# ===- cindex.py - Python Indexing Library Bindings -----------*- python -*--===# # # Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # # ===------------------------------------------------------------------------===# r""" Clang Indexing Library Bindings =============================== This module provides an interface to the Clang indexing library. It is a low-level interface to the indexing library which attempts to match the Clang API directly while also being "pythonic". Notable differences from the C API are: * string results are returned as Python strings, not CXString objects. * null cursors are translated to None. * access to child cursors is done via iteration, not visitation. The major indexing objects are: Index The top-level object which manages some global library state. TranslationUnit High-level object encapsulating the AST for a single translation unit. These can be loaded from .ast files or parsed on the fly. Cursor Generic object for representing a node in the AST. SourceRange, SourceLocation, and File Objects representing information about the input source. Most object information is exposed using properties, when the underlying API call is efficient. """ from __future__ import absolute_import, division, print_function # TODO # ==== # # o API support for invalid translation units. Currently we can't even get the # diagnostics on failure because they refer to locations in an object that # will have been invalidated. # # o fix memory management issues (currently client must hold on to index and # translation unit, or risk crashes). # # o expose code completion APIs. # # o cleanup ctypes wrapping, would be nice to separate the ctypes details more # clearly, and hide from the external interface (i.e., help(cindex)). # # o implement additional SourceLocation, SourceRange, and File methods. from ctypes import * import clang.enumerations import collections.abc import os # Python 3 strings are unicode, translate them to/from utf8 for C-interop. class c_interop_string(c_char_p): def __init__(self, p=None): if p is None: p = "" if isinstance(p, str): p = p.encode("utf8") super(c_char_p, self).__init__(p) def __str__(self): return self.value @property def value(self): if super(c_char_p, self).value is None: return None return super(c_char_p, self).value.decode("utf8") @classmethod def from_param(cls, param): if isinstance(param, str): return cls(param) if isinstance(param, bytes): return cls(param) if param is None: # Support passing null to C functions expecting char arrays return None raise TypeError( "Cannot convert '{}' to '{}'".format(type(param).__name__, cls.__name__) ) @staticmethod def to_python_string(x, *args): return x.value def b(x): if isinstance(x, bytes): return x return x.encode("utf8") # ctypes doesn't implicitly convert c_void_p to the appropriate wrapper # object. This is a problem, because it means that from_parameter will see an # integer and pass the wrong value on platforms where int != void*. Work around # this by marshalling object arguments as void**. c_object_p = POINTER(c_void_p) callbacks = {} ### Exception Classes ### class TranslationUnitLoadError(Exception): """Represents an error that occurred when loading a TranslationUnit. This is raised in the case where a TranslationUnit could not be instantiated due to failure in the libclang library. FIXME: Make libclang expose additional error information in this scenario. """ pass class TranslationUnitSaveError(Exception): """Represents an error that occurred when saving a TranslationUnit. Each error has associated with it an enumerated value, accessible under e.save_error. Consumers can compare the value with one of the ERROR_ constants in this class. """ # Indicates that an unknown error occurred. This typically indicates that # I/O failed during save. ERROR_UNKNOWN = 1 # Indicates that errors during translation prevented saving. The errors # should be available via the TranslationUnit's diagnostics. ERROR_TRANSLATION_ERRORS = 2 # Indicates that the translation unit was somehow invalid. ERROR_INVALID_TU = 3 def __init__(self, enumeration, message): assert isinstance(enumeration, int) if enumeration < 1 or enumeration > 3: raise Exception( "Encountered undefined TranslationUnit save error " "constant: %d. Please file a bug to have this " "value supported." % enumeration ) self.save_error = enumeration Exception.__init__(self, "Error %d: %s" % (enumeration, message)) ### Structures and Utility Classes ### class CachedProperty: """Decorator that lazy-loads the value of a property. The first time the property is accessed, the original property function is executed. The value it returns is set as the new value of that instance's property, replacing the original method. """ def __init__(self, wrapped): self.wrapped = wrapped try: self.__doc__ = wrapped.__doc__ except: pass def __get__(self, instance, instance_type=None): if instance is None: return self value = self.wrapped(instance) setattr(instance, self.wrapped.__name__, value) return value class _CXString(Structure): """Helper for transforming CXString results.""" _fields_ = [("spelling", c_char_p), ("free", c_int)] def __del__(self): conf.lib.clang_disposeString(self) @staticmethod def from_result(res, fn=None, args=None): assert isinstance(res, _CXString) return conf.lib.clang_getCString(res) class SourceLocation(Structure): """ A SourceLocation represents a particular location within a source file. """ _fields_ = [("ptr_data", c_void_p * 2), ("int_data", c_uint)] _data = None def _get_instantiation(self): if self._data is None: f, l, c, o = c_object_p(), c_uint(), c_uint(), c_uint() conf.lib.clang_getInstantiationLocation( self, byref(f), byref(l), byref(c), byref(o) ) if f: f = File(f) else: f = None self._data = (f, int(l.value), int(c.value), int(o.value)) return self._data @staticmethod def from_position(tu, file, line, column): """ Retrieve the source location associated with a given file/line/column in a particular translation unit. """ return conf.lib.clang_getLocation(tu, file, line, column) @staticmethod def from_offset(tu, file, offset): """Retrieve a SourceLocation from a given character offset. tu -- TranslationUnit file belongs to file -- File instance to obtain offset from offset -- Integer character offset within file """ return conf.lib.clang_getLocationForOffset(tu, file, offset) @property def file(self): """Get the file represented by this source location.""" return self._get_instantiation()[0] @property def line(self): """Get the line represented by this source location.""" return self._get_instantiation()[1] @property def column(self): """Get the column represented by this source location.""" return self._get_instantiation()[2] @property def offset(self): """Get the file offset represented by this source location.""" return self._get_instantiation()[3] @property def is_in_system_header(self): """Returns true if the given source location is in a system header.""" return conf.lib.clang_Location_isInSystemHeader(self) def __eq__(self, other): return conf.lib.clang_equalLocations(self, other) def __ne__(self, other): return not self.__eq__(other) def __repr__(self): if self.file: filename = self.file.name else: filename = None return "" % ( filename, self.line, self.column, ) class SourceRange(Structure): """ A SourceRange describes a range of source locations within the source code. """ _fields_ = [ ("ptr_data", c_void_p * 2), ("begin_int_data", c_uint), ("end_int_data", c_uint), ] # FIXME: Eliminate this and make normal constructor? Requires hiding ctypes # object. @staticmethod def from_locations(start, end): return conf.lib.clang_getRange(start, end) @property def start(self): """ Return a SourceLocation representing the first character within a source range. """ return conf.lib.clang_getRangeStart(self) @property def end(self): """ Return a SourceLocation representing the last character within a source range. """ return conf.lib.clang_getRangeEnd(self) def __eq__(self, other): return conf.lib.clang_equalRanges(self, other) def __ne__(self, other): return not self.__eq__(other) def __contains__(self, other): """Useful to detect the Token/Lexer bug""" if not isinstance(other, SourceLocation): return False if other.file is None and self.start.file is None: pass elif ( self.start.file.name != other.file.name or other.file.name != self.end.file.name ): # same file name return False # same file, in between lines if self.start.line < other.line < self.end.line: return True elif self.start.line == other.line: # same file first line if self.start.column <= other.column: return True elif other.line == self.end.line: # same file last line if other.column <= self.end.column: return True return False def __repr__(self): return "" % (self.start, self.end) class Diagnostic: """ A Diagnostic is a single instance of a Clang diagnostic. It includes the diagnostic severity, the message, the location the diagnostic occurred, as well as additional source ranges and associated fix-it hints. """ Ignored = 0 Note = 1 Warning = 2 Error = 3 Fatal = 4 DisplaySourceLocation = 0x01 DisplayColumn = 0x02 DisplaySourceRanges = 0x04 DisplayOption = 0x08 DisplayCategoryId = 0x10 DisplayCategoryName = 0x20 _FormatOptionsMask = 0x3F def __init__(self, ptr): self.ptr = ptr def __del__(self): conf.lib.clang_disposeDiagnostic(self) @property def severity(self): return conf.lib.clang_getDiagnosticSeverity(self) @property def location(self): return conf.lib.clang_getDiagnosticLocation(self) @property def spelling(self): return conf.lib.clang_getDiagnosticSpelling(self) @property def ranges(self): class RangeIterator: def __init__(self, diag): self.diag = diag def __len__(self): return int(conf.lib.clang_getDiagnosticNumRanges(self.diag)) def __getitem__(self, key): if key >= len(self): raise IndexError return conf.lib.clang_getDiagnosticRange(self.diag, key) return RangeIterator(self) @property def fixits(self): class FixItIterator: def __init__(self, diag): self.diag = diag def __len__(self): return int(conf.lib.clang_getDiagnosticNumFixIts(self.diag)) def __getitem__(self, key): range = SourceRange() value = conf.lib.clang_getDiagnosticFixIt(self.diag, key, byref(range)) if len(value) == 0: raise IndexError return FixIt(range, value) return FixItIterator(self) @property def children(self): class ChildDiagnosticsIterator: def __init__(self, diag): self.diag_set = conf.lib.clang_getChildDiagnostics(diag) def __len__(self): return int(conf.lib.clang_getNumDiagnosticsInSet(self.diag_set)) def __getitem__(self, key): diag = conf.lib.clang_getDiagnosticInSet(self.diag_set, key) if not diag: raise IndexError return Diagnostic(diag) return ChildDiagnosticsIterator(self) @property def category_number(self): """The category number for this diagnostic or 0 if unavailable.""" return conf.lib.clang_getDiagnosticCategory(self) @property def category_name(self): """The string name of the category for this diagnostic.""" return conf.lib.clang_getDiagnosticCategoryText(self) @property def option(self): """The command-line option that enables this diagnostic.""" return conf.lib.clang_getDiagnosticOption(self, None) @property def disable_option(self): """The command-line option that disables this diagnostic.""" disable = _CXString() conf.lib.clang_getDiagnosticOption(self, byref(disable)) return _CXString.from_result(disable) def format(self, options=None): """ Format this diagnostic for display. The options argument takes Diagnostic.Display* flags, which can be combined using bitwise OR. If the options argument is not provided, the default display options will be used. """ if options is None: options = conf.lib.clang_defaultDiagnosticDisplayOptions() if options & ~Diagnostic._FormatOptionsMask: raise ValueError("Invalid format options") return conf.lib.clang_formatDiagnostic(self, options) def __repr__(self): return "" % ( self.severity, self.location, self.spelling, ) def __str__(self): return self.format() def from_param(self): return self.ptr class FixIt: """ A FixIt represents a transformation to be applied to the source to "fix-it". The fix-it should be applied by replacing the given source range with the given value. """ def __init__(self, range, value): self.range = range self.value = value def __repr__(self): return "" % (self.range, self.value) class TokenGroup: """Helper class to facilitate token management. Tokens are allocated from libclang in chunks. They must be disposed of as a collective group. One purpose of this class is for instances to represent groups of allocated tokens. Each token in a group contains a reference back to an instance of this class. When all tokens from a group are garbage collected, it allows this class to be garbage collected. When this class is garbage collected, it calls the libclang destructor which invalidates all tokens in the group. You should not instantiate this class outside of this module. """ def __init__(self, tu, memory, count): self._tu = tu self._memory = memory self._count = count def __del__(self): conf.lib.clang_disposeTokens(self._tu, self._memory, self._count) @staticmethod def get_tokens(tu, extent): """Helper method to return all tokens in an extent. This functionality is needed multiple places in this module. We define it here because it seems like a logical place. """ tokens_memory = POINTER(Token)() tokens_count = c_uint() conf.lib.clang_tokenize(tu, extent, byref(tokens_memory), byref(tokens_count)) count = int(tokens_count.value) # If we get no tokens, no memory was allocated. Be sure not to return # anything and potentially call a destructor on nothing. if count < 1: return tokens_array = cast(tokens_memory, POINTER(Token * count)).contents token_group = TokenGroup(tu, tokens_memory, tokens_count) for i in range(0, count): token = Token() token.int_data = tokens_array[i].int_data token.ptr_data = tokens_array[i].ptr_data token._tu = tu token._group = token_group yield token class TokenKind: """Describes a specific type of a Token.""" _value_map = {} # int -> TokenKind def __init__(self, value, name): """Create a new TokenKind instance from a numeric value and a name.""" self.value = value self.name = name def __repr__(self): return "TokenKind.%s" % (self.name,) @staticmethod def from_value(value): """Obtain a registered TokenKind instance from its value.""" result = TokenKind._value_map.get(value, None) if result is None: raise ValueError("Unknown TokenKind: %d" % value) return result @staticmethod def register(value, name): """Register a new TokenKind enumeration. This should only be called at module load time by code within this package. """ if value in TokenKind._value_map: raise ValueError("TokenKind already registered: %d" % value) kind = TokenKind(value, name) TokenKind._value_map[value] = kind setattr(TokenKind, name, kind) ### Cursor Kinds ### class BaseEnumeration: """ Common base class for named enumerations held in sync with Index.h values. Subclasses must define their own _kinds and _name_map members, as: _kinds = [] _name_map = None These values hold the per-subclass instances and value-to-name mappings, respectively. """ def __init__(self, value): if value >= len(self.__class__._kinds): self.__class__._kinds += [None] * (value - len(self.__class__._kinds) + 1) if self.__class__._kinds[value] is not None: raise ValueError( "{0} value {1} already loaded".format(str(self.__class__), value) ) self.value = value self.__class__._kinds[value] = self self.__class__._name_map = None def from_param(self): return self.value @property def name(self): """Get the enumeration name of this cursor kind.""" if self._name_map is None: self._name_map = {} for key, value in self.__class__.__dict__.items(): if isinstance(value, self.__class__): self._name_map[value] = key return self._name_map[self] @classmethod def from_id(cls, id): if id >= len(cls._kinds) or cls._kinds[id] is None: raise ValueError("Unknown template argument kind %d" % id) return cls._kinds[id] def __repr__(self): return "%s.%s" % ( self.__class__, self.name, ) class CursorKind(BaseEnumeration): """ A CursorKind describes the kind of entity that a cursor points to. """ # The required BaseEnumeration declarations. _kinds = [] _name_map = None @staticmethod def get_all_kinds(): """Return all CursorKind enumeration instances.""" return [x for x in CursorKind._kinds if not x is None] def is_declaration(self): """Test if this is a declaration kind.""" return conf.lib.clang_isDeclaration(self) def is_reference(self): """Test if this is a reference kind.""" return conf.lib.clang_isReference(self) def is_expression(self): """Test if this is an expression kind.""" return conf.lib.clang_isExpression(self) def is_statement(self): """Test if this is a statement kind.""" return conf.lib.clang_isStatement(self) def is_attribute(self): """Test if this is an attribute kind.""" return conf.lib.clang_isAttribute(self) def is_invalid(self): """Test if this is an invalid kind.""" return conf.lib.clang_isInvalid(self) def is_translation_unit(self): """Test if this is a translation unit kind.""" return conf.lib.clang_isTranslationUnit(self) def is_preprocessing(self): """Test if this is a preprocessing kind.""" return conf.lib.clang_isPreprocessing(self) def is_unexposed(self): """Test if this is an unexposed kind.""" return conf.lib.clang_isUnexposed(self) def __repr__(self): return "CursorKind.%s" % (self.name,) ### # Declaration Kinds # A declaration whose specific kind is not exposed via this interface. # # Unexposed declarations have the same operations as any other kind of # declaration; one can extract their location information, spelling, find their # definitions, etc. However, the specific kind of the declaration is not # reported. CursorKind.UNEXPOSED_DECL = CursorKind(1) # A C or C++ struct. CursorKind.STRUCT_DECL = CursorKind(2) # A C or C++ union. CursorKind.UNION_DECL = CursorKind(3) # A C++ class. CursorKind.CLASS_DECL = CursorKind(4) # An enumeration. CursorKind.ENUM_DECL = CursorKind(5) # A field (in C) or non-static data member (in C++) in a struct, union, or C++ # class. CursorKind.FIELD_DECL = CursorKind(6) # An enumerator constant. CursorKind.ENUM_CONSTANT_DECL = CursorKind(7) # A function. CursorKind.FUNCTION_DECL = CursorKind(8) # A variable. CursorKind.VAR_DECL = CursorKind(9) # A function or method parameter. CursorKind.PARM_DECL = CursorKind(10) # An Objective-C @interface. CursorKind.OBJC_INTERFACE_DECL = CursorKind(11) # An Objective-C @interface for a category. CursorKind.OBJC_CATEGORY_DECL = CursorKind(12) # An Objective-C @protocol declaration. CursorKind.OBJC_PROTOCOL_DECL = CursorKind(13) # An Objective-C @property declaration. CursorKind.OBJC_PROPERTY_DECL = CursorKind(14) # An Objective-C instance variable. CursorKind.OBJC_IVAR_DECL = CursorKind(15) # An Objective-C instance method. CursorKind.OBJC_INSTANCE_METHOD_DECL = CursorKind(16) # An Objective-C class method. CursorKind.OBJC_CLASS_METHOD_DECL = CursorKind(17) # An Objective-C @implementation. CursorKind.OBJC_IMPLEMENTATION_DECL = CursorKind(18) # An Objective-C @implementation for a category. CursorKind.OBJC_CATEGORY_IMPL_DECL = CursorKind(19) # A typedef. CursorKind.TYPEDEF_DECL = CursorKind(20) # A C++ class method. CursorKind.CXX_METHOD = CursorKind(21) # A C++ namespace. CursorKind.NAMESPACE = CursorKind(22) # A linkage specification, e.g. 'extern "C"'. CursorKind.LINKAGE_SPEC = CursorKind(23) # A C++ constructor. CursorKind.CONSTRUCTOR = CursorKind(24) # A C++ destructor. CursorKind.DESTRUCTOR = CursorKind(25) # A C++ conversion function. CursorKind.CONVERSION_FUNCTION = CursorKind(26) # A C++ template type parameter CursorKind.TEMPLATE_TYPE_PARAMETER = CursorKind(27) # A C++ non-type template parameter. CursorKind.TEMPLATE_NON_TYPE_PARAMETER = CursorKind(28) # A C++ template template parameter. CursorKind.TEMPLATE_TEMPLATE_PARAMETER = CursorKind(29) # A C++ function template. CursorKind.FUNCTION_TEMPLATE = CursorKind(30) # A C++ class template. CursorKind.CLASS_TEMPLATE = CursorKind(31) # A C++ class template partial specialization. CursorKind.CLASS_TEMPLATE_PARTIAL_SPECIALIZATION = CursorKind(32) # A C++ namespace alias declaration. CursorKind.NAMESPACE_ALIAS = CursorKind(33) # A C++ using directive CursorKind.USING_DIRECTIVE = CursorKind(34) # A C++ using declaration CursorKind.USING_DECLARATION = CursorKind(35) # A Type alias decl. CursorKind.TYPE_ALIAS_DECL = CursorKind(36) # A Objective-C synthesize decl CursorKind.OBJC_SYNTHESIZE_DECL = CursorKind(37) # A Objective-C dynamic decl CursorKind.OBJC_DYNAMIC_DECL = CursorKind(38) # A C++ access specifier decl. CursorKind.CXX_ACCESS_SPEC_DECL = CursorKind(39) ### # Reference Kinds CursorKind.OBJC_SUPER_CLASS_REF = CursorKind(40) CursorKind.OBJC_PROTOCOL_REF = CursorKind(41) CursorKind.OBJC_CLASS_REF = CursorKind(42) # A reference to a type declaration. # # A type reference occurs anywhere where a type is named but not # declared. For example, given: # typedef unsigned size_type; # size_type size; # # The typedef is a declaration of size_type (CXCursor_TypedefDecl), # while the type of the variable "size" is referenced. The cursor # referenced by the type of size is the typedef for size_type. CursorKind.TYPE_REF = CursorKind(43) CursorKind.CXX_BASE_SPECIFIER = CursorKind(44) # A reference to a class template, function template, template # template parameter, or class template partial specialization. CursorKind.TEMPLATE_REF = CursorKind(45) # A reference to a namespace or namepsace alias. CursorKind.NAMESPACE_REF = CursorKind(46) # A reference to a member of a struct, union, or class that occurs in # some non-expression context, e.g., a designated initializer. CursorKind.MEMBER_REF = CursorKind(47) # A reference to a labeled statement. CursorKind.LABEL_REF = CursorKind(48) # A reference to a set of overloaded functions or function templates # that has not yet been resolved to a specific function or function template. CursorKind.OVERLOADED_DECL_REF = CursorKind(49) # A reference to a variable that occurs in some non-expression # context, e.g., a C++ lambda capture list. CursorKind.VARIABLE_REF = CursorKind(50) ### # Invalid/Error Kinds CursorKind.INVALID_FILE = CursorKind(70) CursorKind.NO_DECL_FOUND = CursorKind(71) CursorKind.NOT_IMPLEMENTED = CursorKind(72) CursorKind.INVALID_CODE = CursorKind(73) ### # Expression Kinds # An expression whose specific kind is not exposed via this interface. # # Unexposed expressions have the same operations as any other kind of # expression; one can extract their location information, spelling, children, # etc. However, the specific kind of the expression is not reported. CursorKind.UNEXPOSED_EXPR = CursorKind(100) # An expression that refers to some value declaration, such as a function, # variable, or enumerator. CursorKind.DECL_REF_EXPR = CursorKind(101) # An expression that refers to a member of a struct, union, class, Objective-C # class, etc. CursorKind.MEMBER_REF_EXPR = CursorKind(102) # An expression that calls a function. CursorKind.CALL_EXPR = CursorKind(103) # An expression that sends a message to an Objective-C object or class. CursorKind.OBJC_MESSAGE_EXPR = CursorKind(104) # An expression that represents a block literal. CursorKind.BLOCK_EXPR = CursorKind(105) # An integer literal. CursorKind.INTEGER_LITERAL = CursorKind(106) # A floating point number literal. CursorKind.FLOATING_LITERAL = CursorKind(107) # An imaginary number literal. CursorKind.IMAGINARY_LITERAL = CursorKind(108) # A string literal. CursorKind.STRING_LITERAL = CursorKind(109) # A character literal. CursorKind.CHARACTER_LITERAL = CursorKind(110) # A parenthesized expression, e.g. "(1)". # # This AST node is only formed if full location information is requested. CursorKind.PAREN_EXPR = CursorKind(111) # This represents the unary-expression's (except sizeof and # alignof). CursorKind.UNARY_OPERATOR = CursorKind(112) # [C99 6.5.2.1] Array Subscripting. CursorKind.ARRAY_SUBSCRIPT_EXPR = CursorKind(113) # A builtin binary operation expression such as "x + y" or # "x <= y". CursorKind.BINARY_OPERATOR = CursorKind(114) # Compound assignment such as "+=". CursorKind.COMPOUND_ASSIGNMENT_OPERATOR = CursorKind(115) # The ?: ternary operator. CursorKind.CONDITIONAL_OPERATOR = CursorKind(116) # An explicit cast in C (C99 6.5.4) or a C-style cast in C++ # (C++ [expr.cast]), which uses the syntax (Type)expr. # # For example: (int)f. CursorKind.CSTYLE_CAST_EXPR = CursorKind(117) # [C99 6.5.2.5] CursorKind.COMPOUND_LITERAL_EXPR = CursorKind(118) # Describes an C or C++ initializer list. CursorKind.INIT_LIST_EXPR = CursorKind(119) # The GNU address of label extension, representing &&label. CursorKind.ADDR_LABEL_EXPR = CursorKind(120) # This is the GNU Statement Expression extension: ({int X=4; X;}) CursorKind.StmtExpr = CursorKind(121) # Represents a C11 generic selection. CursorKind.GENERIC_SELECTION_EXPR = CursorKind(122) # Implements the GNU __null extension, which is a name for a null # pointer constant that has integral type (e.g., int or long) and is the same # size and alignment as a pointer. # # The __null extension is typically only used by system headers, which define # NULL as __null in C++ rather than using 0 (which is an integer that may not # match the size of a pointer). CursorKind.GNU_NULL_EXPR = CursorKind(123) # C++'s static_cast<> expression. CursorKind.CXX_STATIC_CAST_EXPR = CursorKind(124) # C++'s dynamic_cast<> expression. CursorKind.CXX_DYNAMIC_CAST_EXPR = CursorKind(125) # C++'s reinterpret_cast<> expression. CursorKind.CXX_REINTERPRET_CAST_EXPR = CursorKind(126) # C++'s const_cast<> expression. CursorKind.CXX_CONST_CAST_EXPR = CursorKind(127) # Represents an explicit C++ type conversion that uses "functional" # notion (C++ [expr.type.conv]). # # Example: # \code # x = int(0.5); # \endcode CursorKind.CXX_FUNCTIONAL_CAST_EXPR = CursorKind(128) # A C++ typeid expression (C++ [expr.typeid]). CursorKind.CXX_TYPEID_EXPR = CursorKind(129) # [C++ 2.13.5] C++ Boolean Literal. CursorKind.CXX_BOOL_LITERAL_EXPR = CursorKind(130) # [C++0x 2.14.7] C++ Pointer Literal. CursorKind.CXX_NULL_PTR_LITERAL_EXPR = CursorKind(131) # Represents the "this" expression in C++ CursorKind.CXX_THIS_EXPR = CursorKind(132) # [C++ 15] C++ Throw Expression. # # This handles 'throw' and 'throw' assignment-expression. When # assignment-expression isn't present, Op will be null. CursorKind.CXX_THROW_EXPR = CursorKind(133) # A new expression for memory allocation and constructor calls, e.g: # "new CXXNewExpr(foo)". CursorKind.CXX_NEW_EXPR = CursorKind(134) # A delete expression for memory deallocation and destructor calls, # e.g. "delete[] pArray". CursorKind.CXX_DELETE_EXPR = CursorKind(135) # Represents a unary expression. CursorKind.CXX_UNARY_EXPR = CursorKind(136) # ObjCStringLiteral, used for Objective-C string literals i.e. "foo". CursorKind.OBJC_STRING_LITERAL = CursorKind(137) # ObjCEncodeExpr, used for in Objective-C. CursorKind.OBJC_ENCODE_EXPR = CursorKind(138) # ObjCSelectorExpr used for in Objective-C. CursorKind.OBJC_SELECTOR_EXPR = CursorKind(139) # Objective-C's protocol expression. CursorKind.OBJC_PROTOCOL_EXPR = CursorKind(140) # An Objective-C "bridged" cast expression, which casts between # Objective-C pointers and C pointers, transferring ownership in the process. # # \code # NSString *str = (__bridge_transfer NSString *)CFCreateString(); # \endcode CursorKind.OBJC_BRIDGE_CAST_EXPR = CursorKind(141) # Represents a C++0x pack expansion that produces a sequence of # expressions. # # A pack expansion expression contains a pattern (which itself is an # expression) followed by an ellipsis. For example: CursorKind.PACK_EXPANSION_EXPR = CursorKind(142) # Represents an expression that computes the length of a parameter # pack. CursorKind.SIZE_OF_PACK_EXPR = CursorKind(143) # Represents a C++ lambda expression that produces a local function # object. # # \code # void abssort(float *x, unsigned N) { # std::sort(x, x + N, # [](float a, float b) { # return std::abs(a) < std::abs(b); # }); # } # \endcode CursorKind.LAMBDA_EXPR = CursorKind(144) # Objective-c Boolean Literal. CursorKind.OBJ_BOOL_LITERAL_EXPR = CursorKind(145) # Represents the "self" expression in a ObjC method. CursorKind.OBJ_SELF_EXPR = CursorKind(146) # OpenMP 4.0 [2.4, Array Section]. CursorKind.OMP_ARRAY_SECTION_EXPR = CursorKind(147) # Represents an @available(...) check. CursorKind.OBJC_AVAILABILITY_CHECK_EXPR = CursorKind(148) # Fixed point literal CursorKind.FIXED_POINT_LITERAL = CursorKind(149) # OpenMP 5.0 [2.1.4, Array Shaping]. CursorKind.OMP_ARRAY_SHAPING_EXPR = CursorKind(150) # OpenMP 5.0 [2.1.6 Iterators] CursorKind.OMP_ITERATOR_EXPR = CursorKind(151) # OpenCL's addrspace_cast<> expression. CursorKind.CXX_ADDRSPACE_CAST_EXPR = CursorKind(152) # Expression that references a C++20 concept. CursorKind.CONCEPT_SPECIALIZATION_EXPR = CursorKind(153) # Expression that references a C++20 concept. CursorKind.REQUIRES_EXPR = CursorKind(154) # A statement whose specific kind is not exposed via this interface. # # Unexposed statements have the same operations as any other kind of statement; # one can extract their location information, spelling, children, etc. However, # the specific kind of the statement is not reported. CursorKind.UNEXPOSED_STMT = CursorKind(200) # A labelled statement in a function. CursorKind.LABEL_STMT = CursorKind(201) # A compound statement CursorKind.COMPOUND_STMT = CursorKind(202) # A case statement. CursorKind.CASE_STMT = CursorKind(203) # A default statement. CursorKind.DEFAULT_STMT = CursorKind(204) # An if statement. CursorKind.IF_STMT = CursorKind(205) # A switch statement. CursorKind.SWITCH_STMT = CursorKind(206) # A while statement. CursorKind.WHILE_STMT = CursorKind(207) # A do statement. CursorKind.DO_STMT = CursorKind(208) # A for statement. CursorKind.FOR_STMT = CursorKind(209) # A goto statement. CursorKind.GOTO_STMT = CursorKind(210) # An indirect goto statement. CursorKind.INDIRECT_GOTO_STMT = CursorKind(211) # A continue statement. CursorKind.CONTINUE_STMT = CursorKind(212) # A break statement. CursorKind.BREAK_STMT = CursorKind(213) # A return statement. CursorKind.RETURN_STMT = CursorKind(214) # A GNU-style inline assembler statement. CursorKind.ASM_STMT = CursorKind(215) # Objective-C's overall @try-@catch-@finally statement. CursorKind.OBJC_AT_TRY_STMT = CursorKind(216) # Objective-C's @catch statement. CursorKind.OBJC_AT_CATCH_STMT = CursorKind(217) # Objective-C's @finally statement. CursorKind.OBJC_AT_FINALLY_STMT = CursorKind(218) # Objective-C's @throw statement. CursorKind.OBJC_AT_THROW_STMT = CursorKind(219) # Objective-C's @synchronized statement. CursorKind.OBJC_AT_SYNCHRONIZED_STMT = CursorKind(220) # Objective-C's autorelease pool statement. CursorKind.OBJC_AUTORELEASE_POOL_STMT = CursorKind(221) # Objective-C's for collection statement. CursorKind.OBJC_FOR_COLLECTION_STMT = CursorKind(222) # C++'s catch statement. CursorKind.CXX_CATCH_STMT = CursorKind(223) # C++'s try statement. CursorKind.CXX_TRY_STMT = CursorKind(224) # C++'s for (* : *) statement. CursorKind.CXX_FOR_RANGE_STMT = CursorKind(225) # Windows Structured Exception Handling's try statement. CursorKind.SEH_TRY_STMT = CursorKind(226) # Windows Structured Exception Handling's except statement. CursorKind.SEH_EXCEPT_STMT = CursorKind(227) # Windows Structured Exception Handling's finally statement. CursorKind.SEH_FINALLY_STMT = CursorKind(228) # A MS inline assembly statement extension. CursorKind.MS_ASM_STMT = CursorKind(229) # The null statement. CursorKind.NULL_STMT = CursorKind(230) # Adaptor class for mixing declarations with statements and expressions. CursorKind.DECL_STMT = CursorKind(231) # OpenMP parallel directive. CursorKind.OMP_PARALLEL_DIRECTIVE = CursorKind(232) # OpenMP SIMD directive. CursorKind.OMP_SIMD_DIRECTIVE = CursorKind(233) # OpenMP for directive. CursorKind.OMP_FOR_DIRECTIVE = CursorKind(234) # OpenMP sections directive. CursorKind.OMP_SECTIONS_DIRECTIVE = CursorKind(235) # OpenMP section directive. CursorKind.OMP_SECTION_DIRECTIVE = CursorKind(236) # OpenMP single directive. CursorKind.OMP_SINGLE_DIRECTIVE = CursorKind(237) # OpenMP parallel for directive. CursorKind.OMP_PARALLEL_FOR_DIRECTIVE = CursorKind(238) # OpenMP parallel sections directive. CursorKind.OMP_PARALLEL_SECTIONS_DIRECTIVE = CursorKind(239) # OpenMP task directive. CursorKind.OMP_TASK_DIRECTIVE = CursorKind(240) # OpenMP master directive. CursorKind.OMP_MASTER_DIRECTIVE = CursorKind(241) # OpenMP critical directive. CursorKind.OMP_CRITICAL_DIRECTIVE = CursorKind(242) # OpenMP taskyield directive. CursorKind.OMP_TASKYIELD_DIRECTIVE = CursorKind(243) # OpenMP barrier directive. CursorKind.OMP_BARRIER_DIRECTIVE = CursorKind(244) # OpenMP taskwait directive. CursorKind.OMP_TASKWAIT_DIRECTIVE = CursorKind(245) # OpenMP flush directive. CursorKind.OMP_FLUSH_DIRECTIVE = CursorKind(246) # Windows Structured Exception Handling's leave statement. CursorKind.SEH_LEAVE_STMT = CursorKind(247) # OpenMP ordered directive. CursorKind.OMP_ORDERED_DIRECTIVE = CursorKind(248) # OpenMP atomic directive. CursorKind.OMP_ATOMIC_DIRECTIVE = CursorKind(249) # OpenMP for SIMD directive. CursorKind.OMP_FOR_SIMD_DIRECTIVE = CursorKind(250) # OpenMP parallel for SIMD directive. CursorKind.OMP_PARALLELFORSIMD_DIRECTIVE = CursorKind(251) # OpenMP target directive. CursorKind.OMP_TARGET_DIRECTIVE = CursorKind(252) # OpenMP teams directive. CursorKind.OMP_TEAMS_DIRECTIVE = CursorKind(253) # OpenMP taskgroup directive. CursorKind.OMP_TASKGROUP_DIRECTIVE = CursorKind(254) # OpenMP cancellation point directive. CursorKind.OMP_CANCELLATION_POINT_DIRECTIVE = CursorKind(255) # OpenMP cancel directive. CursorKind.OMP_CANCEL_DIRECTIVE = CursorKind(256) # OpenMP target data directive. CursorKind.OMP_TARGET_DATA_DIRECTIVE = CursorKind(257) # OpenMP taskloop directive. CursorKind.OMP_TASK_LOOP_DIRECTIVE = CursorKind(258) # OpenMP taskloop simd directive. CursorKind.OMP_TASK_LOOP_SIMD_DIRECTIVE = CursorKind(259) # OpenMP distribute directive. CursorKind.OMP_DISTRIBUTE_DIRECTIVE = CursorKind(260) # OpenMP target enter data directive. CursorKind.OMP_TARGET_ENTER_DATA_DIRECTIVE = CursorKind(261) # OpenMP target exit data directive. CursorKind.OMP_TARGET_EXIT_DATA_DIRECTIVE = CursorKind(262) # OpenMP target parallel directive. CursorKind.OMP_TARGET_PARALLEL_DIRECTIVE = CursorKind(263) # OpenMP target parallel for directive. CursorKind.OMP_TARGET_PARALLELFOR_DIRECTIVE = CursorKind(264) # OpenMP target update directive. CursorKind.OMP_TARGET_UPDATE_DIRECTIVE = CursorKind(265) # OpenMP distribute parallel for directive. CursorKind.OMP_DISTRIBUTE_PARALLELFOR_DIRECTIVE = CursorKind(266) # OpenMP distribute parallel for simd directive. CursorKind.OMP_DISTRIBUTE_PARALLEL_FOR_SIMD_DIRECTIVE = CursorKind(267) # OpenMP distribute simd directive. CursorKind.OMP_DISTRIBUTE_SIMD_DIRECTIVE = CursorKind(268) # OpenMP target parallel for simd directive. CursorKind.OMP_TARGET_PARALLEL_FOR_SIMD_DIRECTIVE = CursorKind(269) # OpenMP target simd directive. CursorKind.OMP_TARGET_SIMD_DIRECTIVE = CursorKind(270) # OpenMP teams distribute directive. CursorKind.OMP_TEAMS_DISTRIBUTE_DIRECTIVE = CursorKind(271) # OpenMP teams distribute simd directive. CursorKind.OMP_TEAMS_DISTRIBUTE_SIMD_DIRECTIVE = CursorKind(272) # OpenMP teams distribute parallel for simd directive. CursorKind.OMP_TEAMS_DISTRIBUTE_PARALLEL_FOR_SIMD_DIRECTIVE = CursorKind(273) # OpenMP teams distribute parallel for directive. CursorKind.OMP_TEAMS_DISTRIBUTE_PARALLEL_FOR_DIRECTIVE = CursorKind(274) # OpenMP target teams directive. CursorKind.OMP_TARGET_TEAMS_DIRECTIVE = CursorKind(275) # OpenMP target teams distribute directive. CursorKind.OMP_TARGET_TEAMS_DISTRIBUTE_DIRECTIVE = CursorKind(276) # OpenMP target teams distribute parallel for directive. CursorKind.OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_FOR_DIRECTIVE = CursorKind(277) # OpenMP target teams distribute parallel for simd directive. CursorKind.OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_FOR_SIMD_DIRECTIVE = CursorKind(278) # OpenMP target teams distribute simd directive. CursorKind.OMP_TARGET_TEAMS_DISTRIBUTE_SIMD_DIRECTIVE = CursorKind(279) # C++2a std::bit_cast expression. CursorKind.BUILTIN_BIT_CAST_EXPR = CursorKind(280) # OpenMP master taskloop directive. CursorKind.OMP_MASTER_TASK_LOOP_DIRECTIVE = CursorKind(281) # OpenMP parallel master taskloop directive. CursorKind.OMP_PARALLEL_MASTER_TASK_LOOP_DIRECTIVE = CursorKind(282) # OpenMP master taskloop simd directive. CursorKind.OMP_MASTER_TASK_LOOP_SIMD_DIRECTIVE = CursorKind(283) # OpenMP parallel master taskloop simd directive. CursorKind.OMP_PARALLEL_MASTER_TASK_LOOP_SIMD_DIRECTIVE = CursorKind(284) # OpenMP parallel master directive. CursorKind.OMP_PARALLEL_MASTER_DIRECTIVE = CursorKind(285) # OpenMP depobj directive. CursorKind.OMP_DEPOBJ_DIRECTIVE = CursorKind(286) # OpenMP scan directive. CursorKind.OMP_SCAN_DIRECTIVE = CursorKind(287) # OpenMP tile directive. CursorKind.OMP_TILE_DIRECTIVE = CursorKind(288) # OpenMP canonical loop. CursorKind.OMP_CANONICAL_LOOP = CursorKind(289) # OpenMP interop directive. CursorKind.OMP_INTEROP_DIRECTIVE = CursorKind(290) # OpenMP dispatch directive. CursorKind.OMP_DISPATCH_DIRECTIVE = CursorKind(291) # OpenMP masked directive. CursorKind.OMP_MASKED_DIRECTIVE = CursorKind(292) # OpenMP unroll directive. CursorKind.OMP_UNROLL_DIRECTIVE = CursorKind(293) # OpenMP metadirective directive. CursorKind.OMP_META_DIRECTIVE = CursorKind(294) # OpenMP loop directive. CursorKind.OMP_GENERIC_LOOP_DIRECTIVE = CursorKind(295) # OpenMP teams loop directive. CursorKind.OMP_TEAMS_GENERIC_LOOP_DIRECTIVE = CursorKind(296) # OpenMP target teams loop directive. CursorKind.OMP_TARGET_TEAMS_GENERIC_LOOP_DIRECTIVE = CursorKind(297) # OpenMP parallel loop directive. CursorKind.OMP_PARALLEL_GENERIC_LOOP_DIRECTIVE = CursorKind(298) # OpenMP target parallel loop directive. CursorKind.OMP_TARGET_PARALLEL_GENERIC_LOOP_DIRECTIVE = CursorKind(299) # OpenMP parallel masked directive. CursorKind.OMP_PARALLEL_MASKED_DIRECTIVE = CursorKind(300) # OpenMP masked taskloop directive. CursorKind.OMP_MASKED_TASK_LOOP_DIRECTIVE = CursorKind(301) # OpenMP masked taskloop simd directive. CursorKind.OMP_MASKED_TASK_LOOP_SIMD_DIRECTIVE = CursorKind(302) # OpenMP parallel masked taskloop directive. CursorKind.OMP_PARALLEL_MASKED_TASK_LOOP_DIRECTIVE = CursorKind(303) # OpenMP parallel masked taskloop simd directive. CursorKind.OMP_PARALLEL_MASKED_TASK_LOOP_SIMD_DIRECTIVE = CursorKind(304) ### # Other Kinds # Cursor that represents the translation unit itself. # # The translation unit cursor exists primarily to act as the root cursor for # traversing the contents of a translation unit. CursorKind.TRANSLATION_UNIT = CursorKind(350) ### # Attributes # An attribute whoe specific kind is note exposed via this interface CursorKind.UNEXPOSED_ATTR = CursorKind(400) CursorKind.IB_ACTION_ATTR = CursorKind(401) CursorKind.IB_OUTLET_ATTR = CursorKind(402) CursorKind.IB_OUTLET_COLLECTION_ATTR = CursorKind(403) CursorKind.CXX_FINAL_ATTR = CursorKind(404) CursorKind.CXX_OVERRIDE_ATTR = CursorKind(405) CursorKind.ANNOTATE_ATTR = CursorKind(406) CursorKind.ASM_LABEL_ATTR = CursorKind(407) CursorKind.PACKED_ATTR = CursorKind(408) CursorKind.PURE_ATTR = CursorKind(409) CursorKind.CONST_ATTR = CursorKind(410) CursorKind.NODUPLICATE_ATTR = CursorKind(411) CursorKind.CUDACONSTANT_ATTR = CursorKind(412) CursorKind.CUDADEVICE_ATTR = CursorKind(413) CursorKind.CUDAGLOBAL_ATTR = CursorKind(414) CursorKind.CUDAHOST_ATTR = CursorKind(415) CursorKind.CUDASHARED_ATTR = CursorKind(416) CursorKind.VISIBILITY_ATTR = CursorKind(417) CursorKind.DLLEXPORT_ATTR = CursorKind(418) CursorKind.DLLIMPORT_ATTR = CursorKind(419) CursorKind.CONVERGENT_ATTR = CursorKind(438) CursorKind.WARN_UNUSED_ATTR = CursorKind(439) CursorKind.WARN_UNUSED_RESULT_ATTR = CursorKind(440) CursorKind.ALIGNED_ATTR = CursorKind(441) ### # Preprocessing CursorKind.PREPROCESSING_DIRECTIVE = CursorKind(500) CursorKind.MACRO_DEFINITION = CursorKind(501) CursorKind.MACRO_INSTANTIATION = CursorKind(502) CursorKind.INCLUSION_DIRECTIVE = CursorKind(503) ### # Extra declaration # A module import declaration. CursorKind.MODULE_IMPORT_DECL = CursorKind(600) # A type alias template declaration CursorKind.TYPE_ALIAS_TEMPLATE_DECL = CursorKind(601) # A static_assert or _Static_assert node CursorKind.STATIC_ASSERT = CursorKind(602) # A friend declaration CursorKind.FRIEND_DECL = CursorKind(603) # A concept declaration CursorKind.CONCEPT_DECL = CursorKind(604) # A code completion overload candidate. CursorKind.OVERLOAD_CANDIDATE = CursorKind(700) ### Template Argument Kinds ### class TemplateArgumentKind(BaseEnumeration): """ A TemplateArgumentKind describes the kind of entity that a template argument represents. """ # The required BaseEnumeration declarations. _kinds = [] _name_map = None TemplateArgumentKind.NULL = TemplateArgumentKind(0) TemplateArgumentKind.TYPE = TemplateArgumentKind(1) TemplateArgumentKind.DECLARATION = TemplateArgumentKind(2) TemplateArgumentKind.NULLPTR = TemplateArgumentKind(3) TemplateArgumentKind.INTEGRAL = TemplateArgumentKind(4) ### Exception Specification Kinds ### class ExceptionSpecificationKind(BaseEnumeration): """ An ExceptionSpecificationKind describes the kind of exception specification that a function has. """ # The required BaseEnumeration declarations. _kinds = [] _name_map = None def __repr__(self): return "ExceptionSpecificationKind.{}".format(self.name) ExceptionSpecificationKind.NONE = ExceptionSpecificationKind(0) ExceptionSpecificationKind.DYNAMIC_NONE = ExceptionSpecificationKind(1) ExceptionSpecificationKind.DYNAMIC = ExceptionSpecificationKind(2) ExceptionSpecificationKind.MS_ANY = ExceptionSpecificationKind(3) ExceptionSpecificationKind.BASIC_NOEXCEPT = ExceptionSpecificationKind(4) ExceptionSpecificationKind.COMPUTED_NOEXCEPT = ExceptionSpecificationKind(5) ExceptionSpecificationKind.UNEVALUATED = ExceptionSpecificationKind(6) ExceptionSpecificationKind.UNINSTANTIATED = ExceptionSpecificationKind(7) ExceptionSpecificationKind.UNPARSED = ExceptionSpecificationKind(8) ### Cursors ### class Cursor(Structure): """ The Cursor class represents a reference to an element within the AST. It acts as a kind of iterator. """ _fields_ = [("_kind_id", c_int), ("xdata", c_int), ("data", c_void_p * 3)] @staticmethod def from_location(tu, location): # We store a reference to the TU in the instance so the TU won't get # collected before the cursor. cursor = conf.lib.clang_getCursor(tu, location) cursor._tu = tu return cursor def __hash__(self): return self.hash def __eq__(self, other): return conf.lib.clang_equalCursors(self, other) def __ne__(self, other): return not self.__eq__(other) def is_definition(self): """ Returns true if the declaration pointed at by the cursor is also a definition of that entity. """ return conf.lib.clang_isCursorDefinition(self) def is_const_method(self): """Returns True if the cursor refers to a C++ member function or member function template that is declared 'const'. """ return conf.lib.clang_CXXMethod_isConst(self) def is_converting_constructor(self): """Returns True if the cursor refers to a C++ converting constructor.""" return conf.lib.clang_CXXConstructor_isConvertingConstructor(self) def is_copy_constructor(self): """Returns True if the cursor refers to a C++ copy constructor.""" return conf.lib.clang_CXXConstructor_isCopyConstructor(self) def is_default_constructor(self): """Returns True if the cursor refers to a C++ default constructor.""" return conf.lib.clang_CXXConstructor_isDefaultConstructor(self) def is_move_constructor(self): """Returns True if the cursor refers to a C++ move constructor.""" return conf.lib.clang_CXXConstructor_isMoveConstructor(self) def is_default_method(self): """Returns True if the cursor refers to a C++ member function or member function template that is declared '= default'. """ return conf.lib.clang_CXXMethod_isDefaulted(self) def is_deleted_method(self): """Returns True if the cursor refers to a C++ member function or member function template that is declared '= delete'. """ return conf.lib.clang_CXXMethod_isDeleted(self) def is_copy_assignment_operator_method(self): """Returnrs True if the cursor refers to a copy-assignment operator. A copy-assignment operator `X::operator=` is a non-static, non-template member function of _class_ `X` with exactly one parameter of type `X`, `X&`, `const X&`, `volatile X&` or `const volatile X&`. That is, for example, the `operator=` in: class Foo { bool operator=(const volatile Foo&); }; Is a copy-assignment operator, while the `operator=` in: class Bar { bool operator=(const int&); }; Is not. """ return conf.lib.clang_CXXMethod_isCopyAssignmentOperator(self) def is_move_assignment_operator_method(self): """Returnrs True if the cursor refers to a move-assignment operator. A move-assignment operator `X::operator=` is a non-static, non-template member function of _class_ `X` with exactly one parameter of type `X&&`, `const X&&`, `volatile X&&` or `const volatile X&&`. That is, for example, the `operator=` in: class Foo { bool operator=(const volatile Foo&&); }; Is a move-assignment operator, while the `operator=` in: class Bar { bool operator=(const int&&); }; Is not. """ return conf.lib.clang_CXXMethod_isMoveAssignmentOperator(self) def is_explicit_method(self): """Determines if a C++ constructor or conversion function is explicit, returning 1 if such is the case and 0 otherwise. Constructors or conversion functions are declared explicit through the use of the explicit specifier. For example, the following constructor and conversion function are not explicit as they lack the explicit specifier: class Foo { Foo(); operator int(); }; While the following constructor and conversion function are explicit as they are declared with the explicit specifier. class Foo { explicit Foo(); explicit operator int(); }; This method will return 0 when given a cursor pointing to one of the former declarations and it will return 1 for a cursor pointing to the latter declarations. The explicit specifier allows the user to specify a conditional compile-time expression whose value decides whether the marked element is explicit or not. For example: constexpr bool foo(int i) { return i % 2 == 0; } class Foo { explicit(foo(1)) Foo(); explicit(foo(2)) operator int(); } This method will return 0 for the constructor and 1 for the conversion function. """ return conf.lib.clang_CXXMethod_isExplicit(self) def is_mutable_field(self): """Returns True if the cursor refers to a C++ field that is declared 'mutable'. """ return conf.lib.clang_CXXField_isMutable(self) def is_pure_virtual_method(self): """Returns True if the cursor refers to a C++ member function or member function template that is declared pure virtual. """ return conf.lib.clang_CXXMethod_isPureVirtual(self) def is_static_method(self): """Returns True if the cursor refers to a C++ member function or member function template that is declared 'static'. """ return conf.lib.clang_CXXMethod_isStatic(self) def is_virtual_method(self): """Returns True if the cursor refers to a C++ member function or member function template that is declared 'virtual'. """ return conf.lib.clang_CXXMethod_isVirtual(self) def is_abstract_record(self): """Returns True if the cursor refers to a C++ record declaration that has pure virtual member functions. """ return conf.lib.clang_CXXRecord_isAbstract(self) def is_scoped_enum(self): """Returns True if the cursor refers to a scoped enum declaration.""" return conf.lib.clang_EnumDecl_isScoped(self) def get_definition(self): """ If the cursor is a reference to a declaration or a declaration of some entity, return a cursor that points to the definition of that entity. """ # TODO: Should probably check that this is either a reference or # declaration prior to issuing the lookup. return conf.lib.clang_getCursorDefinition(self) def get_usr(self): """Return the Unified Symbol Resolution (USR) for the entity referenced by the given cursor (or None). A Unified Symbol Resolution (USR) is a string that identifies a particular entity (function, class, variable, etc.) within a program. USRs can be compared across translation units to determine, e.g., when references in one translation refer to an entity defined in another translation unit.""" return conf.lib.clang_getCursorUSR(self) def get_included_file(self): """Returns the File that is included by the current inclusion cursor.""" assert self.kind == CursorKind.INCLUSION_DIRECTIVE return conf.lib.clang_getIncludedFile(self) @property def kind(self): """Return the kind of this cursor.""" return CursorKind.from_id(self._kind_id) @property def spelling(self): """Return the spelling of the entity pointed at by the cursor.""" if not hasattr(self, "_spelling"): self._spelling = conf.lib.clang_getCursorSpelling(self) return self._spelling @property def displayname(self): """ Return the display name for the entity referenced by this cursor. The display name contains extra information that helps identify the cursor, such as the parameters of a function or template or the arguments of a class template specialization. """ if not hasattr(self, "_displayname"): self._displayname = conf.lib.clang_getCursorDisplayName(self) return self._displayname @property def mangled_name(self): """Return the mangled name for the entity referenced by this cursor.""" if not hasattr(self, "_mangled_name"): self._mangled_name = conf.lib.clang_Cursor_getMangling(self) return self._mangled_name @property def location(self): """ Return the source location (the starting character) of the entity pointed at by the cursor. """ if not hasattr(self, "_loc"): self._loc = conf.lib.clang_getCursorLocation(self) return self._loc @property def linkage(self): """Return the linkage of this cursor.""" if not hasattr(self, "_linkage"): self._linkage = conf.lib.clang_getCursorLinkage(self) return LinkageKind.from_id(self._linkage) @property def tls_kind(self): """Return the thread-local storage (TLS) kind of this cursor.""" if not hasattr(self, "_tls_kind"): self._tls_kind = conf.lib.clang_getCursorTLSKind(self) return TLSKind.from_id(self._tls_kind) @property def extent(self): """ Return the source range (the range of text) occupied by the entity pointed at by the cursor. """ if not hasattr(self, "_extent"): self._extent = conf.lib.clang_getCursorExtent(self) return self._extent @property def storage_class(self): """ Retrieves the storage class (if any) of the entity pointed at by the cursor. """ if not hasattr(self, "_storage_class"): self._storage_class = conf.lib.clang_Cursor_getStorageClass(self) return StorageClass.from_id(self._storage_class) @property def availability(self): """ Retrieves the availability of the entity pointed at by the cursor. """ if not hasattr(self, "_availability"): self._availability = conf.lib.clang_getCursorAvailability(self) return AvailabilityKind.from_id(self._availability) @property def access_specifier(self): """ Retrieves the access specifier (if any) of the entity pointed at by the cursor. """ if not hasattr(self, "_access_specifier"): self._access_specifier = conf.lib.clang_getCXXAccessSpecifier(self) return AccessSpecifier.from_id(self._access_specifier) @property def type(self): """ Retrieve the Type (if any) of the entity pointed at by the cursor. """ if not hasattr(self, "_type"): self._type = conf.lib.clang_getCursorType(self) return self._type @property def canonical(self): """Return the canonical Cursor corresponding to this Cursor. The canonical cursor is the cursor which is representative for the underlying entity. For example, if you have multiple forward declarations for the same class, the canonical cursor for the forward declarations will be identical. """ if not hasattr(self, "_canonical"): self._canonical = conf.lib.clang_getCanonicalCursor(self) return self._canonical @property def result_type(self): """Retrieve the Type of the result for this Cursor.""" if not hasattr(self, "_result_type"): self._result_type = conf.lib.clang_getCursorResultType(self) return self._result_type @property def exception_specification_kind(self): """ Retrieve the exception specification kind, which is one of the values from the ExceptionSpecificationKind enumeration. """ if not hasattr(self, "_exception_specification_kind"): exc_kind = conf.lib.clang_getCursorExceptionSpecificationType(self) self._exception_specification_kind = ExceptionSpecificationKind.from_id( exc_kind ) return self._exception_specification_kind @property def underlying_typedef_type(self): """Return the underlying type of a typedef declaration. Returns a Type for the typedef this cursor is a declaration for. If the current cursor is not a typedef, this raises. """ if not hasattr(self, "_underlying_type"): assert self.kind.is_declaration() self._underlying_type = conf.lib.clang_getTypedefDeclUnderlyingType(self) return self._underlying_type @property def enum_type(self): """Return the integer type of an enum declaration. Returns a Type corresponding to an integer. If the cursor is not for an enum, this raises. """ if not hasattr(self, "_enum_type"): assert self.kind == CursorKind.ENUM_DECL self._enum_type = conf.lib.clang_getEnumDeclIntegerType(self) return self._enum_type @property def enum_value(self): """Return the value of an enum constant.""" if not hasattr(self, "_enum_value"): assert self.kind == CursorKind.ENUM_CONSTANT_DECL # Figure out the underlying type of the enum to know if it # is a signed or unsigned quantity. underlying_type = self.type if underlying_type.kind == TypeKind.ENUM: underlying_type = underlying_type.get_declaration().enum_type if underlying_type.kind in ( TypeKind.CHAR_U, TypeKind.UCHAR, TypeKind.CHAR16, TypeKind.CHAR32, TypeKind.USHORT, TypeKind.UINT, TypeKind.ULONG, TypeKind.ULONGLONG, TypeKind.UINT128, ): self._enum_value = conf.lib.clang_getEnumConstantDeclUnsignedValue(self) else: self._enum_value = conf.lib.clang_getEnumConstantDeclValue(self) return self._enum_value @property def objc_type_encoding(self): """Return the Objective-C type encoding as a str.""" if not hasattr(self, "_objc_type_encoding"): self._objc_type_encoding = conf.lib.clang_getDeclObjCTypeEncoding(self) return self._objc_type_encoding @property def hash(self): """Returns a hash of the cursor as an int.""" if not hasattr(self, "_hash"): self._hash = conf.lib.clang_hashCursor(self) return self._hash @property def semantic_parent(self): """Return the semantic parent for this cursor.""" if not hasattr(self, "_semantic_parent"): self._semantic_parent = conf.lib.clang_getCursorSemanticParent(self) return self._semantic_parent @property def lexical_parent(self): """Return the lexical parent for this cursor.""" if not hasattr(self, "_lexical_parent"): self._lexical_parent = conf.lib.clang_getCursorLexicalParent(self) return self._lexical_parent @property def translation_unit(self): """Returns the TranslationUnit to which this Cursor belongs.""" # If this triggers an AttributeError, the instance was not properly # created. return self._tu @property def referenced(self): """ For a cursor that is a reference, returns a cursor representing the entity that it references. """ if not hasattr(self, "_referenced"): self._referenced = conf.lib.clang_getCursorReferenced(self) return self._referenced @property def brief_comment(self): """Returns the brief comment text associated with that Cursor""" return conf.lib.clang_Cursor_getBriefCommentText(self) @property def raw_comment(self): """Returns the raw comment text associated with that Cursor""" return conf.lib.clang_Cursor_getRawCommentText(self) def get_arguments(self): """Return an iterator for accessing the arguments of this cursor.""" num_args = conf.lib.clang_Cursor_getNumArguments(self) for i in range(0, num_args): yield conf.lib.clang_Cursor_getArgument(self, i) def get_num_template_arguments(self): """Returns the number of template args associated with this cursor.""" return conf.lib.clang_Cursor_getNumTemplateArguments(self) def get_template_argument_kind(self, num): """Returns the TemplateArgumentKind for the indicated template argument.""" return conf.lib.clang_Cursor_getTemplateArgumentKind(self, num) def get_template_argument_type(self, num): """Returns the CXType for the indicated template argument.""" return conf.lib.clang_Cursor_getTemplateArgumentType(self, num) def get_template_argument_value(self, num): """Returns the value of the indicated arg as a signed 64b integer.""" return conf.lib.clang_Cursor_getTemplateArgumentValue(self, num) def get_template_argument_unsigned_value(self, num): """Returns the value of the indicated arg as an unsigned 64b integer.""" return conf.lib.clang_Cursor_getTemplateArgumentUnsignedValue(self, num) def get_children(self): """Return an iterator for accessing the children of this cursor.""" # FIXME: Expose iteration from CIndex, PR6125. def visitor(child, parent, children): # FIXME: Document this assertion in API. # FIXME: There should just be an isNull method. assert child != conf.lib.clang_getNullCursor() # Create reference to TU so it isn't GC'd before Cursor. child._tu = self._tu children.append(child) return 1 # continue children = [] conf.lib.clang_visitChildren(self, callbacks["cursor_visit"](visitor), children) return iter(children) def walk_preorder(self): """Depth-first preorder walk over the cursor and its descendants. Yields cursors. """ yield self for child in self.get_children(): for descendant in child.walk_preorder(): yield descendant def get_tokens(self): """Obtain Token instances formulating that compose this Cursor. This is a generator for Token instances. It returns all tokens which occupy the extent this cursor occupies. """ return TokenGroup.get_tokens(self._tu, self.extent) def get_field_offsetof(self): """Returns the offsetof the FIELD_DECL pointed by this Cursor.""" return conf.lib.clang_Cursor_getOffsetOfField(self) def is_anonymous(self): """ Check if the record is anonymous. """ if self.kind == CursorKind.FIELD_DECL: return self.type.get_declaration().is_anonymous() return conf.lib.clang_Cursor_isAnonymous(self) def is_bitfield(self): """ Check if the field is a bitfield. """ return conf.lib.clang_Cursor_isBitField(self) def get_bitfield_width(self): """ Retrieve the width of a bitfield. """ return conf.lib.clang_getFieldDeclBitWidth(self) @staticmethod def from_result(res, fn, args): assert isinstance(res, Cursor) # FIXME: There should just be an isNull method. if res == conf.lib.clang_getNullCursor(): return None # Store a reference to the TU in the Python object so it won't get GC'd # before the Cursor. tu = None for arg in args: if isinstance(arg, TranslationUnit): tu = arg break if hasattr(arg, "translation_unit"): tu = arg.translation_unit break assert tu is not None res._tu = tu return res @staticmethod def from_cursor_result(res, fn, args): assert isinstance(res, Cursor) if res == conf.lib.clang_getNullCursor(): return None res._tu = args[0]._tu return res class StorageClass: """ Describes the storage class of a declaration """ # The unique kind objects, index by id. _kinds = [] _name_map = None def __init__(self, value): if value >= len(StorageClass._kinds): StorageClass._kinds += [None] * (value - len(StorageClass._kinds) + 1) if StorageClass._kinds[value] is not None: raise ValueError("StorageClass already loaded") self.value = value StorageClass._kinds[value] = self StorageClass._name_map = None def from_param(self): return self.value @property def name(self): """Get the enumeration name of this storage class.""" if self._name_map is None: self._name_map = {} for key, value in StorageClass.__dict__.items(): if isinstance(value, StorageClass): self._name_map[value] = key return self._name_map[self] @staticmethod def from_id(id): if id >= len(StorageClass._kinds) or not StorageClass._kinds[id]: raise ValueError("Unknown storage class %d" % id) return StorageClass._kinds[id] def __repr__(self): return "StorageClass.%s" % (self.name,) StorageClass.INVALID = StorageClass(0) StorageClass.NONE = StorageClass(1) StorageClass.EXTERN = StorageClass(2) StorageClass.STATIC = StorageClass(3) StorageClass.PRIVATEEXTERN = StorageClass(4) StorageClass.OPENCLWORKGROUPLOCAL = StorageClass(5) StorageClass.AUTO = StorageClass(6) StorageClass.REGISTER = StorageClass(7) ### Availability Kinds ### class AvailabilityKind(BaseEnumeration): """ Describes the availability of an entity. """ # The unique kind objects, indexed by id. _kinds = [] _name_map = None def __repr__(self): return "AvailabilityKind.%s" % (self.name,) AvailabilityKind.AVAILABLE = AvailabilityKind(0) AvailabilityKind.DEPRECATED = AvailabilityKind(1) AvailabilityKind.NOT_AVAILABLE = AvailabilityKind(2) AvailabilityKind.NOT_ACCESSIBLE = AvailabilityKind(3) ### C++ access specifiers ### class AccessSpecifier(BaseEnumeration): """ Describes the access of a C++ class member """ # The unique kind objects, index by id. _kinds = [] _name_map = None def from_param(self): return self.value def __repr__(self): return "AccessSpecifier.%s" % (self.name,) AccessSpecifier.INVALID = AccessSpecifier(0) AccessSpecifier.PUBLIC = AccessSpecifier(1) AccessSpecifier.PROTECTED = AccessSpecifier(2) AccessSpecifier.PRIVATE = AccessSpecifier(3) AccessSpecifier.NONE = AccessSpecifier(4) ### Type Kinds ### class TypeKind(BaseEnumeration): """ Describes the kind of type. """ # The unique kind objects, indexed by id. _kinds = [] _name_map = None @property def spelling(self): """Retrieve the spelling of this TypeKind.""" return conf.lib.clang_getTypeKindSpelling(self.value) def __repr__(self): return "TypeKind.%s" % (self.name,) TypeKind.INVALID = TypeKind(0) TypeKind.UNEXPOSED = TypeKind(1) TypeKind.VOID = TypeKind(2) TypeKind.BOOL = TypeKind(3) TypeKind.CHAR_U = TypeKind(4) TypeKind.UCHAR = TypeKind(5) TypeKind.CHAR16 = TypeKind(6) TypeKind.CHAR32 = TypeKind(7) TypeKind.USHORT = TypeKind(8) TypeKind.UINT = TypeKind(9) TypeKind.ULONG = TypeKind(10) TypeKind.ULONGLONG = TypeKind(11) TypeKind.UINT128 = TypeKind(12) TypeKind.CHAR_S = TypeKind(13) TypeKind.SCHAR = TypeKind(14) TypeKind.WCHAR = TypeKind(15) TypeKind.SHORT = TypeKind(16) TypeKind.INT = TypeKind(17) TypeKind.LONG = TypeKind(18) TypeKind.LONGLONG = TypeKind(19) TypeKind.INT128 = TypeKind(20) TypeKind.FLOAT = TypeKind(21) TypeKind.DOUBLE = TypeKind(22) TypeKind.LONGDOUBLE = TypeKind(23) TypeKind.NULLPTR = TypeKind(24) TypeKind.OVERLOAD = TypeKind(25) TypeKind.DEPENDENT = TypeKind(26) TypeKind.OBJCID = TypeKind(27) TypeKind.OBJCCLASS = TypeKind(28) TypeKind.OBJCSEL = TypeKind(29) TypeKind.FLOAT128 = TypeKind(30) TypeKind.HALF = TypeKind(31) TypeKind.IBM128 = TypeKind(40) TypeKind.COMPLEX = TypeKind(100) TypeKind.POINTER = TypeKind(101) TypeKind.BLOCKPOINTER = TypeKind(102) TypeKind.LVALUEREFERENCE = TypeKind(103) TypeKind.RVALUEREFERENCE = TypeKind(104) TypeKind.RECORD = TypeKind(105) TypeKind.ENUM = TypeKind(106) TypeKind.TYPEDEF = TypeKind(107) TypeKind.OBJCINTERFACE = TypeKind(108) TypeKind.OBJCOBJECTPOINTER = TypeKind(109) TypeKind.FUNCTIONNOPROTO = TypeKind(110) TypeKind.FUNCTIONPROTO = TypeKind(111) TypeKind.CONSTANTARRAY = TypeKind(112) TypeKind.VECTOR = TypeKind(113) TypeKind.INCOMPLETEARRAY = TypeKind(114) TypeKind.VARIABLEARRAY = TypeKind(115) TypeKind.DEPENDENTSIZEDARRAY = TypeKind(116) TypeKind.MEMBERPOINTER = TypeKind(117) TypeKind.AUTO = TypeKind(118) TypeKind.ELABORATED = TypeKind(119) TypeKind.PIPE = TypeKind(120) TypeKind.OCLIMAGE1DRO = TypeKind(121) TypeKind.OCLIMAGE1DARRAYRO = TypeKind(122) TypeKind.OCLIMAGE1DBUFFERRO = TypeKind(123) TypeKind.OCLIMAGE2DRO = TypeKind(124) TypeKind.OCLIMAGE2DARRAYRO = TypeKind(125) TypeKind.OCLIMAGE2DDEPTHRO = TypeKind(126) TypeKind.OCLIMAGE2DARRAYDEPTHRO = TypeKind(127) TypeKind.OCLIMAGE2DMSAARO = TypeKind(128) TypeKind.OCLIMAGE2DARRAYMSAARO = TypeKind(129) TypeKind.OCLIMAGE2DMSAADEPTHRO = TypeKind(130) TypeKind.OCLIMAGE2DARRAYMSAADEPTHRO = TypeKind(131) TypeKind.OCLIMAGE3DRO = TypeKind(132) TypeKind.OCLIMAGE1DWO = TypeKind(133) TypeKind.OCLIMAGE1DARRAYWO = TypeKind(134) TypeKind.OCLIMAGE1DBUFFERWO = TypeKind(135) TypeKind.OCLIMAGE2DWO = TypeKind(136) TypeKind.OCLIMAGE2DARRAYWO = TypeKind(137) TypeKind.OCLIMAGE2DDEPTHWO = TypeKind(138) TypeKind.OCLIMAGE2DARRAYDEPTHWO = TypeKind(139) TypeKind.OCLIMAGE2DMSAAWO = TypeKind(140) TypeKind.OCLIMAGE2DARRAYMSAAWO = TypeKind(141) TypeKind.OCLIMAGE2DMSAADEPTHWO = TypeKind(142) TypeKind.OCLIMAGE2DARRAYMSAADEPTHWO = TypeKind(143) TypeKind.OCLIMAGE3DWO = TypeKind(144) TypeKind.OCLIMAGE1DRW = TypeKind(145) TypeKind.OCLIMAGE1DARRAYRW = TypeKind(146) TypeKind.OCLIMAGE1DBUFFERRW = TypeKind(147) TypeKind.OCLIMAGE2DRW = TypeKind(148) TypeKind.OCLIMAGE2DARRAYRW = TypeKind(149) TypeKind.OCLIMAGE2DDEPTHRW = TypeKind(150) TypeKind.OCLIMAGE2DARRAYDEPTHRW = TypeKind(151) TypeKind.OCLIMAGE2DMSAARW = TypeKind(152) TypeKind.OCLIMAGE2DARRAYMSAARW = TypeKind(153) TypeKind.OCLIMAGE2DMSAADEPTHRW = TypeKind(154) TypeKind.OCLIMAGE2DARRAYMSAADEPTHRW = TypeKind(155) TypeKind.OCLIMAGE3DRW = TypeKind(156) TypeKind.OCLSAMPLER = TypeKind(157) TypeKind.OCLEVENT = TypeKind(158) TypeKind.OCLQUEUE = TypeKind(159) TypeKind.OCLRESERVEID = TypeKind(160) TypeKind.EXTVECTOR = TypeKind(176) TypeKind.ATOMIC = TypeKind(177) class RefQualifierKind(BaseEnumeration): """Describes a specific ref-qualifier of a type.""" # The unique kind objects, indexed by id. _kinds = [] _name_map = None def from_param(self): return self.value def __repr__(self): return "RefQualifierKind.%s" % (self.name,) RefQualifierKind.NONE = RefQualifierKind(0) RefQualifierKind.LVALUE = RefQualifierKind(1) RefQualifierKind.RVALUE = RefQualifierKind(2) class LinkageKind(BaseEnumeration): """Describes the kind of linkage of a cursor.""" # The unique kind objects, indexed by id. _kinds = [] _name_map = None def from_param(self): return self.value def __repr__(self): return "LinkageKind.%s" % (self.name,) LinkageKind.INVALID = LinkageKind(0) LinkageKind.NO_LINKAGE = LinkageKind(1) LinkageKind.INTERNAL = LinkageKind(2) LinkageKind.UNIQUE_EXTERNAL = LinkageKind(3) LinkageKind.EXTERNAL = LinkageKind(4) class TLSKind(BaseEnumeration): """Describes the kind of thread-local storage (TLS) of a cursor.""" # The unique kind objects, indexed by id. _kinds = [] _name_map = None def from_param(self): return self.value def __repr__(self): return "TLSKind.%s" % (self.name,) TLSKind.NONE = TLSKind(0) TLSKind.DYNAMIC = TLSKind(1) TLSKind.STATIC = TLSKind(2) class Type(Structure): """ The type of an element in the abstract syntax tree. """ _fields_ = [("_kind_id", c_int), ("data", c_void_p * 2)] @property def kind(self): """Return the kind of this type.""" return TypeKind.from_id(self._kind_id) def argument_types(self): """Retrieve a container for the non-variadic arguments for this type. The returned object is iterable and indexable. Each item in the container is a Type instance. """ class ArgumentsIterator(collections.abc.Sequence): def __init__(self, parent): self.parent = parent self.length = None def __len__(self): if self.length is None: self.length = conf.lib.clang_getNumArgTypes(self.parent) return self.length def __getitem__(self, key): # FIXME Support slice objects. if not isinstance(key, int): raise TypeError("Must supply a non-negative int.") if key < 0: raise IndexError("Only non-negative indexes are accepted.") if key >= len(self): raise IndexError( "Index greater than container length: " "%d > %d" % (key, len(self)) ) result = conf.lib.clang_getArgType(self.parent, key) if result.kind == TypeKind.INVALID: raise IndexError("Argument could not be retrieved.") return result assert self.kind == TypeKind.FUNCTIONPROTO return ArgumentsIterator(self) @property def element_type(self): """Retrieve the Type of elements within this Type. If accessed on a type that is not an array, complex, or vector type, an exception will be raised. """ result = conf.lib.clang_getElementType(self) if result.kind == TypeKind.INVALID: raise Exception("Element type not available on this type.") return result @property def element_count(self): """Retrieve the number of elements in this type. Returns an int. If the Type is not an array or vector, this raises. """ result = conf.lib.clang_getNumElements(self) if result < 0: raise Exception("Type does not have elements.") return result @property def translation_unit(self): """The TranslationUnit to which this Type is associated.""" # If this triggers an AttributeError, the instance was not properly # instantiated. return self._tu @staticmethod def from_result(res, fn, args): assert isinstance(res, Type) tu = None for arg in args: if hasattr(arg, "translation_unit"): tu = arg.translation_unit break assert tu is not None res._tu = tu return res def get_num_template_arguments(self): return conf.lib.clang_Type_getNumTemplateArguments(self) def get_template_argument_type(self, num): return conf.lib.clang_Type_getTemplateArgumentAsType(self, num) def get_canonical(self): """ Return the canonical type for a Type. Clang's type system explicitly models typedefs and all the ways a specific type can be represented. The canonical type is the underlying type with all the "sugar" removed. For example, if 'T' is a typedef for 'int', the canonical type for 'T' would be 'int'. """ return conf.lib.clang_getCanonicalType(self) def is_const_qualified(self): """Determine whether a Type has the "const" qualifier set. This does not look through typedefs that may have added "const" at a different level. """ return conf.lib.clang_isConstQualifiedType(self) def is_volatile_qualified(self): """Determine whether a Type has the "volatile" qualifier set. This does not look through typedefs that may have added "volatile" at a different level. """ return conf.lib.clang_isVolatileQualifiedType(self) def is_restrict_qualified(self): """Determine whether a Type has the "restrict" qualifier set. This does not look through typedefs that may have added "restrict" at a different level. """ return conf.lib.clang_isRestrictQualifiedType(self) def is_function_variadic(self): """Determine whether this function Type is a variadic function type.""" assert self.kind == TypeKind.FUNCTIONPROTO return conf.lib.clang_isFunctionTypeVariadic(self) def get_address_space(self): return conf.lib.clang_getAddressSpace(self) def get_typedef_name(self): return conf.lib.clang_getTypedefName(self) def is_pod(self): """Determine whether this Type represents plain old data (POD).""" return conf.lib.clang_isPODType(self) def get_pointee(self): """ For pointer types, returns the type of the pointee. """ return conf.lib.clang_getPointeeType(self) def get_declaration(self): """ Return the cursor for the declaration of the given type. """ return conf.lib.clang_getTypeDeclaration(self) def get_result(self): """ Retrieve the result type associated with a function type. """ return conf.lib.clang_getResultType(self) def get_array_element_type(self): """ Retrieve the type of the elements of the array type. """ return conf.lib.clang_getArrayElementType(self) def get_array_size(self): """ Retrieve the size of the constant array. """ return conf.lib.clang_getArraySize(self) def get_class_type(self): """ Retrieve the class type of the member pointer type. """ return conf.lib.clang_Type_getClassType(self) def get_named_type(self): """ Retrieve the type named by the qualified-id. """ return conf.lib.clang_Type_getNamedType(self) def get_align(self): """ Retrieve the alignment of the record. """ return conf.lib.clang_Type_getAlignOf(self) def get_size(self): """ Retrieve the size of the record. """ return conf.lib.clang_Type_getSizeOf(self) def get_offset(self, fieldname): """ Retrieve the offset of a field in the record. """ return conf.lib.clang_Type_getOffsetOf(self, fieldname) def get_ref_qualifier(self): """ Retrieve the ref-qualifier of the type. """ return RefQualifierKind.from_id(conf.lib.clang_Type_getCXXRefQualifier(self)) def get_fields(self): """Return an iterator for accessing the fields of this type.""" def visitor(field, children): assert field != conf.lib.clang_getNullCursor() # Create reference to TU so it isn't GC'd before Cursor. field._tu = self._tu fields.append(field) return 1 # continue fields = [] conf.lib.clang_Type_visitFields( self, callbacks["fields_visit"](visitor), fields ) return iter(fields) def get_exception_specification_kind(self): """ Return the kind of the exception specification; a value from the ExceptionSpecificationKind enumeration. """ return ExceptionSpecificationKind.from_id( conf.lib.clang.getExceptionSpecificationType(self) ) @property def spelling(self): """Retrieve the spelling of this Type.""" return conf.lib.clang_getTypeSpelling(self) def __eq__(self, other): if type(other) != type(self): return False return conf.lib.clang_equalTypes(self, other) def __ne__(self, other): return not self.__eq__(other) ## CIndex Objects ## # CIndex objects (derived from ClangObject) are essentially lightweight # wrappers attached to some underlying object, which is exposed via CIndex as # a void*. class ClangObject: """ A helper for Clang objects. This class helps act as an intermediary for the ctypes library and the Clang CIndex library. """ def __init__(self, obj): assert isinstance(obj, c_object_p) and obj self.obj = self._as_parameter_ = obj def from_param(self): return self._as_parameter_ class _CXUnsavedFile(Structure): """Helper for passing unsaved file arguments.""" _fields_ = [("name", c_char_p), ("contents", c_char_p), ("length", c_ulong)] # Functions calls through the python interface are rather slow. Fortunately, # for most symboles, we do not need to perform a function call. Their spelling # never changes and is consequently provided by this spelling cache. SpellingCache = { # 0: CompletionChunk.Kind("Optional"), # 1: CompletionChunk.Kind("TypedText"), # 2: CompletionChunk.Kind("Text"), # 3: CompletionChunk.Kind("Placeholder"), # 4: CompletionChunk.Kind("Informative"), # 5 : CompletionChunk.Kind("CurrentParameter"), 6: "(", # CompletionChunk.Kind("LeftParen"), 7: ")", # CompletionChunk.Kind("RightParen"), 8: "[", # CompletionChunk.Kind("LeftBracket"), 9: "]", # CompletionChunk.Kind("RightBracket"), 10: "{", # CompletionChunk.Kind("LeftBrace"), 11: "}", # CompletionChunk.Kind("RightBrace"), 12: "<", # CompletionChunk.Kind("LeftAngle"), 13: ">", # CompletionChunk.Kind("RightAngle"), 14: ", ", # CompletionChunk.Kind("Comma"), # 15: CompletionChunk.Kind("ResultType"), 16: ":", # CompletionChunk.Kind("Colon"), 17: ";", # CompletionChunk.Kind("SemiColon"), 18: "=", # CompletionChunk.Kind("Equal"), 19: " ", # CompletionChunk.Kind("HorizontalSpace"), # 20: CompletionChunk.Kind("VerticalSpace") } class CompletionChunk: class Kind: def __init__(self, name): self.name = name def __str__(self): return self.name def __repr__(self): return "" % self def __init__(self, completionString, key): self.cs = completionString self.key = key self.__kindNumberCache = -1 def __repr__(self): return "{'" + self.spelling + "', " + str(self.kind) + "}" @CachedProperty def spelling(self): if self.__kindNumber in SpellingCache: return SpellingCache[self.__kindNumber] return conf.lib.clang_getCompletionChunkText(self.cs, self.key) # We do not use @CachedProperty here, as the manual implementation is # apparently still significantly faster. Please profile carefully if you # would like to add CachedProperty back. @property def __kindNumber(self): if self.__kindNumberCache == -1: self.__kindNumberCache = conf.lib.clang_getCompletionChunkKind( self.cs, self.key ) return self.__kindNumberCache @CachedProperty def kind(self): return completionChunkKindMap[self.__kindNumber] @CachedProperty def string(self): res = conf.lib.clang_getCompletionChunkCompletionString(self.cs, self.key) if res: return CompletionString(res) else: None def isKindOptional(self): return self.__kindNumber == 0 def isKindTypedText(self): return self.__kindNumber == 1 def isKindPlaceHolder(self): return self.__kindNumber == 3 def isKindInformative(self): return self.__kindNumber == 4 def isKindResultType(self): return self.__kindNumber == 15 completionChunkKindMap = { 0: CompletionChunk.Kind("Optional"), 1: CompletionChunk.Kind("TypedText"), 2: CompletionChunk.Kind("Text"), 3: CompletionChunk.Kind("Placeholder"), 4: CompletionChunk.Kind("Informative"), 5: CompletionChunk.Kind("CurrentParameter"), 6: CompletionChunk.Kind("LeftParen"), 7: CompletionChunk.Kind("RightParen"), 8: CompletionChunk.Kind("LeftBracket"), 9: CompletionChunk.Kind("RightBracket"), 10: CompletionChunk.Kind("LeftBrace"), 11: CompletionChunk.Kind("RightBrace"), 12: CompletionChunk.Kind("LeftAngle"), 13: CompletionChunk.Kind("RightAngle"), 14: CompletionChunk.Kind("Comma"), 15: CompletionChunk.Kind("ResultType"), 16: CompletionChunk.Kind("Colon"), 17: CompletionChunk.Kind("SemiColon"), 18: CompletionChunk.Kind("Equal"), 19: CompletionChunk.Kind("HorizontalSpace"), 20: CompletionChunk.Kind("VerticalSpace"), } class CompletionString(ClangObject): class Availability: def __init__(self, name): self.name = name def __str__(self): return self.name def __repr__(self): return "" % self def __len__(self): return self.num_chunks @CachedProperty def num_chunks(self): return conf.lib.clang_getNumCompletionChunks(self.obj) def __getitem__(self, key): if self.num_chunks <= key: raise IndexError return CompletionChunk(self.obj, key) @property def priority(self): return conf.lib.clang_getCompletionPriority(self.obj) @property def availability(self): res = conf.lib.clang_getCompletionAvailability(self.obj) return availabilityKinds[res] @property def briefComment(self): if conf.function_exists("clang_getCompletionBriefComment"): return conf.lib.clang_getCompletionBriefComment(self.obj) return _CXString() def __repr__(self): return ( " | ".join([str(a) for a in self]) + " || Priority: " + str(self.priority) + " || Availability: " + str(self.availability) + " || Brief comment: " + str(self.briefComment) ) availabilityKinds = { 0: CompletionChunk.Kind("Available"), 1: CompletionChunk.Kind("Deprecated"), 2: CompletionChunk.Kind("NotAvailable"), 3: CompletionChunk.Kind("NotAccessible"), } class CodeCompletionResult(Structure): _fields_ = [("cursorKind", c_int), ("completionString", c_object_p)] def __repr__(self): return str(CompletionString(self.completionString)) @property def kind(self): return CursorKind.from_id(self.cursorKind) @property def string(self): return CompletionString(self.completionString) class CCRStructure(Structure): _fields_ = [("results", POINTER(CodeCompletionResult)), ("numResults", c_int)] def __len__(self): return self.numResults def __getitem__(self, key): if len(self) <= key: raise IndexError return self.results[key] class CodeCompletionResults(ClangObject): def __init__(self, ptr): assert isinstance(ptr, POINTER(CCRStructure)) and ptr self.ptr = self._as_parameter_ = ptr def from_param(self): return self._as_parameter_ def __del__(self): conf.lib.clang_disposeCodeCompleteResults(self) @property def results(self): return self.ptr.contents @property def diagnostics(self): class DiagnosticsItr: def __init__(self, ccr): self.ccr = ccr def __len__(self): return int(conf.lib.clang_codeCompleteGetNumDiagnostics(self.ccr)) def __getitem__(self, key): return conf.lib.clang_codeCompleteGetDiagnostic(self.ccr, key) return DiagnosticsItr(self) class Index(ClangObject): """ The Index type provides the primary interface to the Clang CIndex library, primarily by providing an interface for reading and parsing translation units. """ @staticmethod def create(excludeDecls=False): """ Create a new Index. Parameters: excludeDecls -- Exclude local declarations from translation units. """ return Index(conf.lib.clang_createIndex(excludeDecls, 0)) def __del__(self): conf.lib.clang_disposeIndex(self) def read(self, path): """Load a TranslationUnit from the given AST file.""" return TranslationUnit.from_ast_file(path, self) def parse(self, path, args=None, unsaved_files=None, options=0): """Load the translation unit from the given source code file by running clang and generating the AST before loading. Additional command line parameters can be passed to clang via the args parameter. In-memory contents for files can be provided by passing a list of pairs to as unsaved_files, the first item should be the filenames to be mapped and the second should be the contents to be substituted for the file. The contents may be passed as strings or file objects. If an error was encountered during parsing, a TranslationUnitLoadError will be raised. """ return TranslationUnit.from_source(path, args, unsaved_files, options, self) class TranslationUnit(ClangObject): """Represents a source code translation unit. This is one of the main types in the API. Any time you wish to interact with Clang's representation of a source file, you typically start with a translation unit. """ # Default parsing mode. PARSE_NONE = 0 # Instruct the parser to create a detailed processing record containing # metadata not normally retained. PARSE_DETAILED_PROCESSING_RECORD = 1 # Indicates that the translation unit is incomplete. This is typically used # when parsing headers. PARSE_INCOMPLETE = 2 # Instruct the parser to create a pre-compiled preamble for the translation # unit. This caches the preamble (included files at top of source file). # This is useful if the translation unit will be reparsed and you don't # want to incur the overhead of reparsing the preamble. PARSE_PRECOMPILED_PREAMBLE = 4 # Cache code completion information on parse. This adds time to parsing but # speeds up code completion. PARSE_CACHE_COMPLETION_RESULTS = 8 # Flags with values 16 and 32 are deprecated and intentionally omitted. # Do not parse function bodies. This is useful if you only care about # searching for declarations/definitions. PARSE_SKIP_FUNCTION_BODIES = 64 # Used to indicate that brief documentation comments should be included # into the set of code completions returned from this translation unit. PARSE_INCLUDE_BRIEF_COMMENTS_IN_CODE_COMPLETION = 128 @classmethod def from_source( cls, filename, args=None, unsaved_files=None, options=0, index=None ): """Create a TranslationUnit by parsing source. This is capable of processing source code both from files on the filesystem as well as in-memory contents. Command-line arguments that would be passed to clang are specified as a list via args. These can be used to specify include paths, warnings, etc. e.g. ["-Wall", "-I/path/to/include"]. In-memory file content can be provided via unsaved_files. This is an iterable of 2-tuples. The first element is the filename (str or PathLike). The second element defines the content. Content can be provided as str source code or as file objects (anything with a read() method). If a file object is being used, content will be read until EOF and the read cursor will not be reset to its original position. options is a bitwise or of TranslationUnit.PARSE_XXX flags which will control parsing behavior. index is an Index instance to utilize. If not provided, a new Index will be created for this TranslationUnit. To parse source from the filesystem, the filename of the file to parse is specified by the filename argument. Or, filename could be None and the args list would contain the filename(s) to parse. To parse source from an in-memory buffer, set filename to the virtual filename you wish to associate with this source (e.g. "test.c"). The contents of that file are then provided in unsaved_files. If an error occurs, a TranslationUnitLoadError is raised. Please note that a TranslationUnit with parser errors may be returned. It is the caller's responsibility to check tu.diagnostics for errors. Also note that Clang infers the source language from the extension of the input filename. If you pass in source code containing a C++ class declaration with the filename "test.c" parsing will fail. """ if args is None: args = [] if unsaved_files is None: unsaved_files = [] if index is None: index = Index.create() args_array = None if len(args) > 0: args_array = (c_char_p * len(args))(*[b(x) for x in args]) unsaved_array = None if len(unsaved_files) > 0: unsaved_array = (_CXUnsavedFile * len(unsaved_files))() for i, (name, contents) in enumerate(unsaved_files): if hasattr(contents, "read"): contents = contents.read() contents = b(contents) unsaved_array[i].name = b(os.fspath(name)) unsaved_array[i].contents = contents unsaved_array[i].length = len(contents) ptr = conf.lib.clang_parseTranslationUnit( index, os.fspath(filename) if filename is not None else None, args_array, len(args), unsaved_array, len(unsaved_files), options, ) if not ptr: raise TranslationUnitLoadError("Error parsing translation unit.") return cls(ptr, index=index) @classmethod def from_ast_file(cls, filename, index=None): """Create a TranslationUnit instance from a saved AST file. A previously-saved AST file (provided with -emit-ast or TranslationUnit.save()) is loaded from the filename specified. If the file cannot be loaded, a TranslationUnitLoadError will be raised. index is optional and is the Index instance to use. If not provided, a default Index will be created. filename can be str or PathLike. """ if index is None: index = Index.create() ptr = conf.lib.clang_createTranslationUnit(index, os.fspath(filename)) if not ptr: raise TranslationUnitLoadError(filename) return cls(ptr=ptr, index=index) def __init__(self, ptr, index): """Create a TranslationUnit instance. TranslationUnits should be created using one of the from_* @classmethod functions above. __init__ is only called internally. """ assert isinstance(index, Index) self.index = index ClangObject.__init__(self, ptr) def __del__(self): conf.lib.clang_disposeTranslationUnit(self) @property def cursor(self): """Retrieve the cursor that represents the given translation unit.""" return conf.lib.clang_getTranslationUnitCursor(self) @property def spelling(self): """Get the original translation unit source file name.""" return conf.lib.clang_getTranslationUnitSpelling(self) def get_includes(self): """ Return an iterable sequence of FileInclusion objects that describe the sequence of inclusions in a translation unit. The first object in this sequence is always the input file. Note that this method will not recursively iterate over header files included through precompiled headers. """ def visitor(fobj, lptr, depth, includes): if depth > 0: loc = lptr.contents includes.append(FileInclusion(loc.file, File(fobj), loc, depth)) # Automatically adapt CIndex/ctype pointers to python objects includes = [] conf.lib.clang_getInclusions( self, callbacks["translation_unit_includes"](visitor), includes ) return iter(includes) def get_file(self, filename): """Obtain a File from this translation unit.""" return File.from_name(self, filename) def get_location(self, filename, position): """Obtain a SourceLocation for a file in this translation unit. The position can be specified by passing: - Integer file offset. Initial file offset is 0. - 2-tuple of (line number, column number). Initial file position is (0, 0) """ f = self.get_file(filename) if isinstance(position, int): return SourceLocation.from_offset(self, f, position) return SourceLocation.from_position(self, f, position[0], position[1]) def get_extent(self, filename, locations): """Obtain a SourceRange from this translation unit. The bounds of the SourceRange must ultimately be defined by a start and end SourceLocation. For the locations argument, you can pass: - 2 SourceLocation instances in a 2-tuple or list. - 2 int file offsets via a 2-tuple or list. - 2 2-tuple or lists of (line, column) pairs in a 2-tuple or list. e.g. get_extent('foo.c', (5, 10)) get_extent('foo.c', ((1, 1), (1, 15))) """ f = self.get_file(filename) if len(locations) < 2: raise Exception("Must pass object with at least 2 elements") start_location, end_location = locations if hasattr(start_location, "__len__"): start_location = SourceLocation.from_position( self, f, start_location[0], start_location[1] ) elif isinstance(start_location, int): start_location = SourceLocation.from_offset(self, f, start_location) if hasattr(end_location, "__len__"): end_location = SourceLocation.from_position( self, f, end_location[0], end_location[1] ) elif isinstance(end_location, int): end_location = SourceLocation.from_offset(self, f, end_location) assert isinstance(start_location, SourceLocation) assert isinstance(end_location, SourceLocation) return SourceRange.from_locations(start_location, end_location) @property def diagnostics(self): """ Return an iterable (and indexable) object containing the diagnostics. """ class DiagIterator: def __init__(self, tu): self.tu = tu def __len__(self): return int(conf.lib.clang_getNumDiagnostics(self.tu)) def __getitem__(self, key): diag = conf.lib.clang_getDiagnostic(self.tu, key) if not diag: raise IndexError return Diagnostic(diag) return DiagIterator(self) def reparse(self, unsaved_files=None, options=0): """ Reparse an already parsed translation unit. In-memory contents for files can be provided by passing a list of pairs as unsaved_files, the first items should be the filenames to be mapped and the second should be the contents to be substituted for the file. The contents may be passed as strings or file objects. """ if unsaved_files is None: unsaved_files = [] unsaved_files_array = 0 if len(unsaved_files): unsaved_files_array = (_CXUnsavedFile * len(unsaved_files))() for i, (name, contents) in enumerate(unsaved_files): if hasattr(contents, "read"): contents = contents.read() contents = b(contents) unsaved_files_array[i].name = b(os.fspath(name)) unsaved_files_array[i].contents = contents unsaved_files_array[i].length = len(contents) ptr = conf.lib.clang_reparseTranslationUnit( self, len(unsaved_files), unsaved_files_array, options ) def save(self, filename): """Saves the TranslationUnit to a file. This is equivalent to passing -emit-ast to the clang frontend. The saved file can be loaded back into a TranslationUnit. Or, if it corresponds to a header, it can be used as a pre-compiled header file. If an error occurs while saving, a TranslationUnitSaveError is raised. If the error was TranslationUnitSaveError.ERROR_INVALID_TU, this means the constructed TranslationUnit was not valid at time of save. In this case, the reason(s) why should be available via TranslationUnit.diagnostics(). filename -- The path to save the translation unit to (str or PathLike). """ options = conf.lib.clang_defaultSaveOptions(self) result = int( conf.lib.clang_saveTranslationUnit( self, os.fspath(filename), options, ) ) if result != 0: raise TranslationUnitSaveError(result, "Error saving TranslationUnit.") def codeComplete( self, path, line, column, unsaved_files=None, include_macros=False, include_code_patterns=False, include_brief_comments=False, ): """ Code complete in this translation unit. In-memory contents for files can be provided by passing a list of pairs as unsaved_files, the first items should be the filenames to be mapped and the second should be the contents to be substituted for the file. The contents may be passed as strings or file objects. """ options = 0 if include_macros: options += 1 if include_code_patterns: options += 2 if include_brief_comments: options += 4 if unsaved_files is None: unsaved_files = [] unsaved_files_array = 0 if len(unsaved_files): unsaved_files_array = (_CXUnsavedFile * len(unsaved_files))() for i, (name, contents) in enumerate(unsaved_files): if hasattr(contents, "read"): contents = contents.read() contents = b(contents) unsaved_files_array[i].name = b(os.fspath(name)) unsaved_files_array[i].contents = contents unsaved_files_array[i].length = len(contents) ptr = conf.lib.clang_codeCompleteAt( self, os.fspath(path), line, column, unsaved_files_array, len(unsaved_files), options, ) if ptr: return CodeCompletionResults(ptr) return None def get_tokens(self, locations=None, extent=None): """Obtain tokens in this translation unit. This is a generator for Token instances. The caller specifies a range of source code to obtain tokens for. The range can be specified as a 2-tuple of SourceLocation or as a SourceRange. If both are defined, behavior is undefined. """ if locations is not None: extent = SourceRange(start=locations[0], end=locations[1]) return TokenGroup.get_tokens(self, extent) class File(ClangObject): """ The File class represents a particular source file that is part of a translation unit. """ @staticmethod def from_name(translation_unit, file_name): """Retrieve a file handle within the given translation unit.""" return File( conf.lib.clang_getFile(translation_unit, os.fspath(file_name)), ) @property def name(self): """Return the complete file and path name of the file.""" return conf.lib.clang_getFileName(self) @property def time(self): """Return the last modification time of the file.""" return conf.lib.clang_getFileTime(self) def __str__(self): return self.name def __repr__(self): return "" % (self.name) @staticmethod def from_result(res, fn, args): assert isinstance(res, c_object_p) res = File(res) # Copy a reference to the TranslationUnit to prevent premature GC. res._tu = args[0]._tu return res class FileInclusion: """ The FileInclusion class represents the inclusion of one source file by another via a '#include' directive or as the input file for the translation unit. This class provides information about the included file, the including file, the location of the '#include' directive and the depth of the included file in the stack. Note that the input file has depth 0. """ def __init__(self, src, tgt, loc, depth): self.source = src self.include = tgt self.location = loc self.depth = depth @property def is_input_file(self): """True if the included file is the input file.""" return self.depth == 0 class CompilationDatabaseError(Exception): """Represents an error that occurred when working with a CompilationDatabase Each error is associated to an enumerated value, accessible under e.cdb_error. Consumers can compare the value with one of the ERROR_ constants in this class. """ # An unknown error occurred ERROR_UNKNOWN = 0 # The database could not be loaded ERROR_CANNOTLOADDATABASE = 1 def __init__(self, enumeration, message): assert isinstance(enumeration, int) if enumeration > 1: raise Exception( "Encountered undefined CompilationDatabase error " "constant: %d. Please file a bug to have this " "value supported." % enumeration ) self.cdb_error = enumeration Exception.__init__(self, "Error %d: %s" % (enumeration, message)) class CompileCommand: """Represents the compile command used to build a file""" def __init__(self, cmd, ccmds): self.cmd = cmd # Keep a reference to the originating CompileCommands # to prevent garbage collection self.ccmds = ccmds @property def directory(self): """Get the working directory for this CompileCommand""" return conf.lib.clang_CompileCommand_getDirectory(self.cmd) @property def filename(self): """Get the working filename for this CompileCommand""" return conf.lib.clang_CompileCommand_getFilename(self.cmd) @property def arguments(self): """ Get an iterable object providing each argument in the command line for the compiler invocation as a _CXString. Invariant : the first argument is the compiler executable """ length = conf.lib.clang_CompileCommand_getNumArgs(self.cmd) for i in range(length): yield conf.lib.clang_CompileCommand_getArg(self.cmd, i) class CompileCommands: """ CompileCommands is an iterable object containing all CompileCommand that can be used for building a specific file. """ def __init__(self, ccmds): self.ccmds = ccmds def __del__(self): conf.lib.clang_CompileCommands_dispose(self.ccmds) def __len__(self): return int(conf.lib.clang_CompileCommands_getSize(self.ccmds)) def __getitem__(self, i): cc = conf.lib.clang_CompileCommands_getCommand(self.ccmds, i) if not cc: raise IndexError return CompileCommand(cc, self) @staticmethod def from_result(res, fn, args): if not res: return None return CompileCommands(res) class CompilationDatabase(ClangObject): """ The CompilationDatabase is a wrapper class around clang::tooling::CompilationDatabase It enables querying how a specific source file can be built. """ def __del__(self): conf.lib.clang_CompilationDatabase_dispose(self) @staticmethod def from_result(res, fn, args): if not res: raise CompilationDatabaseError(0, "CompilationDatabase loading failed") return CompilationDatabase(res) @staticmethod def fromDirectory(buildDir): """Builds a CompilationDatabase from the database found in buildDir""" errorCode = c_uint() try: cdb = conf.lib.clang_CompilationDatabase_fromDirectory( os.fspath(buildDir), byref(errorCode) ) except CompilationDatabaseError as e: raise CompilationDatabaseError( int(errorCode.value), "CompilationDatabase loading failed" ) return cdb def getCompileCommands(self, filename): """ Get an iterable object providing all the CompileCommands available to build filename. Returns None if filename is not found in the database. """ return conf.lib.clang_CompilationDatabase_getCompileCommands( self, os.fspath(filename) ) def getAllCompileCommands(self): """ Get an iterable object providing all the CompileCommands available from the database. """ return conf.lib.clang_CompilationDatabase_getAllCompileCommands(self) class Token(Structure): """Represents a single token from the preprocessor. Tokens are effectively segments of source code. Source code is first parsed into tokens before being converted into the AST and Cursors. Tokens are obtained from parsed TranslationUnit instances. You currently can't create tokens manually. """ _fields_ = [("int_data", c_uint * 4), ("ptr_data", c_void_p)] @property def spelling(self): """The spelling of this token. This is the textual representation of the token in source. """ return conf.lib.clang_getTokenSpelling(self._tu, self) @property def kind(self): """Obtain the TokenKind of the current token.""" return TokenKind.from_value(conf.lib.clang_getTokenKind(self)) @property def location(self): """The SourceLocation this Token occurs at.""" return conf.lib.clang_getTokenLocation(self._tu, self) @property def extent(self): """The SourceRange this Token occupies.""" return conf.lib.clang_getTokenExtent(self._tu, self) @property def cursor(self): """The Cursor this Token corresponds to.""" cursor = Cursor() cursor._tu = self._tu conf.lib.clang_annotateTokens(self._tu, byref(self), 1, byref(cursor)) return cursor # Now comes the plumbing to hook up the C library. # Register callback types in common container. callbacks["translation_unit_includes"] = CFUNCTYPE( None, c_object_p, POINTER(SourceLocation), c_uint, py_object ) callbacks["cursor_visit"] = CFUNCTYPE(c_int, Cursor, Cursor, py_object) callbacks["fields_visit"] = CFUNCTYPE(c_int, Cursor, py_object) # Functions strictly alphabetical order. functionList = [ ( "clang_annotateTokens", [TranslationUnit, POINTER(Token), c_uint, POINTER(Cursor)], ), ("clang_CompilationDatabase_dispose", [c_object_p]), ( "clang_CompilationDatabase_fromDirectory", [c_interop_string, POINTER(c_uint)], c_object_p, CompilationDatabase.from_result, ), ( "clang_CompilationDatabase_getAllCompileCommands", [c_object_p], c_object_p, CompileCommands.from_result, ), ( "clang_CompilationDatabase_getCompileCommands", [c_object_p, c_interop_string], c_object_p, CompileCommands.from_result, ), ("clang_CompileCommands_dispose", [c_object_p]), ("clang_CompileCommands_getCommand", [c_object_p, c_uint], c_object_p), ("clang_CompileCommands_getSize", [c_object_p], c_uint), ( "clang_CompileCommand_getArg", [c_object_p, c_uint], _CXString, _CXString.from_result, ), ( "clang_CompileCommand_getDirectory", [c_object_p], _CXString, _CXString.from_result, ), ( "clang_CompileCommand_getFilename", [c_object_p], _CXString, _CXString.from_result, ), ("clang_CompileCommand_getNumArgs", [c_object_p], c_uint), ( "clang_codeCompleteAt", [TranslationUnit, c_interop_string, c_int, c_int, c_void_p, c_int, c_int], POINTER(CCRStructure), ), ("clang_codeCompleteGetDiagnostic", [CodeCompletionResults, c_int], Diagnostic), ("clang_codeCompleteGetNumDiagnostics", [CodeCompletionResults], c_int), ("clang_createIndex", [c_int, c_int], c_object_p), ("clang_createTranslationUnit", [Index, c_interop_string], c_object_p), ("clang_CXXConstructor_isConvertingConstructor", [Cursor], bool), ("clang_CXXConstructor_isCopyConstructor", [Cursor], bool), ("clang_CXXConstructor_isDefaultConstructor", [Cursor], bool), ("clang_CXXConstructor_isMoveConstructor", [Cursor], bool), ("clang_CXXField_isMutable", [Cursor], bool), ("clang_CXXMethod_isConst", [Cursor], bool), ("clang_CXXMethod_isDefaulted", [Cursor], bool), ("clang_CXXMethod_isDeleted", [Cursor], bool), ("clang_CXXMethod_isCopyAssignmentOperator", [Cursor], bool), ("clang_CXXMethod_isMoveAssignmentOperator", [Cursor], bool), ("clang_CXXMethod_isExplicit", [Cursor], bool), ("clang_CXXMethod_isPureVirtual", [Cursor], bool), ("clang_CXXMethod_isStatic", [Cursor], bool), ("clang_CXXMethod_isVirtual", [Cursor], bool), ("clang_CXXRecord_isAbstract", [Cursor], bool), ("clang_EnumDecl_isScoped", [Cursor], bool), ("clang_defaultDiagnosticDisplayOptions", [], c_uint), ("clang_defaultSaveOptions", [TranslationUnit], c_uint), ("clang_disposeCodeCompleteResults", [CodeCompletionResults]), # ("clang_disposeCXTUResourceUsage", # [CXTUResourceUsage]), ("clang_disposeDiagnostic", [Diagnostic]), ("clang_disposeIndex", [Index]), ("clang_disposeString", [_CXString]), ("clang_disposeTokens", [TranslationUnit, POINTER(Token), c_uint]), ("clang_disposeTranslationUnit", [TranslationUnit]), ("clang_equalCursors", [Cursor, Cursor], bool), ("clang_equalLocations", [SourceLocation, SourceLocation], bool), ("clang_equalRanges", [SourceRange, SourceRange], bool), ("clang_equalTypes", [Type, Type], bool), ("clang_formatDiagnostic", [Diagnostic, c_uint], _CXString, _CXString.from_result), ("clang_getArgType", [Type, c_uint], Type, Type.from_result), ("clang_getArrayElementType", [Type], Type, Type.from_result), ("clang_getArraySize", [Type], c_longlong), ("clang_getFieldDeclBitWidth", [Cursor], c_int), ("clang_getCanonicalCursor", [Cursor], Cursor, Cursor.from_cursor_result), ("clang_getCanonicalType", [Type], Type, Type.from_result), ("clang_getChildDiagnostics", [Diagnostic], c_object_p), ("clang_getCompletionAvailability", [c_void_p], c_int), ("clang_getCompletionBriefComment", [c_void_p], _CXString, _CXString.from_result), ("clang_getCompletionChunkCompletionString", [c_void_p, c_int], c_object_p), ("clang_getCompletionChunkKind", [c_void_p, c_int], c_int), ( "clang_getCompletionChunkText", [c_void_p, c_int], _CXString, _CXString.from_result, ), ("clang_getCompletionPriority", [c_void_p], c_int), ( "clang_getCString", [_CXString], c_interop_string, c_interop_string.to_python_string, ), ("clang_getCursor", [TranslationUnit, SourceLocation], Cursor), ("clang_getCursorAvailability", [Cursor], c_int), ("clang_getCursorDefinition", [Cursor], Cursor, Cursor.from_result), ("clang_getCursorDisplayName", [Cursor], _CXString, _CXString.from_result), ("clang_getCursorExtent", [Cursor], SourceRange), ("clang_getCursorLexicalParent", [Cursor], Cursor, Cursor.from_cursor_result), ("clang_getCursorLocation", [Cursor], SourceLocation), ("clang_getCursorReferenced", [Cursor], Cursor, Cursor.from_result), ("clang_getCursorReferenceNameRange", [Cursor, c_uint, c_uint], SourceRange), ("clang_getCursorResultType", [Cursor], Type, Type.from_result), ("clang_getCursorSemanticParent", [Cursor], Cursor, Cursor.from_cursor_result), ("clang_getCursorSpelling", [Cursor], _CXString, _CXString.from_result), ("clang_getCursorType", [Cursor], Type, Type.from_result), ("clang_getCursorUSR", [Cursor], _CXString, _CXString.from_result), ("clang_Cursor_getMangling", [Cursor], _CXString, _CXString.from_result), # ("clang_getCXTUResourceUsage", # [TranslationUnit], # CXTUResourceUsage), ("clang_getCXXAccessSpecifier", [Cursor], c_uint), ("clang_getDeclObjCTypeEncoding", [Cursor], _CXString, _CXString.from_result), ("clang_getDiagnostic", [c_object_p, c_uint], c_object_p), ("clang_getDiagnosticCategory", [Diagnostic], c_uint), ("clang_getDiagnosticCategoryText", [Diagnostic], _CXString, _CXString.from_result), ( "clang_getDiagnosticFixIt", [Diagnostic, c_uint, POINTER(SourceRange)], _CXString, _CXString.from_result, ), ("clang_getDiagnosticInSet", [c_object_p, c_uint], c_object_p), ("clang_getDiagnosticLocation", [Diagnostic], SourceLocation), ("clang_getDiagnosticNumFixIts", [Diagnostic], c_uint), ("clang_getDiagnosticNumRanges", [Diagnostic], c_uint), ( "clang_getDiagnosticOption", [Diagnostic, POINTER(_CXString)], _CXString, _CXString.from_result, ), ("clang_getDiagnosticRange", [Diagnostic, c_uint], SourceRange), ("clang_getDiagnosticSeverity", [Diagnostic], c_int), ("clang_getDiagnosticSpelling", [Diagnostic], _CXString, _CXString.from_result), ("clang_getElementType", [Type], Type, Type.from_result), ("clang_getEnumConstantDeclUnsignedValue", [Cursor], c_ulonglong), ("clang_getEnumConstantDeclValue", [Cursor], c_longlong), ("clang_getEnumDeclIntegerType", [Cursor], Type, Type.from_result), ("clang_getFile", [TranslationUnit, c_interop_string], c_object_p), ("clang_getFileName", [File], _CXString, _CXString.from_result), ("clang_getFileTime", [File], c_uint), ("clang_getIBOutletCollectionType", [Cursor], Type, Type.from_result), ("clang_getIncludedFile", [Cursor], c_object_p, File.from_result), ( "clang_getInclusions", [TranslationUnit, callbacks["translation_unit_includes"], py_object], ), ( "clang_getInstantiationLocation", [ SourceLocation, POINTER(c_object_p), POINTER(c_uint), POINTER(c_uint), POINTER(c_uint), ], ), ("clang_getLocation", [TranslationUnit, File, c_uint, c_uint], SourceLocation), ("clang_getLocationForOffset", [TranslationUnit, File, c_uint], SourceLocation), ("clang_getNullCursor", None, Cursor), ("clang_getNumArgTypes", [Type], c_uint), ("clang_getNumCompletionChunks", [c_void_p], c_int), ("clang_getNumDiagnostics", [c_object_p], c_uint), ("clang_getNumDiagnosticsInSet", [c_object_p], c_uint), ("clang_getNumElements", [Type], c_longlong), ("clang_getNumOverloadedDecls", [Cursor], c_uint), ("clang_getOverloadedDecl", [Cursor, c_uint], Cursor, Cursor.from_cursor_result), ("clang_getPointeeType", [Type], Type, Type.from_result), ("clang_getRange", [SourceLocation, SourceLocation], SourceRange), ("clang_getRangeEnd", [SourceRange], SourceLocation), ("clang_getRangeStart", [SourceRange], SourceLocation), ("clang_getResultType", [Type], Type, Type.from_result), ("clang_getSpecializedCursorTemplate", [Cursor], Cursor, Cursor.from_cursor_result), ("clang_getTemplateCursorKind", [Cursor], c_uint), ("clang_getTokenExtent", [TranslationUnit, Token], SourceRange), ("clang_getTokenKind", [Token], c_uint), ("clang_getTokenLocation", [TranslationUnit, Token], SourceLocation), ( "clang_getTokenSpelling", [TranslationUnit, Token], _CXString, _CXString.from_result, ), ("clang_getTranslationUnitCursor", [TranslationUnit], Cursor, Cursor.from_result), ( "clang_getTranslationUnitSpelling", [TranslationUnit], _CXString, _CXString.from_result, ), ( "clang_getTUResourceUsageName", [c_uint], c_interop_string, c_interop_string.to_python_string, ), ("clang_getTypeDeclaration", [Type], Cursor, Cursor.from_result), ("clang_getTypedefDeclUnderlyingType", [Cursor], Type, Type.from_result), ("clang_getTypedefName", [Type], _CXString, _CXString.from_result), ("clang_getTypeKindSpelling", [c_uint], _CXString, _CXString.from_result), ("clang_getTypeSpelling", [Type], _CXString, _CXString.from_result), ("clang_hashCursor", [Cursor], c_uint), ("clang_isAttribute", [CursorKind], bool), ("clang_isConstQualifiedType", [Type], bool), ("clang_isCursorDefinition", [Cursor], bool), ("clang_isDeclaration", [CursorKind], bool), ("clang_isExpression", [CursorKind], bool), ("clang_isFileMultipleIncludeGuarded", [TranslationUnit, File], bool), ("clang_isFunctionTypeVariadic", [Type], bool), ("clang_isInvalid", [CursorKind], bool), ("clang_isPODType", [Type], bool), ("clang_isPreprocessing", [CursorKind], bool), ("clang_isReference", [CursorKind], bool), ("clang_isRestrictQualifiedType", [Type], bool), ("clang_isStatement", [CursorKind], bool), ("clang_isTranslationUnit", [CursorKind], bool), ("clang_isUnexposed", [CursorKind], bool), ("clang_isVirtualBase", [Cursor], bool), ("clang_isVolatileQualifiedType", [Type], bool), ( "clang_parseTranslationUnit", [Index, c_interop_string, c_void_p, c_int, c_void_p, c_int, c_int], c_object_p, ), ("clang_reparseTranslationUnit", [TranslationUnit, c_int, c_void_p, c_int], c_int), ("clang_saveTranslationUnit", [TranslationUnit, c_interop_string, c_uint], c_int), ( "clang_tokenize", [TranslationUnit, SourceRange, POINTER(POINTER(Token)), POINTER(c_uint)], ), ("clang_visitChildren", [Cursor, callbacks["cursor_visit"], py_object], c_uint), ("clang_Cursor_getNumArguments", [Cursor], c_int), ("clang_Cursor_getArgument", [Cursor, c_uint], Cursor, Cursor.from_result), ("clang_Cursor_getNumTemplateArguments", [Cursor], c_int), ( "clang_Cursor_getTemplateArgumentKind", [Cursor, c_uint], TemplateArgumentKind.from_id, ), ("clang_Cursor_getTemplateArgumentType", [Cursor, c_uint], Type, Type.from_result), ("clang_Cursor_getTemplateArgumentValue", [Cursor, c_uint], c_longlong), ("clang_Cursor_getTemplateArgumentUnsignedValue", [Cursor, c_uint], c_ulonglong), ("clang_Cursor_isAnonymous", [Cursor], bool), ("clang_Cursor_isBitField", [Cursor], bool), ("clang_Cursor_getBriefCommentText", [Cursor], _CXString, _CXString.from_result), ("clang_Cursor_getRawCommentText", [Cursor], _CXString, _CXString.from_result), ("clang_Cursor_getOffsetOfField", [Cursor], c_longlong), ("clang_Location_isInSystemHeader", [SourceLocation], bool), ("clang_Type_getAlignOf", [Type], c_longlong), ("clang_Type_getClassType", [Type], Type, Type.from_result), ("clang_Type_getNumTemplateArguments", [Type], c_int), ("clang_Type_getTemplateArgumentAsType", [Type, c_uint], Type, Type.from_result), ("clang_Type_getOffsetOf", [Type, c_interop_string], c_longlong), ("clang_Type_getSizeOf", [Type], c_longlong), ("clang_Type_getCXXRefQualifier", [Type], c_uint), ("clang_Type_getNamedType", [Type], Type, Type.from_result), ("clang_Type_visitFields", [Type, callbacks["fields_visit"], py_object], c_uint), ] class LibclangError(Exception): def __init__(self, message): self.m = message def __str__(self): return self.m def register_function(lib, item, ignore_errors): # A function may not exist, if these bindings are used with an older or # incompatible version of libclang.so. try: func = getattr(lib, item[0]) except AttributeError as e: msg = ( str(e) + ". Please ensure that your python bindings are " "compatible with your libclang.so version." ) if ignore_errors: return raise LibclangError(msg) if len(item) >= 2: func.argtypes = item[1] if len(item) >= 3: func.restype = item[2] if len(item) == 4: func.errcheck = item[3] def register_functions(lib, ignore_errors): """Register function prototypes with a libclang library instance. This must be called as part of library instantiation so Python knows how to call out to the shared library. """ def register(item): return register_function(lib, item, ignore_errors) for f in functionList: register(f) class Config: library_path = os.environ.get("LIBCLANG_LIBRARY_PATH", os.path.join(os.path.dirname(os.path.realpath(__file__)), "native")) library_file = None compatibility_check = True loaded = False @staticmethod def set_library_path(path): """Set the path in which to search for libclang""" if Config.loaded: raise Exception( "library path must be set before before using " "any other functionalities in libclang." ) Config.library_path = os.fspath(path) @staticmethod def set_library_file(filename): """Set the exact location of libclang""" if Config.loaded: raise Exception( "library file must be set before before using " "any other functionalities in libclang." ) Config.library_file = os.fspath(filename) @staticmethod def set_compatibility_check(check_status): """Perform compatibility check when loading libclang The python bindings are only tested and evaluated with the version of libclang they are provided with. To ensure correct behavior a (limited) compatibility check is performed when loading the bindings. This check will throw an exception, as soon as it fails. In case these bindings are used with an older version of libclang, parts that have been stable between releases may still work. Users of the python bindings can disable the compatibility check. This will cause the python bindings to load, even though they are written for a newer version of libclang. Failures now arise if unsupported or incompatible features are accessed. The user is required to test themselves if the features they are using are available and compatible between different libclang versions. """ if Config.loaded: raise Exception( "compatibility_check must be set before before " "using any other functionalities in libclang." ) Config.compatibility_check = check_status @CachedProperty def lib(self): lib = self.get_cindex_library() register_functions(lib, not Config.compatibility_check) Config.loaded = True return lib def get_filename(self): if Config.library_file: return Config.library_file import platform name = platform.system() if name == "Darwin": file = "libclang.dylib" elif name == "Windows": file = "libclang.dll" else: file = "libclang.so" if Config.library_path and os.path.isfile(Config.library_path + "/" + file): file = Config.library_path + "/" + file return file def get_cindex_library(self): try: library = cdll.LoadLibrary(self.get_filename()) except OSError as e: msg = ( str(e) + ". To provide a path to libclang use " "Config.set_library_path() or " "Config.set_library_file()." ) raise LibclangError(msg) return library def function_exists(self, name): try: getattr(self.lib, name) except AttributeError: return False return True def register_enumerations(): for name, value in clang.enumerations.TokenKinds: TokenKind.register(value, name) conf = Config() register_enumerations() __all__ = [ "AvailabilityKind", "Config", "CodeCompletionResults", "CompilationDatabase", "CompileCommands", "CompileCommand", "CursorKind", "Cursor", "Diagnostic", "File", "FixIt", "Index", "LinkageKind", "SourceLocation", "SourceRange", "TLSKind", "TokenKind", "Token", "TranslationUnitLoadError", "TranslationUnit", "TypeKind", "Type", ]