# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Benchmark base to run and report benchmark results.""" import os import uuid from tensorflow.python.eager import test from tensorflow.python.platform import flags from tensorflow.python.profiler import profiler_v2 as profiler flags.DEFINE_bool("xprof", False, "Run and report benchmarks with xprof on") flags.DEFINE_string("logdir", "/tmp/xprof/", "Directory to store xprof data") class MicroBenchmarksBase(test.Benchmark): """Run and report benchmark results. The first run is without any profilng. Second run is with xprof and python trace. Third run is with xprof without python trace. Note: xprof runs are with fewer iterations. """ def run_with_xprof(self, enable_python_trace, run_benchmark, func, num_iters_xprof, execution_mode, suid): if enable_python_trace: options = profiler.ProfilerOptions(python_tracer_level=1) logdir = os.path.join(flags.FLAGS.logdir, suid + "_with_python") else: options = profiler.ProfilerOptions(python_tracer_level=0) logdir = os.path.join(flags.FLAGS.logdir, suid) with profiler.Profile(logdir, options): total_time = run_benchmark(func, num_iters_xprof, execution_mode) us_per_example = float("{0:.3f}".format(total_time * 1e6 / num_iters_xprof)) return logdir, us_per_example def run_report(self, run_benchmark, func, num_iters, execution_mode=None): """Run and report benchmark results.""" total_time = run_benchmark(func, num_iters, execution_mode) mean_us = total_time * 1e6 / num_iters extras = { "examples_per_sec": float("{0:.3f}".format(num_iters / total_time)), "us_per_example": float("{0:.3f}".format(total_time * 1e6 / num_iters)) } if flags.FLAGS.xprof: suid = str(uuid.uuid4()) # Re-run with xprof and python trace. num_iters_xprof = min(100, num_iters) xprof_link, us_per_example = self.run_with_xprof(True, run_benchmark, func, num_iters_xprof, execution_mode, suid) extras["xprof link with python trace"] = xprof_link extras["us_per_example with xprof and python"] = us_per_example # Re-run with xprof but no python trace. xprof_link, us_per_example = self.run_with_xprof(False, run_benchmark, func, num_iters_xprof, execution_mode, suid) extras["xprof link"] = xprof_link extras["us_per_example with xprof"] = us_per_example benchmark_name = self._get_benchmark_name() self.report_benchmark( iters=num_iters, wall_time=mean_us, extras=extras, name=benchmark_name)