"""Compatibility fixes for older version of python, numpy and scipy If you add content to this file, please give the version of the package at which the fix is no longer needed. """ # Authors: Emmanuelle Gouillart # Gael Varoquaux # Fabian Pedregosa # Lars Buitinck # # License: BSD 3 clause import platform import struct import numpy as np import scipy import scipy.sparse.linalg import scipy.stats import sklearn from ..externals._packaging.version import parse as parse_version _IS_PYPY = platform.python_implementation() == "PyPy" _IS_32BIT = 8 * struct.calcsize("P") == 32 _IS_WASM = platform.machine() in ["wasm32", "wasm64"] np_version = parse_version(np.__version__) np_base_version = parse_version(np_version.base_version) sp_version = parse_version(scipy.__version__) sp_base_version = parse_version(sp_version.base_version) # TODO: We can consider removing the containers and importing # directly from SciPy when sparse matrices will be deprecated. CSR_CONTAINERS = [scipy.sparse.csr_matrix] CSC_CONTAINERS = [scipy.sparse.csc_matrix] COO_CONTAINERS = [scipy.sparse.coo_matrix] LIL_CONTAINERS = [scipy.sparse.lil_matrix] DOK_CONTAINERS = [scipy.sparse.dok_matrix] BSR_CONTAINERS = [scipy.sparse.bsr_matrix] DIA_CONTAINERS = [scipy.sparse.dia_matrix] if parse_version(scipy.__version__) >= parse_version("1.8"): # Sparse Arrays have been added in SciPy 1.8 # TODO: When SciPy 1.8 is the minimum supported version, # those list can be created directly without this condition. # See: https://github.com/scikit-learn/scikit-learn/issues/27090 CSR_CONTAINERS.append(scipy.sparse.csr_array) CSC_CONTAINERS.append(scipy.sparse.csc_array) COO_CONTAINERS.append(scipy.sparse.coo_array) LIL_CONTAINERS.append(scipy.sparse.lil_array) DOK_CONTAINERS.append(scipy.sparse.dok_array) BSR_CONTAINERS.append(scipy.sparse.bsr_array) DIA_CONTAINERS.append(scipy.sparse.dia_array) # Remove when minimum scipy version is 1.11.0 try: from scipy.sparse import sparray # noqa SPARRAY_PRESENT = True except ImportError: SPARRAY_PRESENT = False # Remove when minimum scipy version is 1.8 try: from scipy.sparse import csr_array # noqa SPARSE_ARRAY_PRESENT = True except ImportError: SPARSE_ARRAY_PRESENT = False try: from scipy.optimize._linesearch import line_search_wolfe1, line_search_wolfe2 except ImportError: # SciPy < 1.8 from scipy.optimize.linesearch import line_search_wolfe2, line_search_wolfe1 # type: ignore # noqa def _object_dtype_isnan(X): return X != X # Rename the `method` kwarg to `interpolation` for NumPy < 1.22, because # `interpolation` kwarg was deprecated in favor of `method` in NumPy >= 1.22. def _percentile(a, q, *, method="linear", **kwargs): return np.percentile(a, q, interpolation=method, **kwargs) if np_version < parse_version("1.22"): percentile = _percentile else: # >= 1.22 from numpy import percentile # type: ignore # noqa # TODO: Remove when SciPy 1.11 is the minimum supported version def _mode(a, axis=0): if sp_version >= parse_version("1.9.0"): mode = scipy.stats.mode(a, axis=axis, keepdims=True) if sp_version >= parse_version("1.10.999"): # scipy.stats.mode has changed returned array shape with axis=None # and keepdims=True, see https://github.com/scipy/scipy/pull/17561 if axis is None: mode = np.ravel(mode) return mode return scipy.stats.mode(a, axis=axis) # TODO: Remove when Scipy 1.12 is the minimum supported version if sp_base_version >= parse_version("1.12.0"): _sparse_linalg_cg = scipy.sparse.linalg.cg else: def _sparse_linalg_cg(A, b, **kwargs): if "rtol" in kwargs: kwargs["tol"] = kwargs.pop("rtol") if "atol" not in kwargs: kwargs["atol"] = "legacy" return scipy.sparse.linalg.cg(A, b, **kwargs) # TODO: Fuse the modern implementations of _sparse_min_max and _sparse_nan_min_max # into the public min_max_axis function when Scipy 1.11 is the minimum supported # version and delete the backport in the else branch below. if sp_base_version >= parse_version("1.11.0"): def _sparse_min_max(X, axis): the_min = X.min(axis=axis) the_max = X.max(axis=axis) if axis is not None: the_min = the_min.toarray().ravel() the_max = the_max.toarray().ravel() return the_min, the_max def _sparse_nan_min_max(X, axis): the_min = X.nanmin(axis=axis) the_max = X.nanmax(axis=axis) if axis is not None: the_min = the_min.toarray().ravel() the_max = the_max.toarray().ravel() return the_min, the_max else: # This code is mostly taken from scipy 0.14 and extended to handle nans, see # https://github.com/scikit-learn/scikit-learn/pull/11196 def _minor_reduce(X, ufunc): major_index = np.flatnonzero(np.diff(X.indptr)) # reduceat tries casts X.indptr to intp, which errors # if it is int64 on a 32 bit system. # Reinitializing prevents this where possible, see #13737 X = type(X)((X.data, X.indices, X.indptr), shape=X.shape) value = ufunc.reduceat(X.data, X.indptr[major_index]) return major_index, value def _min_or_max_axis(X, axis, min_or_max): N = X.shape[axis] if N == 0: raise ValueError("zero-size array to reduction operation") M = X.shape[1 - axis] mat = X.tocsc() if axis == 0 else X.tocsr() mat.sum_duplicates() major_index, value = _minor_reduce(mat, min_or_max) not_full = np.diff(mat.indptr)[major_index] < N value[not_full] = min_or_max(value[not_full], 0) mask = value != 0 major_index = np.compress(mask, major_index) value = np.compress(mask, value) if axis == 0: res = scipy.sparse.coo_matrix( (value, (np.zeros(len(value)), major_index)), dtype=X.dtype, shape=(1, M), ) else: res = scipy.sparse.coo_matrix( (value, (major_index, np.zeros(len(value)))), dtype=X.dtype, shape=(M, 1), ) return res.A.ravel() def _sparse_min_or_max(X, axis, min_or_max): if axis is None: if 0 in X.shape: raise ValueError("zero-size array to reduction operation") zero = X.dtype.type(0) if X.nnz == 0: return zero m = min_or_max.reduce(X.data.ravel()) if X.nnz != np.prod(X.shape): m = min_or_max(zero, m) return m if axis < 0: axis += 2 if (axis == 0) or (axis == 1): return _min_or_max_axis(X, axis, min_or_max) else: raise ValueError("invalid axis, use 0 for rows, or 1 for columns") def _sparse_min_max(X, axis): return ( _sparse_min_or_max(X, axis, np.minimum), _sparse_min_or_max(X, axis, np.maximum), ) def _sparse_nan_min_max(X, axis): return ( _sparse_min_or_max(X, axis, np.fmin), _sparse_min_or_max(X, axis, np.fmax), ) # For +1.25 NumPy versions exceptions and warnings are being moved # to a dedicated submodule. if np_version >= parse_version("1.25.0"): from numpy.exceptions import ComplexWarning, VisibleDeprecationWarning else: from numpy import ComplexWarning, VisibleDeprecationWarning # type: ignore # noqa # TODO: Remove when Scipy 1.6 is the minimum supported version try: from scipy.integrate import trapezoid # type: ignore # noqa except ImportError: from scipy.integrate import trapz as trapezoid # type: ignore # noqa # TODO: Adapt when Pandas > 2.2 is the minimum supported version def pd_fillna(pd, frame): pd_version = parse_version(pd.__version__).base_version if parse_version(pd_version) < parse_version("2.2"): frame = frame.fillna(value=np.nan) else: infer_objects_kwargs = ( {} if parse_version(pd_version) >= parse_version("3") else {"copy": False} ) with pd.option_context("future.no_silent_downcasting", True): frame = frame.fillna(value=np.nan).infer_objects(**infer_objects_kwargs) return frame # TODO: remove when SciPy 1.12 is the minimum supported version def _preserve_dia_indices_dtype( sparse_container, original_container_format, requested_sparse_format ): """Preserve indices dtype for SciPy < 1.12 when converting from DIA to CSR/CSC. For SciPy < 1.12, DIA arrays indices are upcasted to `np.int64` that is inconsistent with DIA matrices. We downcast the indices dtype to `np.int32` to be consistent with DIA matrices. The converted indices arrays are affected back inplace to the sparse container. Parameters ---------- sparse_container : sparse container Sparse container to be checked. requested_sparse_format : str or bool The type of format of `sparse_container`. Notes ----- See https://github.com/scipy/scipy/issues/19245 for more details. """ if original_container_format == "dia_array" and requested_sparse_format in ( "csr", "coo", ): if requested_sparse_format == "csr": index_dtype = _smallest_admissible_index_dtype( arrays=(sparse_container.indptr, sparse_container.indices), maxval=max(sparse_container.nnz, sparse_container.shape[1]), check_contents=True, ) sparse_container.indices = sparse_container.indices.astype( index_dtype, copy=False ) sparse_container.indptr = sparse_container.indptr.astype( index_dtype, copy=False ) else: # requested_sparse_format == "coo" index_dtype = _smallest_admissible_index_dtype( maxval=max(sparse_container.shape) ) sparse_container.row = sparse_container.row.astype(index_dtype, copy=False) sparse_container.col = sparse_container.col.astype(index_dtype, copy=False) # TODO: remove when SciPy 1.12 is the minimum supported version def _smallest_admissible_index_dtype(arrays=(), maxval=None, check_contents=False): """Based on input (integer) arrays `a`, determine a suitable index data type that can hold the data in the arrays. This function returns `np.int64` if it either required by `maxval` or based on the largest precision of the dtype of the arrays passed as argument, or by the their contents (when `check_contents is True`). If none of the condition requires `np.int64` then this function returns `np.int32`. Parameters ---------- arrays : ndarray or tuple of ndarrays, default=() Input arrays whose types/contents to check. maxval : float, default=None Maximum value needed. check_contents : bool, default=False Whether to check the values in the arrays and not just their types. By default, check only the types. Returns ------- dtype : {np.int32, np.int64} Suitable index data type (int32 or int64). """ int32min = np.int32(np.iinfo(np.int32).min) int32max = np.int32(np.iinfo(np.int32).max) if maxval is not None: if maxval > np.iinfo(np.int64).max: raise ValueError( f"maxval={maxval} is to large to be represented as np.int64." ) if maxval > int32max: return np.int64 if isinstance(arrays, np.ndarray): arrays = (arrays,) for arr in arrays: if not isinstance(arr, np.ndarray): raise TypeError( f"Arrays should be of type np.ndarray, got {type(arr)} instead." ) if not np.issubdtype(arr.dtype, np.integer): raise ValueError( f"Array dtype {arr.dtype} is not supported for index dtype. We expect " "integral values." ) if not np.can_cast(arr.dtype, np.int32): if not check_contents: # when `check_contents` is False, we stay on the safe side and return # np.int64. return np.int64 if arr.size == 0: # a bigger type not needed yet, let's look at the next array continue else: maxval = arr.max() minval = arr.min() if minval < int32min or maxval > int32max: # a big index type is actually needed return np.int64 return np.int32 # TODO: Remove when Scipy 1.12 is the minimum supported version if sp_version < parse_version("1.12"): from ..externals._scipy.sparse.csgraph import laplacian # type: ignore # noqa else: from scipy.sparse.csgraph import laplacian # type: ignore # noqa # pragma: no cover # TODO: Remove when we drop support for Python 3.9. Note the filter argument has # been back-ported in 3.9.17 but we can not assume anything about the micro # version, see # https://docs.python.org/3.9/library/tarfile.html#tarfile.TarFile.extractall # for more details def tarfile_extractall(tarfile, path): try: tarfile.extractall(path, filter="data") except TypeError: tarfile.extractall(path) def _in_unstable_openblas_configuration(): """Return True if in an unstable configuration for OpenBLAS""" # Import libraries which might load OpenBLAS. import numpy # noqa import scipy # noqa modules_info = sklearn._threadpool_controller.info() open_blas_used = any(info["internal_api"] == "openblas" for info in modules_info) if not open_blas_used: return False # OpenBLAS 0.3.16 fixed instability for arm64, see: # https://github.com/xianyi/OpenBLAS/blob/1b6db3dbba672b4f8af935bd43a1ff6cff4d20b7/Changelog.txt#L56-L58 # noqa openblas_arm64_stable_version = parse_version("0.3.16") for info in modules_info: if info["internal_api"] != "openblas": continue openblas_version = info.get("version") openblas_architecture = info.get("architecture") if openblas_version is None or openblas_architecture is None: # Cannot be sure that OpenBLAS is good enough. Assume unstable: return True # pragma: no cover if ( openblas_architecture == "neoversen1" and parse_version(openblas_version) < openblas_arm64_stable_version ): # See discussions in https://github.com/numpy/numpy/issues/19411 return True # pragma: no cover return False