# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Graph-only versions of a few op functions, for internal use only.""" # Must be separate from array_ops to avoid a cyclic dependency. from tensorflow.core.framework import attr_value_pb2 from tensorflow.python.framework import op_callbacks from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape def graph_placeholder(dtype, shape, name=None): """Graph-only version of tf.compat.v1.placeholder(), for internal use only.""" dtype = dtype.base_dtype dtype_value = attr_value_pb2.AttrValue(type=dtype.as_datatype_enum) if isinstance(shape, (list, tuple)): shape = tensor_shape.TensorShape(shape) shape = attr_value_pb2.AttrValue(shape=shape.as_proto()) g = ops.get_default_graph() attrs = {"dtype": dtype_value, "shape": shape} op = g._create_op_internal( # pylint: disable=protected-access "Placeholder", [], [dtype], input_types=[], attrs=attrs, name=name) result, = op.outputs if op_callbacks.should_invoke_op_callbacks(): # TODO(b/147670703): Once the special-op creation code paths # are unified. Remove this `if` block. callback_outputs = op_callbacks.invoke_op_callbacks( "Placeholder", tuple(), attrs, tuple(op.outputs), op_name=name, graph=g) if callback_outputs is not None: result, = callback_outputs return result