# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains summaries related to laying out the custom scalars dashboard."""


from tensorboard.plugins.custom_scalar import layout_pb2
from tensorboard.plugins.custom_scalar import metadata


def op(scalars_layout, collections=None):
    """Creates a summary that contains a layout.

    When users navigate to the custom scalars dashboard, they will see a layout
    based on the proto provided to this function.

    Args:
      scalars_layout: The scalars_layout_pb2.Layout proto that specifies the
          layout.
      collections: Optional list of graph collections keys. The new
          summary op is added to these collections. Defaults to
          `[Graph Keys.SUMMARIES]`.

    Returns:
      A tensor summary op that writes the layout to disk.
    """
    # TODO(nickfelt): remove on-demand imports once dep situation is fixed.
    import tensorflow.compat.v1 as tf

    assert isinstance(scalars_layout, layout_pb2.Layout)
    summary_metadata = metadata.create_summary_metadata()
    return tf.summary.tensor_summary(
        name=metadata.CONFIG_SUMMARY_TAG,
        tensor=tf.constant(scalars_layout.SerializeToString(), dtype=tf.string),
        collections=collections,
        summary_metadata=summary_metadata,
    )


def pb(scalars_layout):
    """Creates a summary that contains a layout.

    When users navigate to the custom scalars dashboard, they will see a layout
    based on the proto provided to this function.

    Args:
      scalars_layout: The scalars_layout_pb2.Layout proto that specifies the
          layout.

    Returns:
      A summary proto containing the layout.
    """
    # TODO(nickfelt): remove on-demand imports once dep situation is fixed.
    import tensorflow.compat.v1 as tf

    assert isinstance(scalars_layout, layout_pb2.Layout)
    tensor = tf.make_tensor_proto(
        scalars_layout.SerializeToString(), dtype=tf.string
    )
    tf_summary_metadata = tf.SummaryMetadata.FromString(
        metadata.create_summary_metadata().SerializeToString()
    )
    summary = tf.Summary()
    summary.value.add(
        tag=metadata.CONFIG_SUMMARY_TAG,
        metadata=tf_summary_metadata,
        tensor=tensor,
    )
    return summary