# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Special functions that only make sense for AutoGraph. These functions are meant to ensure feature parity between Python and AutoGraph, so that the exact same code works in both modes. In general, AutoGraph will replace these calls. """ from tensorflow.python.autograph.operators import data_structures from tensorflow.python.framework import constant_op from tensorflow.python.framework import tensor_util def _validate_list_constructor(elements, element_dtype, element_shape): """Validates the inputs of tensor_list.""" if element_dtype is not None and element_shape is not None: return if tensor_util.is_tf_type(elements): return if isinstance(elements, (list, tuple)): if elements: return else: raise ValueError( 'element_dtype and element_shape are required when elements are' ' empty') raise ValueError( 'unknown type for elements: {}; only Tensor, list and tuple are' ' allowed'.format(type(elements))) def match_staging_level(value, like_value): """Casts a value to be staged at the same level as another.""" if tensor_util.is_tf_type(like_value): return constant_op.constant(value) return value def tensor_list(elements, element_dtype=None, element_shape=None, use_tensor_array=False): """Creates an tensor list and populates it with the given elements. This function provides a more uniform access to tensor lists and tensor arrays, and allows optional initialization. Note: this function is a simplified wrapper. If you need greater control, it is recommended to use the underlying implementation directly. Args: elements: Iterable[tf.Tensor, ...], the elements to initially fill the list with element_dtype: Optional[tf.DType], data type for the elements in the list; required if the list is empty element_shape: Optional[tf.TensorShape], shape for the elements in the list; required if the list is empty use_tensor_array: bool, whether to use the more compatible but restrictive tf.TensorArray implementation Returns: Union[tf.Tensor, tf.TensorArray], the new list. Raises: ValueError: for invalid arguments """ _validate_list_constructor(elements, element_dtype, element_shape) if use_tensor_array: return data_structures.tf_tensor_array_new(elements, element_dtype, element_shape) else: return data_structures.tf_tensor_list_new(elements, element_dtype, element_shape) def stack(list_or_tensor, element_dtype=None, strict=True): """Stacks the input, if it admits the notion of stacking. For example, a list of tensors can be stacked into a larger tensor. This function is similar to tf.stack, but it accepts non-lists and lists of non-tensors as arguments. In the latter case, the function does nothing. Args: list_or_tensor: Any element_dtype: tf.DType, optional dtypedtype for the elements in the list. Required if the input is stackable, and the list is untyped. strict: bool, if True an error is raised if the input is not stackable. Otherwise the function is a no-op. Returns: Any, if the input is stackable, the result will be a tf.Tensor. Otherwise, if strict=False, the result will be list_or_tensor. Raises: ValueError: if strict=True and the input is not stackable. """ if strict: def raise_error(x): raise ValueError('%s must be stackable when strict=True' % x) original_call = raise_error else: original_call = lambda x: x return data_structures.list_stack( list_or_tensor, data_structures.ListStackOpts( element_dtype=element_dtype, original_call=original_call))