# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Shared utilities related to backprop.""" from tensorflow.core.config import flags from tensorflow.core.framework import types_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import indexed_slices from tensorflow.python.framework import ops from tensorflow.python.framework import tensor as tensor_lib from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import handle_data_util from tensorflow.python.ops import math_ops def _DTypeFromTensor(tensor): """Extract either `tensor.dtype` or the unanimous sub-type of a variant.""" dtype = tensor.dtype if dtype.base_dtype == dtypes.variant: # If we know statically that the data a variant points to is non-trainable # then the variant itself is non-trainable. if isinstance(tensor, ops.EagerTensor): handle_data = tensor._handle_data # pylint: disable=protected-access else: handle_data = handle_data_util.get_resource_handle_data(tensor) if (handle_data is not None and handle_data.is_set and handle_data.shape_and_type): first_type = handle_data.shape_and_type[0].dtype # Some variants have statically unknown dtypes; we can't make inferences # about trainability, so we conservatively assume they're trainable # (which may waste memory passing zeros around, but will be correct). if (first_type != types_pb2.DT_INVALID and all(shape_and_type.dtype == first_type for shape_and_type in handle_data.shape_and_type)): return first_type return dtype def IsTrainable(tensor_or_dtype): """Determines whether a tensor or dtype supports infinitesimal changes.""" if tensor_util.is_tf_type(tensor_or_dtype): dtype = _DTypeFromTensor(tensor_or_dtype) else: dtype = tensor_or_dtype dtype = dtypes.as_dtype(dtype) trainable_dtypes = [dtypes.float16, dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128, dtypes.resource, dtypes.variant, dtypes.bfloat16] if flags.config().enable_quantized_dtypes_training.value(): trainable_dtypes.extend([dtypes.qint8, dtypes.qint16, dtypes.qint32, dtypes.quint8, dtypes.quint16]) return dtype.base_dtype in trainable_dtypes def FlattenNestedIndexedSlices(grad): assert isinstance(grad, indexed_slices.IndexedSlices) if isinstance(grad.values, tensor_lib.Tensor): return grad else: assert isinstance(grad.values, indexed_slices.IndexedSlices) g = FlattenNestedIndexedSlices(grad.values) return indexed_slices.IndexedSlices( g.values, array_ops.gather(grad.indices, g.indices), g.dense_shape) def AggregateIndexedSlicesGradients(grads): """Aggregates gradients containing `IndexedSlices`s.""" if len(grads) < 1: return None if len(grads) == 1: return grads[0] grads = [g for g in grads if g is not None] # If any gradient is a `Tensor`, sum them up and return a dense tensor # object. if any(isinstance(g, tensor_lib.Tensor) for g in grads): return math_ops.add_n(grads) # The following `_as_indexed_slices_list` casts ids of IndexedSlices into # int64. It is to make sure the inputs of `concat` all have same the data # type. grads = math_ops._as_indexed_slices_list(grads) # pylint: disable=protected-access grads = [FlattenNestedIndexedSlices(x) for x in grads] # Form IndexedSlices out of the concatenated values and indices. concat_grad = indexed_slices.IndexedSlices( array_ops.concat([x.values for x in grads], axis=0), array_ops.concat([x.indices for x in grads], axis=0), grads[0].dense_shape) return concat_grad