# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implements the graph generation for computation of gradients.""" import collections import contextlib from tensorflow.core.framework import attr_value_pb2 from tensorflow.python import pywrap_tfe from tensorflow.python.eager import backprop_util from tensorflow.python.eager import context from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import composite_tensor_gradient from tensorflow.python.framework import dtypes from tensorflow.python.framework import indexed_slices from tensorflow.python.framework import ops from tensorflow.python.framework import tensor as tensor_lib from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import control_flow_state from tensorflow.python.ops import control_flow_util from tensorflow.python.ops import default_gradient from tensorflow.python.ops import gen_functional_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops.unconnected_gradients import UnconnectedGradients from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import compat from tensorflow.python.util import object_identity from tensorflow.python.util import variable_utils from tensorflow.python.util.compat import collections_abc from tensorflow.python.util.tf_export import tf_export def _MarkReachedOps(from_ops, reached_ops, func_graphs): """Mark all ops reached from "from_ops". Args: from_ops: list of Operations. reached_ops: set of Operations. func_graphs: list of FuncGraphs. This method will traverse through these functions if they capture from_ops or any reachable ops. """ queue = collections.deque() queue.extend(from_ops) while queue: op = queue.popleft() if op not in reached_ops: reached_ops.add(op) for output in op.outputs: if backprop_util.IsTrainable(output): queue.extend(_Consumers(output, func_graphs)) def _PendingCount( to_ops: list[ops.Operation], from_ops: list[ops.Operation], colocate_gradients_with_ops, func_graphs, xs_set, ): """Initialize the pending count for ops between two lists of Operations. 'pending_count[op]' indicates the number of backprop inputs to this operation. Args: to_ops: list of Operations. from_ops: list of Operations. colocate_gradients_with_ops: Python bool. See docstring of gradients(). func_graphs: list of FuncGraphs. This method will traverse through these functions if they capture from_ops or any reachable ops. This is useful if to_ops occur in a function and from_ops are in an outer function or graph. xs_set: ObjectIdentitySet of Tensors. Returns: A tuple containing: (1) the subset of to_ops reachable from from_ops by a path of zero or more backpropagatable tensors, (2) a mapping from operation to the number of backprop inputs to that op, and (3) a ControlFlowState object which is not None if the ops between from_ops and to_ops contain control flow loops. """ # Mark reachable ops from from_ops. reached_ops = set() _MarkReachedOps(from_ops, reached_ops, func_graphs) # X in reached_ops iff X is reachable from from_ops by a path of zero or more # backpropagatable tensors. reachable_to_ops = set(op for op in to_ops if op in reached_ops) # Mark between ops. between_ops = set() between_op_list = [] queue = collections.deque() queue.extend(to_ops) while queue: op = queue.popleft() # We are interested in this op. if op in reached_ops: between_ops.add(op) between_op_list.append(op) # Clear the boolean so we won't add the inputs again. reached_ops.remove(op) for inp in _NonEagerInputs(op, xs_set): queue.append(inp.op) # X in between_ops iff X is on a path of zero or more backpropagatable tensors # between from_ops and to_ops # 'loop_state' is None if there are no while loops. loop_state = control_flow_state.MaybeCreateControlFlowState( between_op_list, between_ops, colocate_gradients_with_ops) # Initialize pending count for between ops. pending_count = collections.defaultdict(int) for op in between_op_list: for x in _NonEagerInputs(op, xs_set): if x.op in between_ops: pending_count[x.op] += 1 return reachable_to_ops, pending_count, loop_state def _AsList(x): return x if isinstance(x, (list, tuple)) else [x] def _DefaultGradYs(grad_ys, ys, colocate_gradients_with_ops, gradient_uid="__unsupported__"): """Fill in default values for grad_ys. Args: grad_ys: List of gradients, can contain None. ys: List of tensors. colocate_gradients_with_ops: If True, try colocating gradients with the corresponding op. gradient_uid: A unique identifier within the graph indicating which invocation of gradients is being executed. Used to cluster ops for compilation. Returns: A list of gradients to use, without None. Raises: ValueError: If sizes of gradients and inputs don't match TypeError: If type of any gradient is not valid for its input. """ if len(grad_ys) != len(ys): raise ValueError(f"Length mismatch. Passed {len(grad_ys)} grad_ys for " f"{len(ys)} ys") grad_ys = indexed_slices.convert_n_to_tensor_or_indexed_slices( grad_ys, name="grad_y") new_grad_ys = [] for i, (y, grad_y) in enumerate(zip(ys, grad_ys)): with _maybe_colocate_with(y.op, gradient_uid, colocate_gradients_with_ops): if grad_y is None: if y.dtype.is_complex: raise TypeError( f"Gradients of complex tensors ({y}) must set grad_ys (y.dtype = " f"{dtypes.as_dtype(y.dtype).name})" ) new_grad_ys.append( array_ops.ones( array_ops.shape(y), dtype=y.dtype, name="grad_ys_%d" % i ) ) continue if y.dtype.is_floating or y.dtype.is_integer: if not grad_y.dtype.is_floating and not grad_y.dtype.is_integer: raise TypeError( f"Gradient type {dtypes.as_dtype(grad_y.dtype).name} generated " f"for real or integer-valued tensor {y} with type " f"{dtypes.as_dtype(y.dtype).name} must be real or integer" ) elif y.dtype.is_complex: if not grad_y.dtype.is_complex: raise TypeError( f"Gradient type {dtypes.as_dtype(grad_y.dtype).name} generated " f"for complex-valued tensor {y} with type " f"{dtypes.as_dtype(y.dtype).name} must be real" ) elif y.dtype == dtypes.variant: if grad_y.dtype != dtypes.variant: raise TypeError( f"Gradient type {dtypes.as_dtype(grad_y.dtype).name} generated " f"for variant tensor {y} with type " f"{dtypes.as_dtype(y.dtype).name} must be variant" ) elif y.dtype == dtypes.resource: # We assume y is the handle of a ResourceVariable. The gradient of a # ResourceVariable should be a numeric value, not another resource. if grad_y.dtype == dtypes.resource: raise TypeError( f"Input gradient {grad_y} for resource tensor {y} " "should not be a resource" ) else: raise TypeError( f"Tensor {y} with type {dtypes.as_dtype(y.dtype).name} must be " "numeric to obtain a default gradient" ) # Create a grad_y tensor in the name scope of the gradient. # Required for TensorArrays to identify which gradient call a # grad_y value is coming from. if isinstance(grad_y, indexed_slices.IndexedSlices): new_grad_ys.append( indexed_slices.IndexedSlices( indices=( array_ops.identity( grad_y.indices, name="grad_ys_%d_indices" % i ) if isinstance(grad_y.indices, tensor_lib.Tensor) else grad_y.indices ), values=( array_ops.identity( grad_y.values, name="grad_ys_%d_values" % i ) if isinstance(grad_y.values, tensor_lib.Tensor) else grad_y.values ), dense_shape=( array_ops.identity( grad_y.dense_shape, name="grad_ys_%d_shape" % i ) if isinstance(grad_y.dense_shape, tensor_lib.Tensor) else grad_y.dense_shape ), ) ) else: new_grad_ys.append(array_ops.identity(grad_y, name="grad_ys_%d" % i)) return new_grad_ys def _VerifyGeneratedGradients(grads, op: ops.Operation): """Verify that gradients are valid in number and type. Args: grads: List of generated gradients. op: Operation for which the gradients where generated. Raises: ValueError: if sizes of gradients and inputs don't match. TypeError: if type of any gradient is not valid for its input. """ # While ops have inputs added to them during the gradient computation, so we # skip the below check. See while_v2 for details. if op.type == "While" or op.type == "StatelessWhile": return if len(grads) != len(op.inputs): raise ValueError( f"Num gradients {len(grads)} generated for op " f"{op.node_def} do not match num inputs {len(op.inputs)}" ) def _StopOps( from_ops: list[ops.Operation], stop_gradient_ops: list[ops.Operation], pending_count, xs_set, ): """The set of ops that terminate the gradient computation. This computes the frontier of the forward graph *before* which backprop should stop. Operations in the returned set will not be differentiated. This set is defined as the subset of `from_ops` containing ops that have no predecessor in `from_ops`. `pending_count` is the result of `_PendingCount(xs, from_ops)`. An 'op' has predecessors in `from_ops` iff pending_count[op] > 0. In addition, none of `stop_gradient_ops` will be differentiated. Args: from_ops: list of Operations. stop_gradient_ops: list of Operations never to backprop through. pending_count: mapping from operation to number of backprop inputs. xs_set: ObjectIdentitySet of Tensors. Returns: The set of operations. """ stop_ops = set() for op in from_ops: is_stop_op = True for inp in _NonEagerInputs(op, xs_set): if pending_count[inp.op] > 0: is_stop_op = False break if is_stop_op: stop_ops.add(op) stop_ops.update(op for op in stop_gradient_ops) return stop_ops @contextlib.contextmanager def _maybe_colocate_with( # pylint: disable=invalid-name op: ops.Operation, gradient_uid, colocate_gradients_with_ops, ): """Context to colocate with `op` if `colocate_gradients_with_ops`.""" if colocate_gradients_with_ops: with ops._colocate_with_for_gradient(op, gradient_uid): # pylint: disable=protected-access yield else: yield def _IsPartitionedCall(op: ops.Operation): return op.type == "PartitionedCall" or op.type == "StatefulPartitionedCall" def _SymGrad(op: ops.Operation, out_grads): """Backprop through a function call node op given its outputs' gradients.""" f_in = [x for x in op.inputs] + out_grads f_types = [default_gradient.get_zeros_dtype(x) for x in op.inputs] f = attr_value_pb2.NameAttrList() if _IsPartitionedCall(op): f.name = op.get_attr("f").name else: f.name = op.type for k in op.node_def.attr: f.attr[k].CopyFrom(op.node_def.attr[k]) in_grads = gen_functional_ops.symbolic_gradient(input=f_in, Tout=f_types, f=f) return in_grads def _MaybeCompile(scope, op: ops.Operation, func, grad_fn): """Compile the calculation in grad_fn if op was marked as compiled.""" scope = scope.rstrip("/").replace("/", "_") if func is not None: xla_compile = func.cached_definition.attr["_XlaCompile"].b xla_separate_compiled_gradients = func.cached_definition.attr[ "_XlaSeparateCompiledGradients"].b xla_scope = func.cached_definition.attr["_XlaScope"].s.decode() else: try: xla_compile = op.get_attr("_XlaCompile") xla_separate_compiled_gradients = op.get_attr( "_XlaSeparateCompiledGradients") xla_scope = op.get_attr("_XlaScope").decode() except ValueError: xla_compile = False if not xla_compile: return grad_fn() # Exit early # If the gradients are supposed to be compiled separately, we give them a # _XlaScope name that is based on the name_scope of the gradients. Otherwise # they just inherit the existing _XlaScope name, which lets them be merged # together with the non-gradient computation. if xla_separate_compiled_gradients: xla_grad_scope = "%s_grad_%s" % (xla_scope, scope) else: xla_grad_scope = xla_scope attrs = { "_XlaCompile": attr_value_pb2.AttrValue(b=xla_compile), "_XlaScope": attr_value_pb2.AttrValue(s=xla_grad_scope.encode()) } with ops.get_default_graph()._attr_scope(attrs): # pylint: disable=protected-access return grad_fn() def _RaiseNoGradWrtInitialLoopValError( op: ops.Operation, from_ops: list[ops.Operation], xs_set, ): """Raises an error if we backprop through a loop var.""" # Find the nearest 'to_op' reachable from 'op' to provide a more helpful error # message. target_op = None queue = collections.deque([op]) visited = set() while queue: curr_op = queue.popleft() if curr_op in visited: continue visited.add(curr_op) if curr_op in from_ops: target_op = curr_op break queue.extend(t.op for t in _NonEagerInputs(curr_op, xs_set)) assert target_op raise ValueError( "Cannot compute gradient inside while loop with respect to op " f"'{target_op.name}'. We do not support taking the gradient wrt or " "through the initial value of a loop variable. Gradients can be computed " "through loop invariants or wrt the input parameters to the loop body.") def _IsFunction(graph): # isinstance check for FuncGraphs that avoids the explicit dependency # on func_graph.py and function.py return isinstance(graph, ops.Graph) and graph._building_function # pylint: disable=protected-access def _Captures(func_graph): assert _IsFunction(func_graph) return func_graph.captures def _MaybeCaptured(t): """If t is a captured value placeholder, returns the original captured value. Args: t: Tensor Returns: A tensor, potentially from a different Graph/FuncGraph. """ # pylint: disable=protected-access if (not isinstance(t, ops.EagerTensor) and _IsFunction(t.op.graph) and t.op.type == "Placeholder"): for input_t, placeholder_t in _Captures(t.op.graph): if t is placeholder_t: return _MaybeCaptured(input_t) # pylint: enable=protected-access return t def _NonEagerInputs(op: ops.Operation, xs_set): """Returns the inputs of op, crossing closure boundaries where necessary. Does not return any captured EagerTensors, i.e., the number of tensors returned may be less than the actual number of inputs. Args: op: Operation xs_set: ObjectIdentitySet of Tensors we are differentiating w.r.t. Returns: A list of tensors. The tensors may be from multiple Graph/FuncGraphs if op is in a FuncGraph and has captured inputs. """ return [t for t in _Inputs(op, xs_set) if not isinstance(t, ops.EagerTensor)] # TODO(skyewm): plumbing xs through everywhere is ugly, consider making # _GradientsHelper a class with xs as a member variable. def _Inputs(op: ops.Operation, xs_set): """Returns the inputs of op, crossing closure boundaries where necessary. Args: op: Operation xs_set: ObjectIdentitySet of Tensors we are differentiating w.r.t. Returns: A list of tensors. The tensors may be from multiple Graph/FuncGraphs if op is in a FuncGraph and has captured inputs. """ if _IsFunction(op.graph): # pylint: disable=protected-access inputs = [] for t in op.inputs: # If we're differentiating w.r.t. `t`, do not attempt to traverse through # it to a captured value. The algorithm needs to "see" `t` in this case, # even if it's a function input for a captured value, whereas usually we'd # like to traverse through these closures as if the captured value was the # direct input to op. if t not in xs_set: t = _MaybeCaptured(t) inputs.append(t) return inputs else: return op.inputs def _Consumers(t, func_graphs): """Returns the consumers of t, crossing closure boundaries where necessary. Args: t: Tensor func_graphs: a list of FuncGraphs that may have captured t. Returns: A list of tensors. The tensors will be from the current graph and/or func_graphs. """ consumers = t.consumers() for func in func_graphs: for input_t, placeholder in _Captures(func): if input_t is t: consumers.extend(_Consumers(placeholder, func_graphs)) return consumers def _GradientsHelper(ys, xs, grad_ys=None, name="gradients", colocate_gradients_with_ops=False, gate_gradients=False, aggregation_method=None, stop_gradients=None, unconnected_gradients=UnconnectedGradients.NONE, src_graph=None): """Implementation of gradients().""" if context.executing_eagerly(): raise RuntimeError("tf.gradients is not supported when eager execution " "is enabled. Use tf.GradientTape instead.") ys = variable_utils.convert_variables_to_tensors(_AsList(ys)) xs = [ x.handle if resource_variable_ops.is_resource_variable(x) else x for x in _AsList(xs) ] if grad_ys is not None: grad_ys = _AsList(grad_ys) # Handle CompositeTensors. if (any(isinstance(x, composite_tensor.CompositeTensor) for x in xs) or any(isinstance(y, composite_tensor.CompositeTensor) for y in ys)): flat_xs = composite_tensor_gradient.get_flat_tensors_for_gradients(xs) flat_ys = composite_tensor_gradient.get_flat_tensors_for_gradients(ys) flat_grad_ys = ( None if grad_ys is None else composite_tensor_gradient.get_flat_tensors_for_gradients(grad_ys)) flat_grads = _GradientsHelper(flat_ys, flat_xs, flat_grad_ys, name, colocate_gradients_with_ops, gate_gradients, aggregation_method, stop_gradients, unconnected_gradients, src_graph) return composite_tensor_gradient.replace_flat_tensors_for_gradients( xs, flat_grads) if src_graph is None: src_graph = ops.get_default_graph() try: unconnected_gradients = UnconnectedGradients(unconnected_gradients) except ValueError: raise ValueError( f"Unknown value for unconnected_gradients: '{unconnected_gradients}'") # If src_graph is a _FuncGraph (i.e. a function body), gather it and all # ancestor graphs. This is necessary for correctly handling captured values. func_graphs = [] curr_graph = src_graph while _IsFunction(curr_graph): func_graphs.append(curr_graph) curr_graph = curr_graph.outer_graph stop_gradients = [] if stop_gradients is None else _AsList(stop_gradients) if grad_ys is None: grad_ys = [None] * len(ys) with ops.name_scope( name, "gradients", list(ys) + list(xs) + list(stop_gradients) + list(grad_ys)) as grad_scope: # Get a uid for this call to gradients that can be used to help # cluster ops for compilation. gradient_uid = ops.get_default_graph().unique_name("uid") ys = indexed_slices.convert_n_to_tensor_or_indexed_slices(ys, name="y") xs = indexed_slices.internal_convert_n_to_tensor_or_indexed_slices( xs, name="x", as_ref=True) xs_set = object_identity.ObjectIdentitySet(xs) grad_ys = _DefaultGradYs(grad_ys, ys, colocate_gradients_with_ops, gradient_uid) # The approach we take here is as follows: Create a list of all ops in the # subgraph between the ys and xs. Visit these ops in reverse order of ids # to ensure that when we visit an op the gradients w.r.t its outputs have # been collected. Then aggregate these gradients if needed, call the op's # gradient function, and add the generated gradients to the gradients for # its input. # Initialize the pending count for ops in the connected subgraph from ys # to the xs. to_ops = [t.op for t in ys] from_ops = [t.op for t in xs] stop_gradient_ops = [t.op for t in stop_gradients] reachable_to_ops, pending_count, loop_state = _PendingCount( to_ops, from_ops, colocate_gradients_with_ops, func_graphs, xs_set) # Iterate over the collected ops. # # grads: op => list of gradients received on each output endpoint of the # op. The gradients for each endpoint are initially collected as a list. # When it is time to call the op's gradient function, for each endpoint we # aggregate the list of received gradients into a Add() Operation if there # is more than one. grads = {} # Add the initial gradients for the ys. for y, grad_y in zip(ys, grad_ys): _SetGrad(grads, y, grad_y) # Initialize queue with to_ops. queue = collections.deque() # Add the ops in 'to_ops' into the queue. to_ops_set = set() for op in to_ops: # 'ready' handles the case where one output gradient relies on # another output's gradient. ready = (pending_count[op] == 0) if ready and op not in to_ops_set and op in reachable_to_ops: to_ops_set.add(op) queue.append(op) if loop_state: loop_exits = loop_state.ProcessUnusedLoopExits(pending_count, to_ops_set) for y in loop_exits: if backprop_util.IsTrainable(y): _SetGrad(grads, y, loop_state.ZerosLikeForExit(y)) queue.append(y.op) stop_ops = _StopOps(from_ops, stop_gradient_ops, pending_count, xs_set) while queue: # generate gradient subgraph for op. op = queue.popleft() with _maybe_colocate_with(op, gradient_uid, colocate_gradients_with_ops): if loop_state: loop_state.EnterGradWhileContext(op, before=True) out_grads = _AggregatedGrads(grads, op, gradient_uid, loop_state, aggregation_method) if loop_state: loop_state.ExitGradWhileContext(op, before=True) grad_fn = None func_call = None is_partitioned_call = _IsPartitionedCall(op) # pylint: disable=protected-access is_func_call = src_graph._is_function(op.type) or is_partitioned_call # pylint: enable=protected-access has_out_grads = any( isinstance(g, tensor_lib.Tensor) or g for g in out_grads ) if has_out_grads and (op not in stop_ops): try: grad_fn = ops.get_gradient_function(op) except LookupError: if is_func_call: if is_partitioned_call: func_name = compat.as_bytes(op.get_attr("f").name) func_call = src_graph._get_function( # pylint: disable=protected-access func_name) # When a graph is imported, the FunctionDefs are not copied over # to each sub-graph so we recursively search the outer graphs # for the FunctionDef. if not func_call and hasattr(src_graph, "outer_graph"): graph = src_graph.outer_graph while graph is not None: func_call = graph._get_function(func_name) # pylint: disable=protected-access if func_call is not None: break if hasattr(graph, "outer_graph"): graph = graph.outer_graph else: break else: func_call = src_graph._get_function(op.type) # pylint: disable=protected-access # Note that __defun is not set if the graph is # imported. If it's set, we prefer to access the original # defun. func_call = getattr(op, "__defun", func_call) grad_fn = func_call.python_grad_func else: raise LookupError( "No gradient defined for operation" f"'{op.name}' (op type: {op.type}). " "In general every operation must have an associated " "`@tf.RegisterGradient` for correct autodiff, which this " "op is lacking. If you want to pretend this " "operation is a constant in your program, you may insert " "`tf.stop_gradient`. This can be useful to silence the " "error in cases where you know gradients are not needed, " "e.g. the forward pass of tf.custom_gradient. " "Please see more details in " "https://www.tensorflow.org/api_docs/python/tf/custom_gradient.") # pylint: disable=line-too-long if loop_state: loop_state.EnterGradWhileContext(op, before=False) # NOTE(skyewm): We don't support computing gradients wrt a loop variable # unless it's within the context of a single iteration (i.e. the # gradient is wrt to the loop parameter in the body function, not wrt or # through the initial value). This means if we're in a while loop # context, we should never see a switch node from this context. # pylint: disable=protected-access if (control_flow_util.IsSwitch(op) and op._control_flow_context is not None and op._control_flow_context.IsWhileContext() and op._control_flow_context == ops.get_default_graph()._get_control_flow_context()): _RaiseNoGradWrtInitialLoopValError(op, from_ops, xs_set) # pylint: enable=protected-access if (grad_fn or is_func_call) and has_out_grads: # NOTE: If _AggregatedGrads didn't compute a value for the i'th # output, it means that the cost does not depend on output[i], # therefore dC/doutput[i] is 0. for i, out_grad in enumerate(out_grads): if ( not isinstance(out_grad, tensor_lib.Tensor) and not out_grad ) and ( (not grad_fn and is_func_call) or backprop_util.IsTrainable(op.outputs[i]) ): # Only trainable outputs or outputs for a function call that # will use SymbolicGradient get a zero gradient. Gradient # functions should ignore the gradient for other outputs. # TODO(apassos) gradients of resource handles might be an # issue here because of zeros. if loop_state: out_grads[i] = loop_state.ZerosLikeV1WhileLoop(op, i) elif default_gradient.supports_default_grad(op.outputs[i]): # TODO(b/143286622): The supports_default_grad check is needed # because While op emits non-differentiable resource tensors # as outputs. Remove this check when that is not the case. out_grads[i] = control_flow_state.ZerosLike(op, i) with ops.name_scope(op.name + "_grad"): # pylint: disable=protected-access with src_graph._original_op(op): # pylint: enable=protected-access if grad_fn: # If grad_fn was found, do not use SymbolicGradient even for # functions. in_grads = _MaybeCompile(grad_scope, op, func_call, lambda: grad_fn(op, *out_grads)) else: # For function call ops, we add a 'SymbolicGradient' # node to the graph to compute gradients. in_grads = _MaybeCompile(grad_scope, op, func_call, lambda: _SymGrad(op, out_grads)) in_grads = _AsList(in_grads) _VerifyGeneratedGradients(in_grads, op) if gate_gradients and len([x for x in in_grads if x is not None]) > 1: with ops.device(None): with ops._colocate_with_for_gradient( # pylint: disable=protected-access None, gradient_uid, ignore_existing=True): in_grads = control_flow_ops.tuple(in_grads) _LogOpGradients(op, out_grads, in_grads) else: # If no grad_fn is defined or none of out_grads is available, # just propagate a list of None backwards. in_grads = [None] * len(_Inputs(op, xs_set)) # Note: we don't filter out eager inputs here because the inputs need to # line up with in_grads. for i, (t_in, in_grad) in enumerate(zip(_Inputs(op, xs_set), in_grads)): if in_grad is not None: if (isinstance(in_grad, tensor_lib.Tensor) and t_in.dtype != dtypes.resource): try: in_grad.set_shape(t_in.get_shape()) except ValueError: raise ValueError( "Incompatible shapes between op input and calculated " f"input gradient. Forward operation: {op.name}. Input " f"index: {i}. Original input shape: {t_in.shape}. " f"Calculated input gradient shape: {in_grad.shape}") if not isinstance(t_in, ops.EagerTensor): _SetGrad(grads, t_in, in_grad) if loop_state: loop_state.ExitGradWhileContext(op, before=False) # Update pending count for the inputs of op and enqueue ready ops. _UpdatePendingAndEnqueueReady(grads, op, queue, pending_count, loop_state, xs_set) if loop_state: loop_state.PostProcessing() return [_GetGrad(grads, x, unconnected_gradients) for x in xs] def _HasAnyNotNoneGrads(grads, op: ops.Operation): """Return true iff op has real gradient.""" out_grads = _GetGrads(grads, op) for out_grad in out_grads: if isinstance(out_grad, (tensor_lib.Tensor, indexed_slices.IndexedSlices)): return True if out_grad and isinstance(out_grad, collections_abc.Sequence): if any(g is not None for g in out_grad): return True return False def _UpdatePendingAndEnqueueReady( grads, op: ops.Operation, queue, pending_count, loop_state, xs_set ): """Update pending count for the inputs of op and enqueue ready ops.""" for x in _NonEagerInputs(op, xs_set): pending_count[x.op] -= 1 ready = pending_count[x.op] == 0 if loop_state and not ready: ready = pending_count[x.op] > 0 and control_flow_util.IsLoopSwitch(x.op) if ready: if control_flow_util.IsLoopExit(x.op): # if x is an exit without real gradient, defer processing them. grad_state = loop_state.GetGradState(x.op, before=False) grad_state.deferred_exits.append(x) grad_state.pending_exits_count -= 1 if grad_state.pending_exits_count == 0: # We now have all the exits so process them. has_not_none_grad = False for y in grad_state.deferred_exits: if _HasAnyNotNoneGrads(grads, y.op): has_not_none_grad = True queue.append(y.op) else: grad_state.unused_exits.append(y) if has_not_none_grad: # For an unused exit, if it has trainable outputs, backprop # a zero gradient. Otherwise, just ignore it. for y in grad_state.unused_exits: if backprop_util.IsTrainable(y): _SetGrad(grads, y, loop_state.ZerosLikeForExit(y)) queue.append(y.op) else: # All exits are "unused" so use None as gradient. for y in grad_state.unused_exits: queue.append(y.op) else: queue.append(x.op) def _SetGrad(grads, t, grad): """Sets gradient "grad" in "grads" for tensor "t".""" op = t.op op_grads = grads.get(op) if not op_grads: op_grads = [[] for _ in range(len(op.outputs))] grads[op] = op_grads t_grads = op_grads[t.value_index] if isinstance(t_grads, list): t_grads.append(grad) else: assert control_flow_util.IsLoopSwitch(op) op_grads[t.value_index] = grad def _ZerosLike(t): t_dtype = default_gradient.get_zeros_dtype(t) if t.dtype == dtypes.resource: return array_ops.zeros( resource_variable_ops.variable_shape(t), dtype=t_dtype) else: return array_ops.zeros_like(t, dtype=t_dtype) def _GetGrad(grads, t, unconnected_gradients): """Gets gradient for tensor "t".""" op = t.op op_grads = grads.get(op) if not op_grads: if unconnected_gradients == UnconnectedGradients.ZERO: return _ZerosLike(t) elif unconnected_gradients == UnconnectedGradients.NONE: return None else: raise ValueError( f"Unknown value for unconnected_gradients: '{unconnected_gradients}'") t_grad = op_grads[t.value_index] # This can happen if some other output of `t.op` has non-None grad. if unconnected_gradients == UnconnectedGradients.ZERO and t_grad is None: return _ZerosLike(t) assert not isinstance( t_grad, list), ("gradients list should have been aggregated by now.") return t_grad def _GetGrads(grads, op: ops.Operation): """Gets all gradients for op.""" if op in grads: return grads[op] else: return [[] for _ in range(len(op.outputs))] def _AccumulatorShape(inputs): shape = tensor_shape.unknown_shape() for i in inputs: if isinstance(i, tensor_lib.Tensor): shape = shape.merge_with(i.get_shape()) return shape def _LogOpGradients(op: ops.Operation, out_grads, in_grads): """Log the in and out grads of an op.""" logging.vlog(1, "Gradient for '" + op.name + "'") def _FilterGrad(x): if x is None: return False if isinstance(x, (list, tuple)): return bool(x) else: return True logging.vlog(1, " in --> %s", ", ".join(x.name for x in out_grads if _FilterGrad(x))) logging.vlog(1, " out --> %s", ", ".join(x.name for x in in_grads if _FilterGrad(x))) def _MultiDeviceAddN(tensor_list, gradient_uid): """Adds tensors from potentially multiple devices.""" # Basic function structure comes from control_flow_ops.group(). # Sort tensors according to their devices. tensors_on_device = collections.defaultdict(lambda: []) for tensor in tensor_list: tensors_on_device[tensor.device].append(tensor) # For each device, add the tensors on that device first. # Then gather the partial sums from multiple devices. # TODO(sjhwang): Create hierarchical aggregation tree as pbar's suggestion. # E.g., aggregate per GPU, then per task, and so on. summands = [] def DeviceKey(dev): return "" if dev is None else dev for dev in sorted(tensors_on_device, key=DeviceKey): tensors = tensors_on_device[dev] with ops._colocate_with_for_gradient( # pylint: disable=protected-access tensors[0].op, gradient_uid, ignore_existing=True): summands.append(math_ops.add_n(tensors)) return math_ops.add_n(summands) @tf_export("AggregationMethod") class AggregationMethod: """A class listing aggregation methods used to combine gradients. Computing partial derivatives can require aggregating gradient contributions. This class lists the various methods that can be used to combine gradients in the graph. The following aggregation methods are part of the stable API for aggregating gradients: * `ADD_N`: All of the gradient terms are summed as part of one operation using the "AddN" op (see `tf.add_n`). This method has the property that all gradients must be ready and buffered separately in memory before any aggregation is performed. * `DEFAULT`: The system-chosen default aggregation method. The following aggregation methods are experimental and may not be supported in future releases: * `EXPERIMENTAL_TREE`: Gradient terms are summed in pairs using the "AddN" op. This method of summing gradients may reduce performance, but it can improve memory utilization because the gradients can be released earlier. * `EXPERIMENTAL_ACCUMULATE_N`: Same as `EXPERIMENTAL_TREE`. Example usage when computing gradient: >>> @tf.function ... def example(): ... x = tf.constant(1.0) ... y = x * 2.0 ... z = y + y + y + y ... return tf.gradients(z, [x, y], ... aggregation_method=tf.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N) >>> example() [, ] """ ADD_N = 0 DEFAULT = ADD_N # The following are experimental and may not be supported in future releases. EXPERIMENTAL_TREE = 1 EXPERIMENTAL_ACCUMULATE_N = 2 # An alias for EXPERIMENTAL_ADD_N = 1 def _AggregatedGrads(grads, op, gradient_uid, loop_state, aggregation_method=None): """Get the aggregated gradients for op. Args: grads: The map of memoized gradients. op: The op to get gradients for. gradient_uid: A unique identifier within the graph indicating which invocation of gradients is being executed. Used to cluster ops for compilation. loop_state: An object for maintaining the state of the while loops in the graph. It is of type ControlFlowState. None if the graph contains no while loops. aggregation_method: Specifies the method used to combine gradient terms. Accepted values are constants defined in the class `AggregationMethod`. Returns: A list of gradients, one per each output of `op`. If the gradients for a particular output is a list, this function aggregates it before returning. Raises: TypeError: if the incoming grads are not Tensors or IndexedSlices. ValueError: if the arguments are invalid. """ if aggregation_method is None: aggregation_method = AggregationMethod.DEFAULT valid_aggregation_methods = [ AggregationMethod.ADD_N, AggregationMethod.EXPERIMENTAL_TREE, AggregationMethod.EXPERIMENTAL_ACCUMULATE_N] if aggregation_method not in valid_aggregation_methods: raise ValueError( f"Invalid `aggregation_method` specified {aggregation_method}. " f"Accepted values are {valid_aggregation_methods}.") out_grads = _GetGrads(grads, op) for i, out_grad in enumerate(out_grads): if loop_state: if isinstance( out_grad, (tensor_lib.Tensor, indexed_slices.IndexedSlices)): assert control_flow_util.IsLoopSwitch(op) continue # Grads have to be Tensors or IndexedSlices if (isinstance(out_grad, collections_abc.Sequence) and not all( isinstance(g, (tensor_lib.Tensor, indexed_slices.IndexedSlices)) for g in out_grad if g is not None)): raise TypeError(f"Invalid gradient {out_grad} [index = {i}]. Gradients " "have to be either all Tensors or all IndexedSlices") # Aggregate multiple gradients, and convert [] to None. if out_grad: if len(out_grad) < 2: used = "nop" out_grads[i] = out_grad[0] elif all( isinstance(g, tensor_lib.Tensor) for g in out_grad if g is not None): tensor_shape = _AccumulatorShape(out_grad) if aggregation_method in [ AggregationMethod.EXPERIMENTAL_TREE, AggregationMethod.EXPERIMENTAL_ACCUMULATE_N ]: # Aggregate all gradients by doing pairwise sums: this may # reduce performance, but it can improve memory because the # gradients can be released earlier. # # TODO(vrv): Consider replacing this with a version of # tf.AddN() that eagerly frees its inputs as soon as they are # ready, so the order of this tree does not become a problem. used = "tree" with ops.name_scope(op.name + "_gradient_sum"): running_sum = out_grad[0] for grad in out_grad[1:]: running_sum = math_ops.add_n([running_sum, grad]) out_grads[i] = running_sum else: used = "add_n" out_grads[i] = _MultiDeviceAddN(out_grad, gradient_uid) logging.vlog(2, " _AggregatedGrads %d x %s using %s", len(out_grad), tensor_shape, used) else: out_grads[i] = backprop_util.AggregateIndexedSlicesGradients(out_grad) # pylint: disable=protected-access else: # not out_grad # out_grads[i] is [], thus its aggregation is simply None. out_grads[i] = None return out_grads # Represents the output of TFE_Py_TapeSetPossibleGradientTypes. Real enums are # unfortunately too slow to use here. POSSIBLE_GRADIENT_TYPES_NONE = 0 POSSIBLE_GRADIENT_TYPES_FIRST_ORDER = 1 POSSIBLE_GRADIENT_TYPES_HIGHER_ORDER = 2 def PossibleTapeGradientTypes(tensors): """Determines whether and how `args` may require tape gradients.""" return pywrap_tfe.TFE_Py_TapeSetPossibleGradientTypes(tensors)