# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Defines functions common to multiple feature column files.""" import six from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.util import nest def sequence_length_from_sparse_tensor(sp_tensor, num_elements=1): """Returns a [batch_size] Tensor with per-example sequence length.""" with ops.name_scope(None, 'sequence_length') as name_scope: row_ids = sp_tensor.indices[:, 0] column_ids = sp_tensor.indices[:, 1] # Add one to convert column indices to element length column_ids += array_ops.ones_like(column_ids) # Get the number of elements we will have per example/row seq_length = math_ops.segment_max(column_ids, segment_ids=row_ids) # The raw values are grouped according to num_elements; # how many entities will we have after grouping? # Example: orig tensor [[1, 2], [3]], col_ids = (0, 1, 1), # row_ids = (0, 0, 1), seq_length = [2, 1]. If num_elements = 2, # these will get grouped, and the final seq_length is [1, 1] seq_length = math_ops.cast( math_ops.ceil(seq_length / num_elements), dtypes.int64) # If the last n rows do not have ids, seq_length will have shape # [batch_size - n]. Pad the remaining values with zeros. n_pad = array_ops.shape(sp_tensor)[:1] - array_ops.shape(seq_length)[:1] padding = array_ops.zeros(n_pad, dtype=seq_length.dtype) return array_ops.concat([seq_length, padding], axis=0, name=name_scope) def assert_string_or_int(dtype, prefix): if (dtype != dtypes.string) and (not dtype.is_integer): raise ValueError( '{} dtype must be string or integer. dtype: {}.'.format(prefix, dtype)) def assert_key_is_string(key): if not isinstance(key, six.string_types): raise ValueError( 'key must be a string. Got: type {}. Given key: {}.'.format( type(key), key)) def check_default_value(shape, default_value, dtype, key): """Returns default value as tuple if it's valid, otherwise raises errors. This function verifies that `default_value` is compatible with both `shape` and `dtype`. If it is not compatible, it raises an error. If it is compatible, it casts default_value to a tuple and returns it. `key` is used only for error message. Args: shape: An iterable of integers specifies the shape of the `Tensor`. default_value: If a single value is provided, the same value will be applied as the default value for every item. If an iterable of values is provided, the shape of the `default_value` should be equal to the given `shape`. dtype: defines the type of values. Default value is `tf.float32`. Must be a non-quantized, real integer or floating point type. key: Column name, used only for error messages. Returns: A tuple which will be used as default value. Raises: TypeError: if `default_value` is an iterable but not compatible with `shape` TypeError: if `default_value` is not compatible with `dtype`. ValueError: if `dtype` is not convertible to `tf.float32`. """ if default_value is None: return None if isinstance(default_value, int): return _create_tuple(shape, default_value) if isinstance(default_value, float) and dtype.is_floating: return _create_tuple(shape, default_value) if callable(getattr(default_value, 'tolist', None)): # Handles numpy arrays default_value = default_value.tolist() if nest.is_nested(default_value): if not _is_shape_and_default_value_compatible(default_value, shape): raise ValueError( 'The shape of default_value must be equal to given shape. ' 'default_value: {}, shape: {}, key: {}'.format( default_value, shape, key)) # Check if the values in the list are all integers or are convertible to # floats. is_list_all_int = all( isinstance(v, int) for v in nest.flatten(default_value)) is_list_has_float = any( isinstance(v, float) for v in nest.flatten(default_value)) if is_list_all_int: return _as_tuple(default_value) if is_list_has_float and dtype.is_floating: return _as_tuple(default_value) raise TypeError('default_value must be compatible with dtype. ' 'default_value: {}, dtype: {}, key: {}'.format( default_value, dtype, key)) def _create_tuple(shape, value): """Returns a tuple with given shape and filled with value.""" if shape: return tuple([_create_tuple(shape[1:], value) for _ in range(shape[0])]) return value def _as_tuple(value): if not nest.is_nested(value): return value return tuple([_as_tuple(v) for v in value]) def _is_shape_and_default_value_compatible(default_value, shape): """Verifies compatibility of shape and default_value.""" # Invalid condition: # * if default_value is not a scalar and shape is empty # * or if default_value is an iterable and shape is not empty if nest.is_nested(default_value) != bool(shape): return False if not shape: return True if len(default_value) != shape[0]: return False for i in range(shape[0]): if not _is_shape_and_default_value_compatible(default_value[i], shape[1:]): return False return True