"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections from tensorflow.python import pywrap_tfe as pywrap_tfe from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.security.fuzzing.py import annotation_types as _atypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from typing import TypeVar, List, Any from typing_extensions import Annotated TV_XlaClusterOutput_T = TypeVar("TV_XlaClusterOutput_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant) @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('xla_cluster_output') def xla_cluster_output(input: Annotated[Any, TV_XlaClusterOutput_T], name=None) -> Annotated[Any, TV_XlaClusterOutput_T]: r"""Operator that connects the output of an XLA computation to other consumer graph nodes. Args: input: A `Tensor`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "XlaClusterOutput", name, input) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_xla_cluster_output( (input, name,), None) if _result is not NotImplemented: return _result return xla_cluster_output_eager_fallback( input, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( xla_cluster_output, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_xla_cluster_output( (input, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "XlaClusterOutput", input=input, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( xla_cluster_output, (), dict(input=input, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("T", _op._get_attr_type("T")) _inputs_flat = _op.inputs _execute.record_gradient( "XlaClusterOutput", _inputs_flat, _attrs, _result) _result, = _result return _result XlaClusterOutput = tf_export("raw_ops.XlaClusterOutput")(_ops.to_raw_op(xla_cluster_output)) _dispatcher_for_xla_cluster_output = xla_cluster_output._tf_type_based_dispatcher.Dispatch def xla_cluster_output_eager_fallback(input: Annotated[Any, TV_XlaClusterOutput_T], name, ctx) -> Annotated[Any, TV_XlaClusterOutput_T]: _attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, []) _inputs_flat = [input] _attrs = ("T", _attr_T) _result = _execute.execute(b"XlaClusterOutput", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "XlaClusterOutput", _inputs_flat, _attrs, _result) _result, = _result return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('xla_launch') def xla_launch(constants, args, resources: Annotated[List[Any], _atypes.Resource], Tresults, function, name=None): r"""XLA Launch Op. For use by the XLA JIT only. Args: constants: A list of `Tensor` objects. args: A list of `Tensor` objects. resources: A list of `Tensor` objects with type `resource`. Tresults: A list of `tf.DTypes`. function: A function decorated with @Defun. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `Tresults`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "XlaLaunch", name, constants, args, resources, "Tresults", Tresults, "function", function) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_xla_launch( (constants, args, resources, Tresults, function, name,), None) if _result is not NotImplemented: return _result return xla_launch_eager_fallback( constants, args, resources, Tresults=Tresults, function=function, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( xla_launch, (), dict(constants=constants, args=args, resources=resources, Tresults=Tresults, function=function, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_xla_launch( (constants, args, resources, Tresults, function, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(resources, (list, tuple)): raise TypeError( "Expected list for 'resources' argument to " "'xla_launch' Op, not %r." % resources) _attr_Nresources = len(resources) if not isinstance(Tresults, (list, tuple)): raise TypeError( "Expected list for 'Tresults' argument to " "'xla_launch' Op, not %r." % Tresults) Tresults = [_execute.make_type(_t, "Tresults") for _t in Tresults] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "XlaLaunch", constants=constants, args=args, resources=resources, Tresults=Tresults, function=function, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( xla_launch, (), dict(constants=constants, args=args, resources=resources, Tresults=Tresults, function=function, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if not _result: return _op if _execute.must_record_gradient(): _attrs = ("Tconstants", _op.get_attr("Tconstants"), "Targs", _op.get_attr("Targs"), "Nresources", _op._get_attr_int("Nresources"), "Tresults", _op.get_attr("Tresults"), "function", _op.get_attr("function")) _inputs_flat = _op.inputs _execute.record_gradient( "XlaLaunch", _inputs_flat, _attrs, _result) return _result XlaLaunch = tf_export("raw_ops.XlaLaunch")(_ops.to_raw_op(xla_launch)) _dispatcher_for_xla_launch = xla_launch._tf_type_based_dispatcher.Dispatch def xla_launch_eager_fallback(constants, args, resources: Annotated[List[Any], _atypes.Resource], Tresults, function, name, ctx): if not isinstance(resources, (list, tuple)): raise TypeError( "Expected list for 'resources' argument to " "'xla_launch' Op, not %r." % resources) _attr_Nresources = len(resources) if not isinstance(Tresults, (list, tuple)): raise TypeError( "Expected list for 'Tresults' argument to " "'xla_launch' Op, not %r." % Tresults) Tresults = [_execute.make_type(_t, "Tresults") for _t in Tresults] _attr_Tconstants, constants = _execute.convert_to_mixed_eager_tensors(constants, ctx) _attr_Targs, args = _execute.convert_to_mixed_eager_tensors(args, ctx) resources = _ops.convert_n_to_tensor(resources, _dtypes.resource) _inputs_flat = list(constants) + list(args) + list(resources) _attrs = ("Tconstants", _attr_Tconstants, "Targs", _attr_Targs, "Nresources", _attr_Nresources, "Tresults", Tresults, "function", function) _result = _execute.execute(b"XlaLaunch", len(Tresults), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "XlaLaunch", _inputs_flat, _attrs, _result) return _result @_dispatch.add_fallback_dispatch_list @_dispatch.add_type_based_api_dispatcher @tf_export('xla_launch_v2') def xla_launch_v2(args, Tresults, constants, resources, function, name=None): r"""XLA Launch Op. For use by the XLA JIT only. Args: args: A list of `Tensor` objects. Tresults: A list of `tf.DTypes`. constants: A list of `ints`. resources: A list of `ints`. function: A function decorated with @Defun. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `Tresults`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx, "XlaLaunchV2", name, args, "Tresults", Tresults, "constants", constants, "resources", resources, "function", function) return _result except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) except _core._FallbackException: pass try: _result = _dispatcher_for_xla_launch_v2( (args, Tresults, constants, resources, function, name,), None) if _result is not NotImplemented: return _result return xla_launch_v2_eager_fallback( args, Tresults=Tresults, constants=constants, resources=resources, function=function, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): _result = _dispatch.dispatch( xla_launch_v2, (), dict(args=args, Tresults=Tresults, constants=constants, resources=resources, function=function, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise else: _result = _dispatcher_for_xla_launch_v2( (args, Tresults, constants, resources, function, name,), None) if _result is not NotImplemented: return _result # Add nodes to the TensorFlow graph. if not isinstance(Tresults, (list, tuple)): raise TypeError( "Expected list for 'Tresults' argument to " "'xla_launch_v2' Op, not %r." % Tresults) Tresults = [_execute.make_type(_t, "Tresults") for _t in Tresults] if not isinstance(constants, (list, tuple)): raise TypeError( "Expected list for 'constants' argument to " "'xla_launch_v2' Op, not %r." % constants) constants = [_execute.make_int(_i, "constants") for _i in constants] if not isinstance(resources, (list, tuple)): raise TypeError( "Expected list for 'resources' argument to " "'xla_launch_v2' Op, not %r." % resources) resources = [_execute.make_int(_i, "resources") for _i in resources] try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "XlaLaunchV2", args=args, Tresults=Tresults, constants=constants, resources=resources, function=function, name=name) except (TypeError, ValueError): _result = _dispatch.dispatch( xla_launch_v2, (), dict(args=args, Tresults=Tresults, constants=constants, resources=resources, function=function, name=name) ) if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return _result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("Targs", _op.get_attr("Targs"), "Tresults", _op.get_attr("Tresults"), "constants", _op.get_attr("constants"), "resources", _op.get_attr("resources"), "function", _op.get_attr("function")) _inputs_flat = _op.inputs _execute.record_gradient( "XlaLaunchV2", _inputs_flat, _attrs, _result) return _result XlaLaunchV2 = tf_export("raw_ops.XlaLaunchV2")(_ops.to_raw_op(xla_launch_v2)) _dispatcher_for_xla_launch_v2 = xla_launch_v2._tf_type_based_dispatcher.Dispatch def xla_launch_v2_eager_fallback(args, Tresults, constants, resources, function, name, ctx): if not isinstance(Tresults, (list, tuple)): raise TypeError( "Expected list for 'Tresults' argument to " "'xla_launch_v2' Op, not %r." % Tresults) Tresults = [_execute.make_type(_t, "Tresults") for _t in Tresults] if not isinstance(constants, (list, tuple)): raise TypeError( "Expected list for 'constants' argument to " "'xla_launch_v2' Op, not %r." % constants) constants = [_execute.make_int(_i, "constants") for _i in constants] if not isinstance(resources, (list, tuple)): raise TypeError( "Expected list for 'resources' argument to " "'xla_launch_v2' Op, not %r." % resources) resources = [_execute.make_int(_i, "resources") for _i in resources] _attr_Targs, args = _execute.convert_to_mixed_eager_tensors(args, ctx) _inputs_flat = list(args) _attrs = ("Targs", _attr_Targs, "Tresults", Tresults, "constants", constants, "resources", resources, "function", function) _result = _execute.execute(b"XlaLaunchV2", len(Tresults), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "XlaLaunchV2", _inputs_flat, _attrs, _result) return _result