: An optional `tf.DType` from: `tf.complex64, tf.complex128`. Defaults to `tf.complex64`. name: A name for the operation (optional). Returns: A `Tensor` of type `Tcomplex`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RFFT2D", name, input, fft_length, "Tcomplex", Tcomplex) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return rfft2d_eager_fallback( input, fft_length, Tcomplex=Tcomplex, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if Tcomplex is None: Tcomplex = _dtypes.complex64 Tcomplex = _execute.make_type(Tcomplex, "Tcomplex") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RFFT2D", input=input, fft_length=fft_length, Tcomplex=Tcomplex, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Treal", _op._get_attr_type("Treal"), "Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "RFFT2D", _inputs_flat, _attrs, _result) _result, = _result return _result RFFT2D = tf_export("raw_ops.RFFT2D")(_ops.to_raw_op(rfft2d)) def rfft2d_eager_fallback(input: Annotated[Any, TV_RFFT2D_Treal], fft_length: Annotated[Any, _atypes.Int32], Tcomplex: TV_RFFT2D_Tcomplex, name, ctx) -> Annotated[Any, TV_RFFT2D_Tcomplex]: if Tcomplex is None: Tcomplex = _dtypes.complex64 Tcomplex = _execute.make_type(Tcomplex, "Tcomplex") _attr_Treal, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.float32, _dtypes.float64, ], _dtypes.float32) fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) _inputs_flat = [input, fft_length] _attrs = ("Treal", _attr_Treal, "Tcomplex", Tcomplex) _result = _execute.execute(b"RFFT2D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RFFT2D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_RFFT3D_Treal = TypeVar("TV_RFFT3D_Treal", _atypes.Float32, _atypes.Float64) TV_RFFT3D_Tcomplex = TypeVar("TV_RFFT3D_Tcomplex", _atypes.Complex128, _atypes.Complex64) def rfft3d(input: Annotated[Any, TV_RFFT3D_Treal], fft_length: Annotated[Any, _atypes.Int32], Tcomplex:TV_RFFT3D_Tcomplex=_dtypes.complex64, name=None) -> Annotated[Any, TV_RFFT3D_Tcomplex]: r"""3D real-valued fast Fourier transform. Computes the 3-dimensional discrete Fourier transform of a real-valued signal over the inner-most 3 dimensions of `input`. Since the DFT of a real signal is Hermitian-symmetric, `RFFT3D` only returns the `fft_length / 2 + 1` unique components of the FFT for the inner-most dimension of `output`: the zero-frequency term, followed by the `fft_length / 2` positive-frequency terms. Along each axis `RFFT3D` is computed on, if `fft_length` is smaller than the corresponding dimension of `input`, the dimension is cropped. If it is larger, the dimension is padded with zeros. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`. A float32 tensor. fft_length: A `Tensor` of type `int32`. An int32 tensor of shape [3]. The FFT length for each dimension. Tcomplex: An optional `tf.DType` from: `tf.complex64, tf.complex128`. Defaults to `tf.complex64`. name: A name for the operation (optional). Returns: A `Tensor` of type `Tcomplex`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RFFT3D", name, input, fft_length, "Tcomplex", Tcomplex) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: return rfft3d_eager_fallback( input, fft_length, Tcomplex=Tcomplex, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. # Add nodes to the TensorFlow graph. if Tcomplex is None: Tcomplex = _dtypes.complex64 Tcomplex = _execute.make_type(Tcomplex, "Tcomplex") _, _, _op, _outputs = _op_def_library._apply_op_helper( "RFFT3D", input=input, fft_length=fft_length, Tcomplex=Tcomplex, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Treal", _op._get_attr_type("Treal"), "Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "RFFT3D", _inputs_flat, _attrs, _result) _result, = _result return _result RFFT3D = tf_export("raw_ops.RFFT3D")(_ops.to_raw_op(rfft3d)) def rfft3d_eager_fallback(input: Annotated[Any, TV_RFFT3D_Treal], fft_length: Annotated[Any, _atypes.Int32], Tcomplex: TV_RFFT3D_Tcomplex, name, ctx) -> Annotated[Any, TV_RFFT3D_Tcomplex]: if Tcomplex is None: Tcomplex = _dtypes.complex64 Tcomplex = _execute.make_type(Tcomplex, "Tcomplex") _attr_Treal, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.float32, _dtypes.float64, ], _dtypes.float32) fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) _inputs_flat = [input, fft_length] _attrs = ("Treal", _attr_Treal, "Tcomplex", Tcomplex) _result = _execute.execute(b"RFFT3D", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RFFT3D", _inputs_flat, _attrs, _result) _result, = _result return _result TV_RFFTND_Treal = TypeVar("TV_RFFTND_Treal", _atypes.Float32, _atypes.Float64) TV_RFFTND_Tcomplex = TypeVar("TV_RFFTND_Tcomplex", _atypes.Complex128, _atypes.Complex64) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('rfftnd') def rfftnd(input: Annotated[Any, TV_RFFTND_Treal], fft_length: Annotated[Any, _atypes.Int32], axes: Annotated[Any, _atypes.Int32], Tcomplex:TV_RFFTND_Tcomplex=_dtypes.complex64, name=None) -> Annotated[Any, TV_RFFTND_Tcomplex]: r"""ND fast real Fourier transform. Computes the n-dimensional real discrete Fourier transform over designated dimensions of `input`. The designated dimensions of `input` are assumed to be the result of `RFFTND`. The length of the last axis transformed will be fft_length[-1]//2+1. If fft_length[i]shape(input)[i], the input is padded with zeros. If fft_length is not given, the default shape(input) is used. Axes mean the dimensions to perform the transform on. Default is to perform on all axes. Args: input: A `Tensor`. Must be one of the following types: `float32`, `float64`. A complex tensor. fft_length: A `Tensor` of type `int32`. An int32 tensor. The FFT length for each dimension. axes: A `Tensor` of type `int32`. An int32 tensor with a same shape as fft_length. Axes to perform the transform. Tcomplex: An optional `tf.DType` from: `tf.complex64, tf.complex128`. Defaults to `tf.complex64`. name: A name for the operation (optional). Returns: A `Tensor` of type `Tcomplex`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "RFFTND", name, input, fft_length, axes, "Tcomplex", Tcomplex) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_rfftnd( (input, fft_length, axes, Tcomplex, name,), None) if _result is not NotImplemented: return _result return rfftnd_eager_fallback( input, fft_length, axes, Tcomplex=Tcomplex, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( rfftnd, (), dict(input=input, fft_length=fft_length, axes=axes, Tcomplex=Tcomplex, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_rfftnd( (input, fft_length, axes, Tcomplex, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if Tcomplex is None: Tcomplex = _dtypes.complex64 Tcomplex = _execute.make_type(Tcomplex, "Tcomplex") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "RFFTND", input=input, fft_length=fft_length, axes=axes, Tcomplex=Tcomplex, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( rfftnd, (), dict(input=input, fft_length=fft_length, axes=axes, Tcomplex=Tcomplex, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Treal", _op._get_attr_type("Treal"), "Tcomplex", _op._get_attr_type("Tcomplex")) _inputs_flat = _op.inputs _execute.record_gradient( "RFFTND", _inputs_flat, _attrs, _result) _result, = _result return _result RFFTND = tf_export("raw_ops.RFFTND")(_ops.to_raw_op(rfftnd)) _dispatcher_for_rfftnd = rfftnd._tf_type_based_dispatcher.Dispatch def rfftnd_eager_fallback(input: Annotated[Any, TV_RFFTND_Treal], fft_length: Annotated[Any, _atypes.Int32], axes: Annotated[Any, _atypes.Int32], Tcomplex: TV_RFFTND_Tcomplex, name, ctx) -> Annotated[Any, TV_RFFTND_Tcomplex]: if Tcomplex is None: Tcomplex = _dtypes.complex64 Tcomplex = _execute.make_type(Tcomplex, "Tcomplex") _attr_Treal, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.float32, _dtypes.float64, ], _dtypes.float32) fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) axes = _ops.convert_to_tensor(axes, _dtypes.int32) _inputs_flat = [input, fft_length, axes] _attrs = ("Treal", _attr_Treal, "Tcomplex", Tcomplex) _result = _execute.execute(b"RFFTND", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "RFFTND", _inputs_flat, _attrs, _result) _result, = _result return _result